JPH01193612A - Gyroscope - Google Patents
GyroscopeInfo
- Publication number
- JPH01193612A JPH01193612A JP1763788A JP1763788A JPH01193612A JP H01193612 A JPH01193612 A JP H01193612A JP 1763788 A JP1763788 A JP 1763788A JP 1763788 A JP1763788 A JP 1763788A JP H01193612 A JPH01193612 A JP H01193612A
- Authority
- JP
- Japan
- Prior art keywords
- rotating shaft
- superconductor
- gyroscope
- superconductors
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 claims abstract description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 9
- 238000001816 cooling Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 5
- 229910001873 dinitrogen Inorganic materials 0.000 abstract description 3
- 238000009987 spinning Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- SEPPVOUBHWNCAW-FNORWQNLSA-N (E)-4-oxonon-2-enal Chemical compound CCCCCC(=O)\C=C\C=O SEPPVOUBHWNCAW-FNORWQNLSA-N 0.000 description 1
- LLBZPESJRQGYMB-UHFFFAOYSA-N 4-one Natural products O1C(C(=O)CC)CC(C)C11C2(C)CCC(C3(C)C(C(C)(CO)C(OC4C(C(O)C(O)C(COC5C(C(O)C(O)CO5)OC5C(C(OC6C(C(O)C(O)C(CO)O6)O)C(O)C(CO)O5)OC5C(C(O)C(O)C(C)O5)O)O4)O)CC3)CC3)=C3C2(C)CC1 LLBZPESJRQGYMB-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/0408—Passive magnetic bearings
- F16C32/0436—Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
- F16C32/0438—Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0444—Details of devices to control the actuation of the electromagnets
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、船舶や航空機の自動操縦装置などに利用され
るジャイロスコープに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gyroscope used in automatic pilot systems for ships and aircraft.
ジャイロスコープは、高速回転するこまの回転軸が常に
一定の方向を向こうとする慣性を利用したもので、相互
に直交する軸の回りに回転可能な支持枠(ジンバル)で
こまを支持した構造をなしている。そして、ジャイロス
コープは、支持枠を傾斜させたり、こまを任意の方向に
向けても、こまの回転軸が一定方向を向(ため、これを
利用して運動方向や速度、距離などを求めることができ
、船舶や航空機の自動操縦装置、回転羅針儀などに広く
利用されている。A gyroscope utilizes the inertia of a spinning top that rotates at high speed and always tends to point in a fixed direction.The gyroscope has a structure in which the spinning top is supported by a support frame (gimbal) that can rotate around mutually orthogonal axes. I am doing it. With a gyroscope, even if you tilt the support frame or point the top in any direction, the axis of rotation of the top remains in the same direction (this can be used to determine the direction of movement, speed, distance, etc.) It is widely used in automatic pilot systems for ships and aircraft, rotary compasses, etc.
しかし、従来のジャイロスコープは、高速回転するこま
の回転軸を軸受をも9て支持しており、軸受が摩耗した
り、回転軸と軸受との間の摩擦力による誤差を生ずるな
どの欠点があった。また、回転軸には、摩擦力が作用す
るため、こまを回転させるのに大きな動力を必要として
いた。However, conventional gyroscopes use bearings to support the rotating shaft of the spinning top, which rotates at high speed, which has drawbacks such as bearing wear and errors caused by frictional force between the rotating shaft and the bearing. there were. Furthermore, since frictional force acts on the rotating shaft, a large amount of power is required to rotate the top.
本発明は、前記従来技術の欠点を解消するためになされ
たもので、精度の向上が図れ、こまを回転させる動力を
低減できるジャイロスコープを提供することを目的とす
る。The present invention has been made to eliminate the drawbacks of the prior art, and aims to provide a gyroscope that can improve accuracy and reduce the power required to rotate the top.
(発明が解決しようとする課題〕
上記目的を達成するために、本発明は、回転するこまの
回転軸とこの回転軸を支持する支持部とのいずれか一方
を超電導体により構成し、他方を磁石により構成したこ
とを特徴としている。(Problems to be Solved by the Invention) In order to achieve the above object, the present invention comprises one of a rotating shaft of a rotating top and a support portion that supports this rotating shaft, and the other is made of a superconductor. It is characterized by being composed of magnets.
上記の如く構成した本発明は、磁石から生ずる磁束が超
電導体のマイスナー効果により跳ね返され、回転軸は支
持部と接触することなく空中に浮いた状態で支持部に支
持される。このため、高速回転する回転軸の部分に摩擦
力が作用することがなく、従来生じていた誤差を低減す
ることができ、精度を向上することができる。しかも、
回転軸に摩擦力が作用しないため、こまを回転させる動
力を大幅に低減できる。In the present invention configured as described above, the magnetic flux generated from the magnet is reflected by the Meissner effect of the superconductor, and the rotating shaft is supported by the support part while floating in the air without contacting the support part. Therefore, no frictional force acts on the portion of the rotating shaft that rotates at high speed, and errors that conventionally occur can be reduced and accuracy can be improved. Moreover,
Since no frictional force acts on the rotating shaft, the power required to rotate the top can be significantly reduced.
(実施例〕
本発明に係るジャイロスコープの好ましい実施例を、添
付図面に従って詳説する。(Embodiments) Preferred embodiments of the gyroscope according to the present invention will be described in detail with reference to the accompanying drawings.
第1図は、本発明の実施例に係るジャイロスコープの要
部断面図である。FIG. 1 is a sectional view of a main part of a gyroscope according to an embodiment of the present invention.
第1図において、ジャイロスコープ10は、こま12と
回転軸14とが一体に形成され、回転軸14の両端部が
超電導体16.18となっている。In FIG. 1, a gyroscope 10 has a top 12 and a rotating shaft 14 integrally formed, and both ends of the rotating shaft 14 are superconductors 16 and 18.
超電導体16.18は、イツトリウム系統(Y−Ba’
−Cu−0)などの酸化物からなり、液体窒素中などで
超電導状態となる。そして、これら超電導体16.18
は、水平環(パンジル)20に設けた支持部22.24
の受入孔26.28に挿入しである。支持部22.24
は、磁石により構成されており、また受入孔26.28
は超電導体16.18より一回り大きく形成され、超電
導体16.18と支持部22.24との間に間隙を有す
るようになっている。Superconductor 16.18 is of the yttrium family (Y-Ba'
-Cu-0), and becomes superconducting in liquid nitrogen. And these superconductors 16.18
is the support part 22.24 provided on the horizontal ring (panzil) 20.
It is inserted into the receiving hole 26, 28 of. Support part 22.24
is composed of a magnet, and the receiving hole 26.28
is formed to be one size larger than the superconductor 16.18, and has a gap between the superconductor 16.18 and the support portion 22.24.
水平環20は、第2図に示したようにピン30を介して
垂直環(パンジル)32に揺動自在に支持されている。As shown in FIG. 2, the horizontal ring 20 is swingably supported by a vertical ring 32 via a pin 30.
そして、垂直環32は、ピン34を介して冷却容器36
に回転自在に支持されている。冷却容器36はブラケッ
ト38d固定支持され、図示しない冷却装置から低温の
窒素ガスの供給を受け、超電導体16.18を臨界温度
以下に冷却する。The vertical ring 32 is then connected to the cooling container 36 via the pin 34.
is rotatably supported. The cooling container 36 is fixedly supported by a bracket 38d, receives a supply of low-temperature nitrogen gas from a cooling device (not shown), and cools the superconductor 16.18 below the critical temperature.
上記の如く構成した実施例の作用は、次のとおりである
。The operation of the embodiment configured as described above is as follows.
冷却容器36内に超電導体16.18の臨界温度以下の
窒素ガスが供給されると、超電導体16.18は超電導
状態となる。このため、磁石からなる支持部22.24
と超電導体16.18との間には、マイスナー効果によ
る反発力が作用し、回転軸14の一部をなす超電導体1
6.1日が支持部22.24に接触することなく、中空
に浮いた状態で支持される。すなわち、こま12は、回
転軸14が支持部22.24に接触することなく支持部
22.24に支持される。このため、こま12が高速に
回転しても、回転軸14に接触による摩擦力が作用せず
、従来生じていた摩擦力に伴う誤差がなくせ、ジャイロ
スコープの精度を向上することができるとともに、こま
12を回転するための動力を大幅に低減することができ
る。また、摩耗を生じないところから、長寿命の装置が
得られる。When nitrogen gas at a temperature below the critical temperature of the superconductor 16.18 is supplied into the cooling vessel 36, the superconductor 16.18 becomes superconducting. For this reason, the support part 22.24 consisting of a magnet
A repulsive force due to the Meissner effect acts between the superconductor 16 and the superconductor 16, which forms part of the rotating shaft 14.
6.1 is supported floating in the air without contacting the support portions 22 and 24. That is, the top 12 is supported by the support portion 22.24 without the rotating shaft 14 coming into contact with the support portion 22.24. Therefore, even if the top 12 rotates at high speed, no frictional force is applied to the rotating shaft 14 due to contact, and errors associated with frictional force that conventionally occur can be eliminated, and the accuracy of the gyroscope can be improved. The power required to rotate the top 12 can be significantly reduced. Furthermore, since no wear occurs, a long-life device can be obtained.
なお、前記実施例におていは、回転軸14に超電導体1
6.18を設けた場合について説明したが、回転軸14
に磁石を設け、支持部22.24を超電導体で構成して
もよい、また、前記実施例においては、冷却容器36内
に窒素ガスを供給して超電導体16.18を冷却する場
合について説明したが、冷却容器36内を真空にして冷
却容器36を液体窒素で冷却し、冷却容器36の輻射熱
により超電導体16.18を臨界温度以下に冷却しても
よい、このように、冷却容器36内を真空にすると、こ
ま12が気流による抵抗を受けることがなく、−層の精
度の向上と、動力の低減を図ることができる。さらに、
前記実施例において戦液体窒素中などで超電導状態とな
る超電導体を用いた場合について説明したが、いわゆる
常温超電導体を用いれば、冷却容器36などを省くこと
ができ、装置を小型化することができる。In the above embodiment, the superconductor 1 is attached to the rotating shaft 14.
6.18 was explained, but the rotating shaft 14
A magnet may be provided in the superconductor 16. However, the inside of the cooling container 36 may be evacuated and the cooling container 36 may be cooled with liquid nitrogen, and the superconductor 16.18 may be cooled to below the critical temperature by the radiant heat of the cooling container 36. By creating a vacuum inside the top 12, the top 12 is not subjected to resistance due to airflow, and it is possible to improve the precision of the -layer and reduce the power. moreover,
In the above embodiment, a case was explained in which a superconductor that becomes superconducting in liquid nitrogen or the like is used, but if a so-called room temperature superconductor is used, the cooling container 36 etc. can be omitted, and the device can be made smaller. can.
以上に説明したように、本発明によれば、こまの回転軸
とこの回転軸を支持する支持部とのいずれか一方を超電
導体により構成し、他方を磁石により構成したことによ
り、回転軸を支持部に接触させることなく支持すること
ができ、接触摩擦が生じないために誤差が低減して精度
が向上するとともに、こまを回転させる動力を大幅に低
減することができる。As explained above, according to the present invention, one of the rotating shaft of the spinning top and the support part that supports the rotating shaft is made of a superconductor, and the other is made of a magnet, so that the rotating shaft can be It can be supported without contacting the support part, and since contact friction does not occur, errors are reduced and accuracy is improved, and the power required to rotate the top can be significantly reduced.
第1図は本発明の実施例に係るジャイロスコープの要部
断面図、第2図は実施例の斜視図である。
10−一・・−ジャイロスコープ、12−−・こま、1
4−−−一回転軸、16.18−・−超電導体、22.
24−・−支持部。
代理人 弁理士 村 上 友 −
第1図FIG. 1 is a sectional view of a main part of a gyroscope according to an embodiment of the present invention, and FIG. 2 is a perspective view of the embodiment. 10-1...-gyroscope, 12---top, 1
4---One rotation axis, 16.18---Superconductor, 22.
24--Support part. Agent Patent Attorney Tomo Murakami - Figure 1
Claims (1)
持部とのいずれか一方を超電導体により構成し、他方を
磁石により構成したことを特徴とするジャイロスコープ
。(1) A gyroscope characterized in that one of a rotating shaft of a rotating top and a support portion that supports this rotating shaft is made of a superconductor, and the other is made of a magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1763788A JPH01193612A (en) | 1988-01-28 | 1988-01-28 | Gyroscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1763788A JPH01193612A (en) | 1988-01-28 | 1988-01-28 | Gyroscope |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01193612A true JPH01193612A (en) | 1989-08-03 |
Family
ID=11949380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1763788A Pending JPH01193612A (en) | 1988-01-28 | 1988-01-28 | Gyroscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01193612A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100385202C (en) * | 2004-10-28 | 2008-04-30 | 上海交通大学 | Micro gyro based on composite magnetic suspension bearing |
-
1988
- 1988-01-28 JP JP1763788A patent/JPH01193612A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100385202C (en) * | 2004-10-28 | 2008-04-30 | 上海交通大学 | Micro gyro based on composite magnetic suspension bearing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5438038A (en) | Superconducting bearing device stabilized by trapped flux | |
US4939120A (en) | Superconducting rotating assembly | |
US5831362A (en) | Magnet-superconductor flywheel and levitation systems | |
US4886778A (en) | Superconducting rotating assembly | |
JPH11507710A (en) | High performance magnetic bearing system using high temperature superconductor | |
US3225608A (en) | Diamagnetic suspension system | |
JPH01193612A (en) | Gyroscope | |
Schoch et al. | A superconducting gyroscope for gimballed platform application | |
JPH0742737A (en) | Superconductive magnetic bearing device | |
JP4729702B2 (en) | Non-contact bearing device using superconducting bearing | |
US5939629A (en) | Rotor balancing systems including superconductor bearings | |
JP2654497B2 (en) | Dewar device | |
JP3084132B2 (en) | Magnetic levitation device | |
JPH04119222A (en) | Magnetic bearing device | |
JPH05172145A (en) | Super-conductive magnetic bearing device | |
JP3168596B2 (en) | Superconducting bearing device | |
JP2659747B2 (en) | Superconducting bearing | |
JP2777727B2 (en) | Superconducting magnetic bearing device | |
JP3188977B2 (en) | Drive | |
JP2602249B2 (en) | Magnetically driven rotator | |
JPH0194560A (en) | Tape guide | |
Fukuyama et al. | Superconducting magnetic bearing using MPMG YBaCuO | |
JPH1174114A (en) | Superconducting magnet device | |
JPH04355104A (en) | Surface processing method of oxide superconductive material | |
JPH06313427A (en) | Oxide superconducting bearing |