JPH0411797A - Connecting structure for circuit board - Google Patents

Connecting structure for circuit board

Info

Publication number
JPH0411797A
JPH0411797A JP11307290A JP11307290A JPH0411797A JP H0411797 A JPH0411797 A JP H0411797A JP 11307290 A JP11307290 A JP 11307290A JP 11307290 A JP11307290 A JP 11307290A JP H0411797 A JPH0411797 A JP H0411797A
Authority
JP
Japan
Prior art keywords
electrode
conductive film
resin
circuit board
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11307290A
Other languages
Japanese (ja)
Inventor
Hidekazu Awaji
淡路 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP11307290A priority Critical patent/JPH0411797A/en
Publication of JPH0411797A publication Critical patent/JPH0411797A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To improve reliability by employing ultraviolet ray curable resin as the component of a base material of an anisotropically conductive film to be used as a connecting structure of a circuit board. CONSTITUTION:For example, an anisotropically conductive film 3 for connecting the electrode 11 of a liquid crystal display element to the electrode 7 of a flexible board 6 is composed by mixing or dispersing conductive particles in light curable resin. It has thixotropy before curing. The resin is used solely or in combination with other light curable resin or thermally curable resin so as to obtain suitable connection conditions such as adhesive strength, moisture resistance, etc. The dispersed particles may have conductivity on the outer surface. The electrode 11 of an element 12 is connected to the electrode of the board 6 by pressure contact of a rubber sheet 8, an aluminum retainer 15, a quartz glass 9 through an anisotropically conductive film 3. An ultraviolet ray is emitted from an upper surface through a hot-wire shut-off filter in the pressurized state to cure the film 3. That is, an electric connection is conducted by aggregating and securing the particles and a mechanical connection is executed by curing the resin.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、異方性導電膜を用いた回路基板の接続構造に
関し、たとえば液晶表示素子とこれを駆動する外部回路
との接続に好適に使用することができる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a connection structure for a circuit board using an anisotropic conductive film, and is suitably used, for example, to connect a liquid crystal display element to an external circuit that drives it. be able to.

従来の技術 近年、液晶テレビジョン受像機に代表される液晶表示装
置は画素の集積度が高くなっている。それに伴い、液晶
表示素子からの電極取出しピッチも100〜200μm
程度と極めて小さくなってきている。このため、従来液
晶時計などのモジュールの電気接続として用いられてき
た導電性ゴムコネクタ方式では対応ができず、ファイン
ピッチの接続に対応が可能である異方性導電膜を用いた
接続方式が主流となってきている。
2. Description of the Related Art In recent years, the degree of integration of pixels in liquid crystal display devices, typified by liquid crystal television receivers, has increased. Along with this, the electrode extraction pitch from the liquid crystal display element is also 100 to 200 μm.
The extent of this is becoming extremely small. For this reason, the conductive rubber connector method conventionally used for electrical connection of modules such as LCD watches cannot be used, and the mainstream is a connection method using an anisotropic conductive film that can support fine-pitch connections. It is becoming.

この異方性導電膜を用いた接続方式を、液晶表示素子の
IT○(インジフム酸化編)!!極とフレキシブル基板
のCu電極を接続する場合を例にとり、第3図および第
4図を用いて説明する。第3図において、Niや半田な
との金属粒子やカーボンファイバなとの導電性粒子1を
エポキレなどの熱硬化性樹脂やSBS (スチレンブタ
ジェンスチレン)などの熱可塑性樹脂による基材2に分
散させた異方性導電膜3を、液晶表示素子のガラス基板
4上のITOtJ極5とフレキシブル基板6のCU電極
7との間に挟む。さらに、全体をゴムシート8と石英ガ
ラス9で挟み込み、加圧した状態で石英ガラス9の表面
から赤外線を照射し、異方性導電膜3を加熱する。この
ように異方性導電膜3を加圧、加熱する操作によって、
第4図に示すようにITO電極5およびCut極7間に
挟まれた部分の導電性粒子1は凝集、固着して上下電極
間を短絡させる。これ以外の部分は非導通の状態で残存
し、この結果、選択的に導電性粒子1によって電極間の
導通が行われる。また、基材2によって液晶表示装置の
ガラス基板4とフレキシブル基板6の機械的接続が行わ
れる。
A connection method using this anisotropic conductive film is used in the IT○ (Indifum Oxide Edition) for liquid crystal display elements! ! Taking as an example a case in which a pole is connected to a Cu electrode of a flexible substrate, this will be explained using FIGS. 3 and 4. In Figure 3, conductive particles 1 such as metal particles such as Ni or solder or carbon fiber are dispersed in a base material 2 made of a thermosetting resin such as epoxy resin or a thermoplastic resin such as SBS (styrene butadiene styrene). The anisotropic conductive film 3 thus prepared is sandwiched between the ITOtJ pole 5 on the glass substrate 4 of the liquid crystal display element and the CU electrode 7 on the flexible substrate 6. Further, the entire structure is sandwiched between a rubber sheet 8 and a quartz glass 9, and infrared rays are irradiated from the surface of the quartz glass 9 under pressure to heat the anisotropic conductive film 3. By pressurizing and heating the anisotropic conductive film 3 in this way,
As shown in FIG. 4, the conductive particles 1 in the portion sandwiched between the ITO electrode 5 and the cut electrode 7 aggregate and stick together, causing a short circuit between the upper and lower electrodes. The other portions remain in a non-conductive state, and as a result, conduction between the electrodes is selectively established by the conductive particles 1. Further, the base material 2 provides a mechanical connection between the glass substrate 4 and the flexible substrate 6 of the liquid crystal display device.

発明が解決しようとする課題 上記したように、熱硬化性樹脂や熱可塑性樹脂に導電性
粒子を分散した異方性導電膜による接続において樹脂の
硬化は、赤外線ランプの照射によって行われ、接続部は
約200℃に昇温する。この際、接続部を構成する各材
料の線膨張率αは、たとえば下記第1表に示すように大
きく異なっているので、室温に冷却した後の電極のずれ
の要因となったり、加熱時に生じた熱応力が残留する要
因となっている。
Problems to be Solved by the Invention As mentioned above, in connection using an anisotropic conductive film in which conductive particles are dispersed in a thermosetting resin or thermoplastic resin, the resin is cured by irradiation with an infrared lamp, and the connection part The temperature rises to about 200°C. At this time, the coefficient of linear expansion α of each material constituting the connection part differs greatly, as shown in Table 1 below, so this may cause the electrode to shift after cooling to room temperature, or may occur during heating. This is the cause of residual thermal stress.

(以下余白) 第  1 表 上記第1表においてフレキシブル基板、異方導電膜の長
さが50mmの4会、フしキシプル基板と液晶表示素子
基板とのずれは、 50mmX(1,4X10−5.;7℃3.2〆10−
’、、/℃)> <200℃−25℃) # 94.5
μmとなる。
(Leaving space below) Table 1 In Table 1 above, the length of the flexible substrate and the anisotropic conductive film is 50 mm, and the deviation between the flexible substrate and the liquid crystal display element substrate is 50 mmX (1.4X10-5. ;7℃3.2〆10-
',,/℃)><200℃-25℃)#94.5
It becomes μm.

この量は電極ピッチに相当する量である。勿論加熱時に
は、加圧することによってそのずれを抑制しているが、
熱膨張率の違いによるずれの発生や残留応力の発生を完
全に抑止することは難しい。
This amount corresponds to the electrode pitch. Of course, during heating, the displacement is suppressed by applying pressure.
It is difficult to completely prevent the occurrence of misalignment and residual stress due to differences in thermal expansion coefficients.

また異方性導電膜と液晶表示素子基板との熱膨張率の差
はより大きいため、残留応力に与える影響はさらに大き
くなる。残留応力が存在すると、その力は導電性粒子の
電気接触を阻害し、場合にょっては断線不良を生じさせ
る。
Furthermore, since the difference in thermal expansion coefficient between the anisotropic conductive film and the liquid crystal display element substrate is larger, the influence on residual stress becomes even larger. When residual stress is present, the force impedes electrical contact between the conductive particles, possibly causing disconnection.

このように加熱による異方性導電膜の接続は電極対向精
度の不良、断線不良を引き起こす可能性があり、何等か
の対策が望まれている。したがって本発明の目的は、上
記技術的課題を解決した回路基板の接続構造を提供する
ことである。
As described above, connection of anisotropic conductive films by heating may cause poor electrode facing precision and disconnection defects, and some countermeasures are desired. Therefore, an object of the present invention is to provide a circuit board connection structure that solves the above technical problems.

課題を解決するための手段 本発明は、第1回路基板に形成された第1端子と、第2
回路基板に形成された第2端子とを、基材となる樹脂に
導電性粒子を混合した異方性導電膜を介して接続する回
路基板の接続構造において、前記樹脂が光硬化型樹脂を
含んで成ることを特徴とする回路基板の接続構造である
Means for Solving the Problems The present invention provides a first terminal formed on a first circuit board and a second terminal formed on a first circuit board.
In a circuit board connection structure in which a second terminal formed on a circuit board is connected via an anisotropic conductive film made of a base resin mixed with conductive particles, the resin includes a photocurable resin. This is a circuit board connection structure characterized by comprising:

作  用 本発明の回路基板の接続構造によれば、接続時に熱が印
加されないため、熱膨張率の差による電極のずれ、残留
応力の発生が抑制される。
Function: According to the circuit board connection structure of the present invention, no heat is applied during connection, so that displacement of electrodes and generation of residual stress due to differences in thermal expansion coefficients are suppressed.

実施例 第1図は本発明の回路基板の接続構造が適用された一実
施例を示す概略断面図であり、第2図はそのセクション
14の拡大断面図である。第1図才〕よび第2図を1照
して、液晶表示素子12は対向する表面に電極11を形
成した一対のガラス基板12間に液晶13を介在して構
成されている。
Embodiment FIG. 1 is a schematic sectional view showing an embodiment to which the circuit board connection structure of the present invention is applied, and FIG. 2 is an enlarged sectional view of a section 14 thereof. Referring to FIG. 1 and FIG. 2, a liquid crystal display element 12 is constructed by interposing a liquid crystal 13 between a pair of glass substrates 12 having electrodes 11 formed on opposing surfaces.

第1回路基板であるガラス基板に形成される第1端子で
ある電極11は、たとえばフォトリソグラフィなどによ
って100〜200Jimのピッチで選択的に形成され
たITO電極である。この他にNi−Mo、Ti、Ta
などの各種金属薄膜から成る電極を形成してもよい。上
記した一対のガラス基板は互いに重複しない領域を有し
ており、この領域で液晶を駆動する集積回路などを搭載
した第2回路基板であるフレキシブル基板6が接続され
る。フレキシブル基板6に形成される第2端子である電
4F!7はCu、またはCuに錫メツキを施したも1〕
などで、薄膜パターン加工の技術を利用してガラス基板
の電@11に対応して配列されている。液晶表示素子の
電fillとフレキシブル基板6の電極7とを接続する
買方導電WA3は、光硬化型樹脂に導電性粒子を混合ま
たは分散して構成されており、硬化前にはチクソトロピ
ック性を備えている。光硬化型樹脂としては、エポキシ
系、アクリル系、ポリエステル系などの合成樹脂を基材
としてこれに光反応性の基を導入したものが好適に使用
され、この他に光硬化剤を混合したものなどを用いても
よい。これらの光硬化型樹脂は単独で、または接着力、
耐湿性などの好適な接続条件を得るために他の光硬化型
樹脂や熱硬化型樹脂を組合せて用いられる。混合または
分散する導電性粒子は、少なくとも外表面が導電性を有
していればよく、たとえば弾性部材表面上に金属層を1
層あるいは弾性部材との密着性を区るなどの目的のため
に2層以上被覆した粒径5μmから20μm程度の粒子
である。弾性部材としてはシリコンゴムやウレタンゴム
などのゴム類および合成樹脂などの弾性を有する高分子
材料から成る粒子が用いられ、金属層としてはNi、A
u、Ag、C1Cu、Pd、Pb、Sn、あるいはIn
などの金属、またはこれらの金属の合金が用いられる。
The electrodes 11, which are the first terminals formed on the glass substrate, which is the first circuit board, are ITO electrodes selectively formed at a pitch of 100 to 200 Jim by, for example, photolithography. In addition, Ni-Mo, Ti, Ta
Electrodes may be formed from various metal thin films such as. The pair of glass substrates described above have regions that do not overlap with each other, and a flexible substrate 6, which is a second circuit board on which an integrated circuit for driving a liquid crystal, etc. is mounted, is connected to this region. The second terminal formed on the flexible board 6 is the electrical terminal 4F! 7 is Cu or tin-plated Cu 1]
etc., they are arranged corresponding to the electrodes 11 on the glass substrate using thin film pattern processing technology. The electric conductor WA3 that connects the electric fill of the liquid crystal display element and the electrode 7 of the flexible substrate 6 is composed of a photocurable resin mixed or dispersed with conductive particles, and has thixotropic properties before curing. ing. As photocurable resins, those that have photoreactive groups introduced into synthetic resins such as epoxy, acrylic, and polyester are preferably used, and those that are mixed with a photocuring agent. etc. may also be used. These photocurable resins can be used alone or with adhesive strength,
In order to obtain suitable connection conditions such as moisture resistance, it is used in combination with other photocurable resins or thermosetting resins. The conductive particles to be mixed or dispersed only need to have conductivity at least on the outer surface. For example, a metal layer may be formed on the surface of the elastic member.
These particles have a particle size of about 5 μm to 20 μm and are coated with two or more layers for the purpose of determining adhesion with a layer or an elastic member. As the elastic member, particles made of elastic polymer materials such as rubbers such as silicone rubber and urethane rubber and synthetic resins are used, and as the metal layer, Ni, A, etc. are used.
u, Ag, C1Cu, Pd, Pb, Sn, or In
metals such as or alloys of these metals are used.

液晶表示素子12の電極11とフレキシブル基板6の電
極7との接続は、上記した異方性導電膜3を介して、こ
れらをゴムシート8とアルミ押え板15と石英ガラス9
の間で・圧接して行われる。
The electrodes 11 of the liquid crystal display element 12 and the electrodes 7 of the flexible substrate 6 are connected via the above-described anisotropic conductive film 3 to the rubber sheet 8, aluminum holding plate 15, and quartz glass 9.
It is done by pressing between.

このような加圧状態て上面から熱線遮断フィルタなどを
介して紫外線を照射し、石英ガラス9、液晶パネル4を
通じて紫外線を導入する。この照射によって異方性導電
膜3の硬化が行われ、すなわち第3図および第4図を用
いてすでに説明したように導電性粒子の凝集、固着によ
って電気的接続が、樹脂の硬化によって機械的接続が行
われる。
In this pressurized state, ultraviolet rays are irradiated from the upper surface through a heat ray blocking filter, etc., and the ultraviolet rays are introduced through the quartz glass 9 and the liquid crystal panel 4. This irradiation causes the anisotropic conductive film 3 to harden. That is, as already explained using FIGS. 3 and 4, the electrical connection is established by the agglomeration and fixation of the conductive particles, and the mechanical connection is established by the hardening of the resin. A connection is made.

本実施例では液晶表示素子4の紫外線照射側(第1図上
方側)グ)ガラス基板には透明なITO電極を形成して
いるので、紫外線は遮断されずに硬化はスムーズに行わ
れる。また、このように加熱が不用となることによって
、耐熱性が劣り接続部から隔てて貼付していた偏光板を
接続部近傍まで近づけることが可能となり、画像表示面
積の拡大が推進できる。さらに、金属などの紫外線を遮
断する材料を用いて電極を形成した場合は、異方導電膜
3の基材として光硬化型樹脂と熱硬化型樹脂とを併用す
ればよい。すなわち、最初に紫外線を照射して光硬化型
樹脂を硬化させることによって液晶表示素子12とフレ
キシブル基板6とを固着し、その後加熱して電極が対向
する部分の熱硬化型樹脂を硬化させる。すでに液晶表示
素子12とフレキシブル基板6とは固着されているので
、熱膨張によるずれは抑えられる。
In this embodiment, a transparent ITO electrode is formed on the glass substrate on the ultraviolet irradiation side (upper side in FIG. 1) of the liquid crystal display element 4, so that ultraviolet rays are not blocked and curing is performed smoothly. In addition, since heating is not required in this way, it becomes possible to move the polarizing plate, which has poor heat resistance and has been pasted apart from the connection part, closer to the connection part, thereby promoting an expansion of the image display area. Furthermore, when the electrode is formed using a material that blocks ultraviolet rays, such as a metal, a photocurable resin and a thermosetting resin may be used together as the base material of the anisotropic conductive film 3. That is, first, the liquid crystal display element 12 and the flexible substrate 6 are fixed by irradiating ultraviolet rays to harden the photocurable resin, and then heated to harden the thermosetting resin at the portion where the electrodes face each other. Since the liquid crystal display element 12 and the flexible substrate 6 are already firmly attached, displacement due to thermal expansion can be suppressed.

以上液晶表示装置に本発明を実施する場合について説明
したけれども、本発明はプラズマ表示装置、エレクトロ
ルミネッセンス表示装置、エレクトロクロミック表示装
置などの他の表示装置に実施することも可能である。
Although the case where the present invention is implemented in a liquid crystal display device has been described above, the present invention can also be implemented in other display devices such as a plasma display device, an electroluminescent display device, and an electrochromic display device.

発明の効果 以上述べたように本発明によれば、異方性導電膜の基材
の成分として紫外線硬化型樹脂を採用したため、接続時
の加熱を原因とする熱膨張による電極ピッチのずれが効
果的に防止された、残留応力の少ない高信頼性の回路基
板の接続構造が得られる。
Effects of the Invention As described above, according to the present invention, since an ultraviolet curable resin is used as a component of the base material of the anisotropic conductive film, the deviation of the electrode pitch due to thermal expansion caused by heating during connection is effectively prevented. A highly reliable circuit board connection structure with low residual stress and low residual stress can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略断面図、第2図はその
セクション14の拡大断面図、第3図および第4[2I
は異方性導電膜を用いた接続方式を説明する断面図であ
る。 1・・導電性粒子、2・・・基材、3・・・異方性導電
膜、4・ガラス基板、5・・・ITO電極、6・・フレ
キシブル基板、7・・・Cu電極、8・−ゴムシート、
9・・石英ガラス、10・・・偏光板、11・・・電極
、12・・・液晶表示素子、13・液晶 代理人  弁理士 画数 圭一部 第 図 第 図
FIG. 1 is a schematic sectional view of an embodiment of the present invention, FIG. 2 is an enlarged sectional view of section 14 thereof, FIGS. 3 and 4 [2I
FIG. 2 is a cross-sectional view illustrating a connection method using an anisotropic conductive film. DESCRIPTION OF SYMBOLS 1... Conductive particle, 2... Base material, 3... Anisotropic conductive film, 4... Glass substrate, 5... ITO electrode, 6... Flexible substrate, 7... Cu electrode, 8・-Rubber sheet,
9. Quartz glass, 10. Polarizing plate, 11. Electrode, 12. Liquid crystal display element, 13. Liquid crystal agent Patent attorney Number of strokes Keiichi Figure

Claims (1)

【特許請求の範囲】  第1回路基板に形成された第1端子と、第2回路基板
に形成された第2端子とを、基材となる樹脂に導電性粒
子を混合した異方性導電膜を介して接続する回路基板の
接続構造において、 前記樹脂が光硬化型樹脂を含んで成ることを特徴とする
回路基板の接続構造。
[Scope of Claims] A first terminal formed on a first circuit board and a second terminal formed on a second circuit board are formed by an anisotropic conductive film made by mixing conductive particles into a resin serving as a base material. A circuit board connection structure in which the circuit board is connected through a circuit board, wherein the resin includes a photocurable resin.
JP11307290A 1990-04-28 1990-04-28 Connecting structure for circuit board Pending JPH0411797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11307290A JPH0411797A (en) 1990-04-28 1990-04-28 Connecting structure for circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11307290A JPH0411797A (en) 1990-04-28 1990-04-28 Connecting structure for circuit board

Publications (1)

Publication Number Publication Date
JPH0411797A true JPH0411797A (en) 1992-01-16

Family

ID=14602782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11307290A Pending JPH0411797A (en) 1990-04-28 1990-04-28 Connecting structure for circuit board

Country Status (1)

Country Link
JP (1) JPH0411797A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156418A (en) * 1999-09-14 2001-06-08 Seiko Epson Corp Compound flexible wiring board, its manufacturing method, optoelectronic device, and electronic equipment
US6449837B1 (en) * 1999-10-29 2002-09-17 Tca, Inc. Method for attaching electronic devices to metallized glass printed circuit
JP2005144745A (en) * 2003-11-12 2005-06-09 Hitachi Chem Co Ltd Anisotropic conductive film and circuit board using it
JP2007281172A (en) * 2006-04-06 2007-10-25 Alps Electric Co Ltd Electronic component mounting structure and its manufacturing process
JP2010260353A (en) * 2010-06-21 2010-11-18 Hitachi Chem Co Ltd Method for producing anisotropic conductive film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156418A (en) * 1999-09-14 2001-06-08 Seiko Epson Corp Compound flexible wiring board, its manufacturing method, optoelectronic device, and electronic equipment
US6449837B1 (en) * 1999-10-29 2002-09-17 Tca, Inc. Method for attaching electronic devices to metallized glass printed circuit
JP2005144745A (en) * 2003-11-12 2005-06-09 Hitachi Chem Co Ltd Anisotropic conductive film and circuit board using it
JP2007281172A (en) * 2006-04-06 2007-10-25 Alps Electric Co Ltd Electronic component mounting structure and its manufacturing process
JP2010260353A (en) * 2010-06-21 2010-11-18 Hitachi Chem Co Ltd Method for producing anisotropic conductive film

Similar Documents

Publication Publication Date Title
EP0424106B1 (en) A method for connecting circuit boards
JP4692544B2 (en) Electronic circuit device and manufacturing method thereof
TWI557208B (en) An anisotropic conductive film, an anisotropic conductive film manufacturing method, a method for manufacturing a connecting body, and a connecting method
JP2003114446A (en) Connection structure of circuit board, liquid crystal display device provided with the connection structure, and mounting method of liquid crystal display device
JP3933094B2 (en) Electronic component mounting method
TW201540811A (en) Connection body, connection body production method, connection method, anisotropic conductive adhesive
CN107078071B (en) Method for manufacturing connected body, method for connecting electronic component, and connected body
JP2000105388A (en) Production of liquid crystal display device, liquid crystal display device and conductive adhesive film
JPH0411797A (en) Connecting structure for circuit board
KR20080031311A (en) Process for producing junction structure
JP2009069705A (en) Manufacturing method of liquid crystal display device
TWI581972B (en) A method of manufacturing a connecting body, and a method of connecting an electronic component
JPH08146451A (en) Apparatus for producing circuit device
JPH07226569A (en) Circuit board and electrode connection member and its manufacture
JP3276459B2 (en) Manufacturing method of electro-optical device
JPH06224256A (en) Semiconductor device
JP6291165B2 (en) Manufacturing method of connecting body and connecting method of electronic component
JP3031134B2 (en) How to connect electrodes
JPH08167441A (en) Electrical connection member and connection structure for liquid crystal panel
JPH0661642A (en) Jointing method for flexible resin board
JP2000259092A (en) Electro-optic device
WO2016117613A1 (en) Method for producing connected body, method for connecting electronic component, and connected body
JPH06118428A (en) Electrooptics device and production thereof
JPH10313159A (en) Connection method of circuit board, liquid crystal device and manufacture thereof
JP4032320B2 (en) Electrode connection method