JP2777727B2 - Superconducting magnetic bearing device - Google Patents

Superconducting magnetic bearing device

Info

Publication number
JP2777727B2
JP2777727B2 JP1070120A JP7012089A JP2777727B2 JP 2777727 B2 JP2777727 B2 JP 2777727B2 JP 1070120 A JP1070120 A JP 1070120A JP 7012089 A JP7012089 A JP 7012089A JP 2777727 B2 JP2777727 B2 JP 2777727B2
Authority
JP
Japan
Prior art keywords
rotating shaft
superconducting
chamber
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1070120A
Other languages
Japanese (ja)
Other versions
JPH02248715A (en
Inventor
良一 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP1070120A priority Critical patent/JP2777727B2/en
Publication of JPH02248715A publication Critical patent/JPH02248715A/en
Application granted granted Critical
Publication of JP2777727B2 publication Critical patent/JP2777727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/005Cooling of bearings of magnetic bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、超電導材の磁石に対して生じる力を利用し
て回転軸をスラスト方向およびラジアル方向で支承する
超電導磁気軸受装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnetic bearing device that supports a rotating shaft in a thrust direction and a radial direction using a force generated on a magnet of a superconducting material.

<従来の技術> 従来のこの種の軸受装置は、超電導材のマイスナー効
果により安定な高速回転が可能で、例えば回転させなが
ら種々の測定を行う測定器(例えばジャイロスコープ)
やディスク駆動装置などに利用されるのに有望である。
<Conventional technology> A conventional bearing device of this type is capable of stable high-speed rotation due to the Meissner effect of a superconducting material. For example, a measuring instrument (for example, a gyroscope) that performs various measurements while rotating.
It is promising to be used in disk drives and disk drives.

例えば、回転軸をラジアル方向およびスラスト方向に
非接触で支承する場合、回転軸の周部および端部に永久
磁石または電磁石などの磁石をそれぞれ取り付け、各磁
石に対向する位置の固定部材に対して超電導材をそれぞ
れ取り付け、さらに、超電導材を超電導状態を示す所定
の臨界温度Tc以下に保つための温度維持手段(例えば、
熱伝動を利用したようなもの)を超電導材それぞれの近
傍に設ける。
For example, when the rotating shaft is supported in the radial direction and the thrust direction in a non-contact manner, a magnet such as a permanent magnet or an electromagnet is attached to the periphery and the end of the rotating shaft, respectively, and a fixing member at a position facing each magnet is provided. Each of the superconducting materials is attached, and further, temperature maintaining means for maintaining the superconducting material at a predetermined critical temperature Tc or less indicating a superconducting state (for example,
(Using heat conduction) are provided near each superconducting material.

このように、温度維持手段による超電導材の温度管理
を行い易くするために、従来では、超電導材を固定配置
するようにしている。
As described above, in order to facilitate the temperature control of the superconducting material by the temperature maintaining means, conventionally, the superconducting material is fixedly arranged.

<発明が解決しようとする課題> ところで、上記構成において、回転軸が停止している
ときは、この回転軸に取り付けられている磁石に対して
地磁気が影響するため、磁石および回転軸が常に所定の
決まった位置に停止させれらる。この磁石に対する地磁
気の影響は、回転軸を回転させる際の回転抵抗となっ
て、特に回転軸を低速回転で駆動すると不安定になりや
すい。
<Problem to be Solved by the Invention> By the way, in the above configuration, when the rotating shaft is stopped, since the magnetism attached to the rotating shaft is affected by the geomagnetism, the magnet and the rotating shaft are always fixed at predetermined positions. It is stopped at a fixed position. The influence of the geomagnetism on the magnet becomes a rotational resistance when rotating the rotating shaft, and the magnet tends to be unstable particularly when the rotating shaft is driven at a low speed.

ゆえに、磁石を固定部材に、回転軸に超電導材を取り
付けようにすればよいのであるが、その場合、超電導材
の温度を臨界温度以下に保つ温度維持手段の配置および
構成が難しいなど、実現には至っていない。
Therefore, it is sufficient to attach the magnet to the fixed member and attach the superconducting material to the rotating shaft.In this case, however, it is difficult to arrange and configure temperature maintaining means for keeping the temperature of the superconducting material below the critical temperature. Has not been reached.

また、回転軸の回転検出は、回転軸に形成してあるマ
ークを光学式回転計にて検出することにより行うのであ
るが、低い温度に冷却する必要のある超電導材を用いた
場合、超電導材周辺とマークが形成される回転軸周辺と
の間の温度差により、回転軸に霜や水滴が付いて、回転
軸の重量バランスが狂ったり、回転軸のマークが隠れて
回転検出ができなくなるといった不都合も生ずる。
The rotation of the rotating shaft is detected by detecting a mark formed on the rotating shaft with an optical tachometer, but when a superconducting material that needs to be cooled to a low temperature is used, the superconducting material is used. Due to the temperature difference between the periphery and the periphery of the rotating shaft where the mark is formed, frost and water droplets are attached to the rotating shaft, and the weight balance of the rotating shaft is disturbed, or the mark on the rotating shaft is hidden and rotation detection can not be performed. Inconvenience also occurs.

本発明はこのような事情に鑑みて創案されたもので、
超電導材を臨界温度以下に保つための手段を工夫し、回
転軸を低速回転で安定的に駆動できるようにするととも
に、回転検出に伴う不都合も解決できるようにすること
を目的としている。
The present invention has been made in view of such circumstances,
It is an object of the present invention to devise means for maintaining the superconducting material at a critical temperature or lower so that the rotating shaft can be driven stably at a low rotation speed, and that problems associated with rotation detection can be solved.

<課題を解決するための手段> 本発明は、このような目的を達成するために、超電導
材の磁石に対して生じる力を利用して回転軸をスラスト
方向およびラジアル方向で支承する超電導磁気軸受装置
において、次のような構成をとる。
<Means for Solving the Problems> In order to achieve such an object, the present invention provides a superconducting magnetic bearing that supports a rotating shaft in a thrust direction and a radial direction using a force generated on a magnet of a superconducting material. The device has the following configuration.

本発明の超電導磁気軸受装置は、 回転軸に設けられるスラスト支持用およびラジアル支
持用の超電導材と、 これら各超電導材に対向するように固定配置される磁
石と、 前記回転軸を外囲するチャンバと、 このチャンバ内へ、前記超電導材を臨界温度以下に保
つための温度維持用ガスを供給するガス供給手段とを備
えており、 かつ、前記回転軸には、チャンバ内に供給される温度
維持用ガスを受けて当該回転軸を回転させるタービン部
を設けていることに特徴を有する。
A superconducting magnetic bearing device according to the present invention includes: a superconducting material for thrust support and a radial support provided on a rotating shaft; a magnet fixed and arranged to face each of the superconducting materials; and a chamber surrounding the rotating shaft. And gas supply means for supplying a temperature maintaining gas for maintaining the superconducting material at a critical temperature or lower into the chamber, and the rotating shaft has a temperature maintaining It is characterized in that a turbine unit for receiving the service gas and rotating the rotary shaft is provided.

<作用> 上記構成によると、チャンバ内で超電導材が臨界温度
以下に保たれるので、超電導材がそれと対向配置される
磁石に対して反発するマイスナー効果を示し、その結果
として回転軸が非接触状態で浮上支持される。
<Operation> According to the above configuration, since the superconducting material is kept at a critical temperature or lower in the chamber, the superconducting material exhibits a Meissner effect in which the superconducting material repels a magnet disposed opposite to the superconducting material. It is levitated and supported in the state.

そこで、磁石を固定にしているから、磁石に対する地
磁気の影響を無視できるようになる。しかも、回転軸に
取り付ける超電導材を、チャンバ内で温度維持用ガスに
よって臨界温度以下に保つようにしているので、超電導
材の温度管理が簡単になる。
Therefore, since the magnet is fixed, the influence of geomagnetism on the magnet can be ignored. In addition, since the superconducting material attached to the rotating shaft is kept at a critical temperature or lower in the chamber by the temperature maintaining gas, the temperature control of the superconducting material is simplified.

また、チャンバ内へ供給する所定の温度維持用ガスを
回転軸の回転駆動源として利用するので、チャンバの温
度管理と回転軸の駆動制御との構成がより簡単になる。
Further, since the predetermined temperature maintaining gas supplied into the chamber is used as a rotation driving source of the rotating shaft, the configuration of the temperature control of the chamber and the driving control of the rotating shaft are further simplified.

さらに、例えばチャンバ内で回転軸の回転検出を行う
ように構成すれば、従来のような霜や水滴などに伴う不
都合の発生が回避される。
Further, for example, if the rotation of the rotation shaft is detected in the chamber, the occurrence of inconvenience caused by frost, water droplets, and the like as in the related art can be avoided.

<実施例> 以下、本発明の実施例を図面に基づいて詳細に説明す
る。第1図および第2図に本発明の基本構成を示してい
る。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings. 1 and 2 show a basic configuration of the present invention.

図に示すように、本実施例の超電導磁気軸受装置は、
非磁性材料からなる回転軸1と、回転軸1の両端に取り
付けられたスラスト支持用の円板形超電導材A,Bと、回
転軸1の両端近傍の所定位置の周部に取り付けられたラ
ジアル支持用のリング形超電導材C,Dと、このような回
転軸1を外囲するチャンバ2と、チャンバ2の外部にお
いてスラスト支持用の円板形超電導材A,Bおよびラジア
ル支持用のリング形超電導材C,Dのそれぞれに対して対
向する位置に固定配置された複数の電磁石3と、前記各
超電導材A〜Dを臨界温度以下に保つための温度維持用
ガスをチャンバ2内へ供給するガス供給手段4と、回転
軸1の回転数を検出する光学式回転計5とを具備してい
る。
As shown in the figure, the superconducting magnetic bearing device of this embodiment
A rotating shaft 1 made of a non-magnetic material, disk-shaped superconducting materials A and B for thrust support attached to both ends of the rotating shaft 1, and a radial attached to a peripheral portion at a predetermined position near both ends of the rotating shaft 1. Ring-shaped superconducting members C and D for support, a chamber 2 surrounding such a rotating shaft 1, disk-shaped superconducting members A and B for thrust support outside the chamber 2 and a ring-shaped member for radial support A plurality of electromagnets 3 fixedly arranged at positions facing each of the superconducting materials C and D, and a temperature maintaining gas for keeping the superconducting materials A to D below the critical temperature are supplied into the chamber 2. It comprises a gas supply means 4 and an optical tachometer 5 for detecting the number of revolutions of the rotating shaft 1.

これらの構成部品を具体的に説明する。 These components will be specifically described.

各超電導材A〜Dは、例えば、超電導状態を示す臨界
温度Tcが比較的高温である酸化物高温超電導材料(YBCO
系材料)で形成したものが採用される。勿論、他の材料
によって適宜に形成してもかまわない。
Each of the superconducting materials A to D is made of, for example, an oxide high-temperature superconducting material (YBCO) having a relatively high critical temperature Tc indicating a superconducting state.
(Material). Of course, it may be appropriately formed of another material.

チャンバ2は、下部が断面ほぼ三角形状に形成されて
おり、その左右両斜壁2A,2Bに所定の隙間を介して複数
の電磁石3が対向するように配置されている。この電磁
石3それぞれは、前記斜壁2A,2Bを隔てて回転軸1に設
けた各超電導材A〜Dに対向している。
The lower portion of the chamber 2 is formed in a substantially triangular cross section, and a plurality of electromagnets 3 are arranged so as to oppose left and right inclined walls 2A and 2B via a predetermined gap. Each of the electromagnets 3 faces each of the superconducting materials A to D provided on the rotating shaft 1 with the inclined walls 2A and 2B interposed therebetween.

ガス供給手段4は、例えば液体窒素で冷却したヘリウ
ムガスなどの温度維持用ガスを送出するものであって、
開閉バルブ6がそれぞれ設けられた複数のガス導入用配
管7を通じてチャンバ2内へ供給するとともに、ガス排
出用配管8を通じて回収するように構成されている。前
記のガス導入用配管7のうちの少なくとも一つは、回転
軸1の中央位置に設けられたタービン部9へ向けて温度
維持用ガスを噴射するように配置されており、この温度
維持用ガスの噴射量に応じて回転軸1が回転駆動される
ようになっている。
The gas supply unit 4 sends out a temperature maintaining gas such as a helium gas cooled with liquid nitrogen, for example.
It is configured to supply the gas into the chamber 2 through a plurality of gas introduction pipes 7 each provided with an open / close valve 6 and to collect the gas through a gas discharge pipe 8. At least one of the gas introduction pipes 7 is arranged to inject a temperature maintaining gas toward a turbine unit 9 provided at a central position of the rotating shaft 1. The rotary shaft 1 is driven to rotate in accordance with the injection amount of the rotation.

光学式回転計5は、回転軸1においてタービン部9の
近傍の周面に形成したマーク1Aの回転回数を検出して、
回転軸1の回転数を測定するものである。この光学式回
転計5は、チャンバ2の上壁に取り付けられ、そのセン
サ部分が前記マーク1A部分に対向するようにチャンバ2
内に突出されている。
The optical tachometer 5 detects the number of rotations of the mark 1A formed on the peripheral surface near the turbine section 9 on the rotating shaft 1, and
The number of rotations of the rotating shaft 1 is measured. The optical tachometer 5 is mounted on the upper wall of the chamber 2 and its sensor part faces the mark 1A.
It is projected into.

そして、本実施例では、チャンバ2および電磁石3を
ケース10によって外囲させており、このケース10の内部
へは脱水用ガスを導入させるか、あるいはケース10の内
部を真空状態とすることにより、チャンバ2の内外の温
度差によりチャンバ2の外壁に発生する霜や水滴などを
除去するようにしている。なお、このケース10にステー
11を介して前記の電磁石3がそれぞれ固定されている。
In the present embodiment, the chamber 2 and the electromagnet 3 are surrounded by the case 10, and a dehydrating gas is introduced into the case 10, or the inside of the case 10 is evacuated to a vacuum state. Frost and water droplets generated on the outer wall of the chamber 2 due to the temperature difference between the inside and the outside of the chamber 2 are removed. Note that the case 10
The above-mentioned electromagnets 3 are fixed via the respective 11.

次に、動作を説明する。 Next, the operation will be described.

まず、ガス供給手段4から冷却したヘリウムガスをチ
ャンバ2内へ供給するとともに、各電磁石3への通電電
流を制御する。チャンバ2内に導入されたヘリウムガス
は、直接、各超電導材A〜Dを冷却するとともに、回転
軸1をも冷却するためこの回転軸1からの冷熱によって
も間接的に各超電導材A〜Dを冷却することになり、各
超電導材A〜Dは、臨界温度Tc以下にほぼ安定的に保た
れて、超電導状態となる。
First, the cooled helium gas is supplied from the gas supply unit 4 into the chamber 2 and the current supplied to each electromagnet 3 is controlled. The helium gas introduced into the chamber 2 directly cools the superconducting materials A to D and also cools the rotating shaft 1 so that the superconducting materials A to D are indirectly cooled by the cooling heat from the rotating shaft 1. Is cooled, and each of the superconducting materials A to D is kept almost stably below the critical temperature Tc to be in a superconducting state.

したがって、各超電導材A〜Dはマイスナー効果によ
り各電磁石3から発生する磁場に対してそれぞれ反発す
るため、この反発力に応じて回転軸1がスラスト方向お
よびラジアル方向に安定的に浮上支持されることにな
る。ところで、スラスト支持用の超電導材A,Bとそれに
対応する電磁石3との間の反発力と、ラジアル支持用の
超電導材C,Dとそれに対応する電磁石3との間の反発力
とは、図示していないが制御回路によってそれぞれ別々
に制御するのが望ましい。
Therefore, each of the superconducting materials A to D repels the magnetic field generated from each of the electromagnets 3 by the Meissner effect, so that the rotating shaft 1 is stably levitated and supported in the thrust direction and the radial direction according to the repulsive force. Will be. Incidentally, the repulsive force between the superconducting materials A and B for supporting the thrust and the corresponding electromagnet 3 and the repulsive force between the superconducting materials C and D for supporting the radial and the corresponding electromagnet 3 are shown in FIG. Although not shown, it is desirable to control each separately by a control circuit.

一方、前記ガス導入用配管7のうちの一つから導入さ
れるヘリウムガスは、回転軸1のタービン部9に向けて
噴射されるようになっているため、この噴射量に基づい
て回転軸1が回転駆動されるようになる。この回転軸1
の回転数は、光学式回転計5により検出しつつ、適宜に
制御することも可能である。
On the other hand, since the helium gas introduced from one of the gas introduction pipes 7 is injected toward the turbine section 9 of the rotating shaft 1, the helium gas is injected based on the injection amount. Is driven to rotate. This rotating shaft 1
Can be appropriately controlled while being detected by the optical tachometer 5.

このように、超電導材A〜Dを回転側に配置しても、
上記のような簡単な構成で超電導材A〜Dを臨界温度以
下に保てる。このため、電磁石3を固定側に配置するこ
とができるようになり、電磁石3に対する地磁気の影響
を無くせるので、回転軸1を低速回転でも安定的に駆動
できる結果となる。
Thus, even if the superconducting materials A to D are arranged on the rotation side,
With the simple configuration as described above, superconducting materials A to D can be kept at a critical temperature or lower. For this reason, the electromagnet 3 can be arranged on the fixed side, and the influence of the geomagnetism on the electromagnet 3 can be eliminated. As a result, the rotating shaft 1 can be stably driven even at low speed rotation.

しかも、各超電導材A〜Dを臨界温度以下にするため
にチャンバ2内に導入する温度維持用ガスを、回転軸1
の駆動にも利用しているから、超電導材A〜Dの冷却
と、回転軸1の駆動とを別々の手段で行う場合に比べて
無駄がなく、全体の構造が簡単になる。しかも、駆動手
段を別途設ける場合には、駆動手段として一般に用いら
れるモータが熱を生じさせる部分を有しているために、
駆動手段と温度維持用ガス流路とを熱的に遮断する構造
が必要になる。そうしないと、駆動手段が生じさせる熱
が温度維持用ガスの温度を上昇させて、超電導材A〜D
の超電導状態を維持することが困難になってしまう。こ
れに対して、本実施例では、別途、回転軸1の駆動手段
を設ける必要がないために、上記した熱的遮断構造を設
ける必要もなく、その分でも、さらに構成を簡単にでき
る。但し、それらを別々としたものも本発明に含む。
In addition, the temperature maintaining gas introduced into the chamber 2 for keeping the superconducting materials A to D below the critical temperature is supplied to the rotating shaft 1.
, The cooling of the superconducting materials A to D and the driving of the rotating shaft 1 are performed in a less wasteful manner than in the case where the rotating shaft 1 is driven by different means, and the entire structure is simplified. In addition, when the driving means is provided separately, since a motor generally used as the driving means has a portion that generates heat,
A structure for thermally insulating the driving means and the temperature maintaining gas flow path is required. Otherwise, the heat generated by the driving means raises the temperature of the temperature maintaining gas, and the superconducting materials A to D
It is difficult to maintain the superconducting state. On the other hand, in the present embodiment, there is no need to separately provide a driving means for the rotating shaft 1, so that it is not necessary to provide the above-described thermal cutoff structure, and the configuration can be further simplified. However, those separated from each other are also included in the present invention.

さらに、チャンバ2内で回転軸の回転検出を行うよう
に構成しているので、従来のような霜や水滴などによる
不都合を回避でき、正確な回転検出を行える結果とな
る。
Further, since the rotation of the rotating shaft is detected in the chamber 2, the inconvenience due to frost, water droplets, and the like as in the prior art can be avoided, and accurate rotation detection can be performed.

ところで、上記超電導磁気軸受装置は、種々な機器に
適用することが可能であり、本発明の趣旨を逸脱しない
範囲で具体化できることは言うまでもない。また、上記
超電導磁気軸受装置の構成は他の形態で実施することも
可能である。例えば横軸としている回転軸1を縦軸とす
る構造、チャンバ2および電磁石3を外囲するケース10
を省く構造など種々考えられる。
By the way, it is needless to say that the superconducting magnetic bearing device can be applied to various devices and can be embodied without departing from the gist of the present invention. Further, the configuration of the superconducting magnetic bearing device can be implemented in other forms. For example, a structure in which the axis of rotation is a horizontal axis and the axis of rotation is a vertical axis, a case
There can be various structures such as a structure for omitting.

さらに、上記構成の超電導磁気軸受装置において、回
転軸1を浮上支持させていない場合に、ラジアル支持用
の超電導材C,Dがチャンバ2の底面に直接接触するのを
避けるために、回転軸1またはチャンバ2のいずれか一
方に回転軸1を受ける手段を設けることも可能である。
また、実施例ではラジアル支持用の超電導材C,Dに対向
する電磁石3をチャンバ2の下方にのみ設けたとして説
明しているが、チャンバ2の上方にも別途、電磁石を設
けるようにしてもよい。
Further, in the superconducting magnetic bearing device having the above-described configuration, when the rotating shaft 1 is not levitated and supported, the rotating support 1 and the rotating superconducting materials C and D do not directly contact the bottom surface of the chamber 2. Alternatively, a means for receiving the rotating shaft 1 can be provided in one of the chambers 2.
In the embodiment, the electromagnet 3 facing the radially supporting superconducting materials C and D is described as being provided only below the chamber 2. However, an electromagnet may be provided separately above the chamber 2. Good.

<発明の効果> 以上説明したように、本発明によれば、磁石を固定に
して、磁石に対する地磁気の影響を無視させるようにし
たから、特に回転軸を低速回転でも安定的に駆動できる
ようになる。しかも、回転軸に取り付けるようにした超
電導材を臨界温度以下に保つ手段に関しても、温度維持
用ガスが供給されるチャンバの内部に超電導材と回転軸
とを収納して前記温度管理を行うようにしたから、温度
管理のための構成が簡単である。
<Effects of the Invention> As described above, according to the present invention, the magnet is fixed and the influence of geomagnetism on the magnet is ignored, so that the rotating shaft can be driven stably even at low speed rotation. Become. Moreover, regarding the means for keeping the superconducting material attached to the rotating shaft below the critical temperature, the superconducting material and the rotating shaft are housed inside the chamber to which the temperature maintaining gas is supplied, and the temperature is controlled. Therefore, the configuration for temperature control is simple.

また、チャンバ内へ供給する温度維持用ガスを回転軸
の回転駆動源として利用するので、チャンバの温度維持
手段と回転軸の駆動手段とを別々にする場合よりも全体
の構成が簡単にできる。しかも、別途駆動手段を設ける
場合には、駆動手段として一般に用いられるモータが熱
を生じさせる部分を有しているために、駆動手段と温度
維持用ガス流路とを熱的に遮断する構造が必要になる。
そうしないと、駆動手段が生じさせる熱が温度維持用ガ
スの温度を上昇させて、超電導の維持が困難になってし
まうためである。これに対して、本発明では、別途、回
転軸の駆動手段を設ける必要がないために、上記した熱
的遮断構造を設ける必要もなく、その分でも、さらに構
成を簡単にできる。
In addition, since the temperature maintaining gas supplied into the chamber is used as a rotation driving source of the rotating shaft, the overall configuration can be simplified as compared with a case where the chamber temperature maintaining means and the rotating shaft driving means are separated. In addition, when a separate driving means is provided, a motor that is generally used as the driving means has a portion that generates heat, so that a structure that thermally shuts off the driving means and the temperature maintaining gas flow path is provided. Will be needed.
Otherwise, the heat generated by the driving means raises the temperature of the temperature maintaining gas, making it difficult to maintain superconductivity. On the other hand, in the present invention, since it is not necessary to separately provide a driving means for the rotating shaft, it is not necessary to provide the above-described thermal cutoff structure, and the configuration can be further simplified.

さらに、例えばチャンバ内で回転軸の回転検出を行う
ように構成すれば、従来のような霜や水滴などに伴う不
都合を無くせて正確な回転検出を行える結果となる。
Furthermore, for example, if the rotation of the rotating shaft is detected in the chamber, accurate rotation detection can be performed without the inconvenience associated with the conventional frost and water droplets.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第2図は本発明の一実施例にかかり、第1
図は超電導磁気軸受装置の基本構成を示す縦断側面図、
第2図は第1図のII−II線断面矢視図である。 1……回転軸、2……チャンバ、 3……電磁石、4……ガス供給手段、 A,B……スラスト支持用の超電導材、 C,D……ラジアル支持用の超電導材。
1 and 2 relate to an embodiment of the present invention, and FIG.
The figure is a longitudinal sectional side view showing the basic configuration of the superconducting magnetic bearing device,
FIG. 2 is a sectional view taken along the line II-II of FIG. 1 ... rotating shaft, 2 ... chamber, 3 ... electromagnet, 4 ... gas supply means, A, B ... superconducting material for thrust support, C, D ... superconducting material for radial support.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超電導材の磁石に対して生じる力を利用し
て回転軸をスラスト方向およびラジアル方向で支承する
超電導磁気軸受装置において、 回転軸に設けられるスラスト支持用およびラジアル支持
用の超電導材と、 これら各超電導材に対向するように固定配置される磁石
と、 前記回転軸を外囲するチャンバと、 このチャンバ内へ、前記超電導材を臨界温度以下に保つ
ための温度維持用ガスを供給するガス供給手段とを備え
ており、 かつ、前記回転軸には、チャンバ内に供給される温度維
持用ガスを受けて当該回転軸を回転させるタービン部を
設けていることを特徴とする超伝導磁気軸受装置。
1. A superconducting magnetic bearing device for supporting a rotating shaft in a thrust direction and a radial direction by utilizing a force generated on a magnet of a superconducting material, wherein the superconducting material for a thrust support and a radial support provided on the rotating shaft is provided. A magnet fixedly arranged to face each of these superconducting materials, a chamber surrounding the rotation axis, and a temperature maintaining gas for keeping the superconducting materials at a critical temperature or lower is supplied into the chamber. A superconducting gas turbine, wherein the rotating shaft is provided with a turbine section for receiving the temperature maintaining gas supplied into the chamber and rotating the rotating shaft. Magnetic bearing device.
JP1070120A 1989-03-22 1989-03-22 Superconducting magnetic bearing device Expired - Fee Related JP2777727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1070120A JP2777727B2 (en) 1989-03-22 1989-03-22 Superconducting magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1070120A JP2777727B2 (en) 1989-03-22 1989-03-22 Superconducting magnetic bearing device

Publications (2)

Publication Number Publication Date
JPH02248715A JPH02248715A (en) 1990-10-04
JP2777727B2 true JP2777727B2 (en) 1998-07-23

Family

ID=13422378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1070120A Expired - Fee Related JP2777727B2 (en) 1989-03-22 1989-03-22 Superconducting magnetic bearing device

Country Status (1)

Country Link
JP (1) JP2777727B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526903B1 (en) * 1991-08-06 1996-02-28 Koyo Seiko Co., Ltd. Bearing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440713A (en) * 1987-08-04 1989-02-13 Osaka Gas Co Ltd Bearing utilizing superconductivity

Also Published As

Publication number Publication date
JPH02248715A (en) 1990-10-04

Similar Documents

Publication Publication Date Title
JP3840182B2 (en) Magnetic bearing that supports rotating shaft using high Tc superconducting material
US4939120A (en) Superconducting rotating assembly
US6043577A (en) Flywheel energy accumulator
Weinberger et al. Low friction in high temperature superconductor bearings
US5567672A (en) Method and apparatus for damping mechanical vibration with a high Tc superconductor
JP2777727B2 (en) Superconducting magnetic bearing device
JP2006122785A (en) Non-contact stirring machine
JP2976203B1 (en) Magnetic bearing
JP4729702B2 (en) Non-contact bearing device using superconducting bearing
KR100613549B1 (en) Active control magnetic bearing
JPH08296645A (en) Magnetic bearing device
JP4473470B2 (en) Centrifuge with rotor provided to receive centrifuge product
JP3084531B2 (en) Method for measuring physical properties of superconductor and apparatus for measuring the same
JP3735742B2 (en) Superconducting bearing rotation loss measurement device
US5939629A (en) Rotor balancing systems including superconductor bearings
JP3168596B2 (en) Superconducting bearing device
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JP2001343020A (en) Superconductive magnetic bearing and superconductive flywheel
JP3577559B2 (en) Flywheel equipment
JP3236925B2 (en) Superconducting bearing device
JPS63210414A (en) Magnetic bearing device
JPH08121480A (en) Superconducting bearing device
JP2727357B2 (en) Rotary body support device
JPH09205741A (en) Superconducting flywheel fixed shaft cooling method
JPH06101715A (en) Bearing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees