JPH04117477A - Anisotropic conductive material and method for connecting integrated circuit element using the same - Google Patents

Anisotropic conductive material and method for connecting integrated circuit element using the same

Info

Publication number
JPH04117477A
JPH04117477A JP23739290A JP23739290A JPH04117477A JP H04117477 A JPH04117477 A JP H04117477A JP 23739290 A JP23739290 A JP 23739290A JP 23739290 A JP23739290 A JP 23739290A JP H04117477 A JPH04117477 A JP H04117477A
Authority
JP
Japan
Prior art keywords
conductive material
integrated circuit
anisotropic conductive
chip
adhesive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23739290A
Other languages
Japanese (ja)
Inventor
Koji Matsui
孝二 松井
Naonori Orito
直典 下戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23739290A priority Critical patent/JPH04117477A/en
Publication of JPH04117477A publication Critical patent/JPH04117477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain the title material which is useful for adhering an integrated circuit chip which forms an electrode pad and a glass substrate which has an electrode terminal and is capable of repairing the integrated circuit chip in the case of poor connection and is excellent in connection reliability and operation workability by dispersing conductive particles into a specific adhesive resin. CONSTITUTION:The title material comprises a heat and light curable insulating adhesive resin and conductive particles dispersed therein.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ICチップ等の微細な電極を実装基板上に設
けた電極に取り付ける際に用いる電気接続用異方性導電
材料及びこれを用いたICチップ等の素子の基板等への
実装に関するものであり、特にICチップの液晶表示デ
バイス(以下LCDという)への実装に関するものであ
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an anisotropic conductive material for electrical connection used when attaching fine electrodes of IC chips, etc. to electrodes provided on a mounting board, and an anisotropic conductive material using the same. The present invention relates to mounting elements such as IC chips on substrates, etc., and particularly relates to mounting IC chips on liquid crystal display devices (hereinafter referred to as LCDs).

(従来の技術) 従来、この種の電気接続用異方性導電材料としては、高
分子材料の表面に導電性を有する金属薄層を形成した導
電粒子を含んだ熱可塑性あるいは、熱硬化性接着削成物
が用いられており、接続としては、180〜200°C
で20〜30kg/cm2程度の熱圧着方法が用いられ
ていた。
(Prior Art) Conventionally, this type of anisotropic conductive material for electrical connections has been made of thermoplastic or thermosetting adhesives containing conductive particles that form a conductive metal thin layer on the surface of a polymeric material. Abrasions are used for connections at temperatures of 180 to 200°C.
A thermocompression bonding method with a pressure of about 20 to 30 kg/cm2 was used.

従来のLCD実装方法を以下に説明すると、第2図(a
)(b)は、従来のICチップの接続方法を行程順に示
す基板の断面図である。このICチップの接続は次のと
おりである。すなわち、第2図(a)に示すように、電
極バッド4が形成されたICチップ3とパッド4に対応
して形成された電極端子6を有するガラス基板5と導電
性粒子1を分散させて含有している熱接着樹脂9を介し
て向き合わせる。次に、第2図(b)に示すように、I
Cチップ3をガラス基板5とに押し付け、加熱すること
により、熱接着樹脂9を軟化させ、電極パッド4と電極
端子6とを導電性粒子1により、接続することによって
行われる。
The conventional LCD mounting method will be explained below.
) and (b) are cross-sectional views of a substrate showing a conventional IC chip connection method in order of steps. The connections of this IC chip are as follows. That is, as shown in FIG. 2(a), an IC chip 3 having electrode pads 4 formed thereon, a glass substrate 5 having electrode terminals 6 formed corresponding to the pads 4, and conductive particles 1 are dispersed. They are faced to each other via the contained thermal adhesive resin 9. Next, as shown in FIG. 2(b), I
This is done by pressing the C-chip 3 against the glass substrate 5 and heating it to soften the thermal adhesive resin 9, and connecting the electrode pads 4 and electrode terminals 6 with the conductive particles 1.

(発明が解決しようとする課題) 上述した従来のLCD接続実装方法は、接続部分におい
て加熱圧着状態で一括固定するために固着後、接続不良
等が発生した場合、ICチップのりペアーが困難である
と言う問題があった。
(Problems to be Solved by the Invention) In the conventional LCD connection mounting method described above, since the connection part is fixed all at once by heat and pressure bonding, it is difficult to glue the IC chips and pair them if a connection failure occurs after fixation. There was a problem.

また従来の接続実装方法は、加熱行程による接続である
ため、急速な加熱を行うと接着剤樹脂粘度が急激な低下
をきたしボンディング領域外へ流出してしまい、接続部
分に気泡が発生すると言う問題点もあった。
In addition, since the conventional connection and mounting method uses a heating process to connect, rapid heating causes the adhesive resin viscosity to drop rapidly and flow out of the bonding area, causing bubbles to form in the connection area. There were also points.

(課題を解決するための手段) 前述したように、従来の接続実装方法は、加熱圧着状態
で一括固定するために諸問題が発生している。これらの
問題を解決するために、鋭意工夫を行った。その結果、
本発明の異方性導電材料は、熱l先優用硬化型絶縁性接
着剤中に、導電粒子を分散させた構造となっているので
、実装時にまずボンディング領域で圧着後、光により硬
化させ、さらに光硬化後、熱により最終硬化ができるよ
うになっている。また、光硬化完了後は、接続抵抗等の
電気特性評価も可能であり、接続不良等が発生している
場合は、この時点でICチップのりペアーができるよう
になっている。これにより、ノペアーが可能で、接続信
頼性の高い、実装作業性の良い異方性導電材料とこれを
用いた集積回路素子の接続方法を提供するものである。
(Means for Solving the Problems) As described above, the conventional connection and mounting method causes various problems because the devices are fixed all at once under heat and pressure bonding. We worked hard to solve these problems. the result,
The anisotropic conductive material of the present invention has a structure in which conductive particles are dispersed in a heat-first curing insulating adhesive. After photo-curing, final curing can be performed using heat. Further, after completion of photocuring, it is possible to evaluate electrical characteristics such as connection resistance, and if a connection failure or the like occurs, an IC chip glue pair can be made at this point. Thereby, the present invention provides an anisotropic conductive material that can be bonded, has high connection reliability, and has good mounting workability, and a method for connecting integrated circuit elements using the same.

(実施例) 次に、本発明について、図面を参照して説明する。第1
図は、本発明の異方性導電材料を用いたICチップ等の
微細な電極と実装基板上に設けた電極との接続実装の一
実施例を示す。第2図は、従来の接続実装例を示す。
(Example) Next, the present invention will be described with reference to the drawings. 1st
The figure shows an example of connection and mounting between a fine electrode of an IC chip or the like using the anisotropic conductive material of the present invention and an electrode provided on a mounting board. FIG. 2 shows an example of conventional connection implementation.

第1図(a)〜(c)は、本発明のICチップの接続方
法を行程順に示す断面図である。まず第1図(a)に示
すように、ICチップ30表面には、電極パッド4が形
成されガラス基板5には、電極パッド4に対応して電極
端子6が形成されている。次にICチップ3の電極パッ
ド4の表面を洗浄し、その後、導電粒子1を含み、熱l
先優用硬化型絶縁性接着剤樹脂2を電極パッド4を含め
たICチップ3の表面に塗布する。さらに、ガラス基板
5の電極電子6を含む表面を洗浄し、電極電子6を含む
表面に導電性粒子1を含む接着樹脂を塗布する。実施例
では、熱l先優用硬化型絶縁性接着樹脂2として、東洋
紡(株)製バイロン(商品名)を用いた。次に、電極パ
ッド4と電極電子6とを向き合わせて、ICチップ3を
ガラス基板5上に載せる。
FIGS. 1(a) to 1(c) are cross-sectional views showing the method for connecting an IC chip according to the present invention in order of steps. First, as shown in FIG. 1(a), electrode pads 4 are formed on the surface of the IC chip 30, and electrode terminals 6 are formed on the glass substrate 5 in correspondence to the electrode pads 4. Next, the surface of the electrode pad 4 of the IC chip 3 is cleaned, and then the surface containing the conductive particles 1 is heated.
A precurable insulating adhesive resin 2 is applied to the surface of the IC chip 3 including the electrode pads 4. Further, the surface of the glass substrate 5 containing the electrode electrons 6 is cleaned, and an adhesive resin containing the conductive particles 1 is applied to the surface containing the electrode electrons 6. In the example, Vylon (trade name) manufactured by Toyobo Co., Ltd. was used as the heat-first curable insulating adhesive resin 2. Next, the IC chip 3 is placed on the glass substrate 5 with the electrode pads 4 and electrode electrons 6 facing each other.

次に第1図(b)に示すように、荷重を加えてICチッ
プ3を圧下し、電極パッド4と電極端子6とを密着させ
、これと同時に、横方向及びガラス基板5の裏面方向よ
り紫外線7を照射し、ICチップ3とガラス基板5間に
付着した樹脂2を硬化させ、ICチップ3とガラス基板
5を接着固定する。この状態では、樹脂は完全硬化では
ないが、電極パッド4と電極電子6の接続は十分可能と
なっており、光硬化完了後、電気特性評価が可能であり
、接続不良等が発生している場合は、この時点でICチ
ップ3のリペア−が可能となる。
Next, as shown in FIG. 1(b), a load is applied to press down the IC chip 3 to bring the electrode pads 4 and electrode terminals 6 into close contact, and at the same time, from the lateral direction and the back surface direction of the glass substrate 5. The resin 2 adhering between the IC chip 3 and the glass substrate 5 is cured by irradiation with ultraviolet rays 7, and the IC chip 3 and the glass substrate 5 are bonded and fixed. In this state, the resin is not completely cured, but the connection between the electrode pad 4 and the electrode electronic 6 is sufficiently possible, and after the photocuring is completed, it is possible to evaluate the electrical characteristics, and it is possible to identify any connection failures. In this case, the IC chip 3 can be repaired at this point.

次に、第1図(C)に示すように、ICチップ3とガラ
ス基板5を圧着した状態で、100°C130分間加熱
し接着剤樹脂を完全硬化させた。
Next, as shown in FIG. 1C, the IC chip 3 and the glass substrate 5 were pressed together and heated at 100° C. for 130 minutes to completely cure the adhesive resin.

(発明の効果) 以上説明したように、本発明の異方性導電材料は、熱/
先優用硬化型絶縁性接着剤中に、導電粒子を分散させた
構造となっているので、実装時にまずボンディング領域
で圧着後、光により硬化させ、さらに光硬化後、熱によ
り最終硬化ができるようになっている。また、光硬化完
了後は、接続抵抗等の電気特性評価も可能であり、接続
不良等が発生している場合は、この時点でICチップの
りペアーができる。
(Effects of the Invention) As explained above, the anisotropic conductive material of the present invention
It has a structure in which conductive particles are dispersed in a first-curing insulating adhesive, so during mounting, it is first crimped in the bonding area, then cured by light, and then finally cured by heat. It looks like this. Further, after completion of photocuring, it is possible to evaluate electrical characteristics such as connection resistance, and if a connection failure or the like occurs, an IC chip glue pair is formed at this point.

また、本発明の接続方法は、初期、光硬化の行程をとっ
ているので、急速な加熱による接着剤粘度の急激な低下
が生じないため、接続部分に気泡が発生すると言う問題
も解決できる。
Furthermore, since the connection method of the present invention uses a photo-curing process at the initial stage, the adhesive viscosity does not drop rapidly due to rapid heating, so the problem of air bubbles occurring at the connection part can be solved.

これにより、リペア−が可能で、接続信頼性の高い、実
装作業性が良くなると言う効果がある。
This has the effect that repair is possible, connection reliability is high, and mounting workability is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係わるICチップの接続方法を行程
順に示す断面図である。第2図は、従来のICチップの
接続方法を行程順に示す断面図である。 1導電粒子  2熱/紫外線併用硬化型接着剤3 IC
チップ  4電極パツド 5ガラス基板 6電極端子 7紫外線   8熱 9熱接着樹脂
FIG. 1 is a cross-sectional view showing the method for connecting an IC chip according to the present invention in the order of steps. FIG. 2 is a cross-sectional view showing a conventional IC chip connection method in order of steps. 1 Conductive particles 2 Heat/UV curable adhesive 3 IC
Chip 4 electrode pads 5 glass substrate 6 electrode terminals 7 ultraviolet rays 8 heat 9 thermal adhesive resin

Claims (2)

【特許請求の範囲】[Claims] (1)熱/光併用硬化型絶縁性接着剤樹脂中に、導電粒
子を分散させてなることを特徴とする異方性導電材料
(1) Anisotropic conductive material characterized by having conductive particles dispersed in a heat/light curing insulating adhesive resin.
(2)熱/光併用硬化型絶縁性接着剤樹脂中に、導電粒
子を分散させてなる異方性導電材料及び半導体チップを
配線基板のボンディング領域に配し圧着後、光により硬
化させる行程とさらに熱により硬化させる行程とを併用
し電気接続を行うことを特徴とする集積回路素子の接続
方法。
(2) Anisotropic conductive material made by dispersing conductive particles in a heat/light-curable insulating adhesive resin and a semiconductor chip are placed in the bonding area of the wiring board and, after pressure bonding, are cured by light. A method for connecting integrated circuit elements, characterized in that electrical connections are made by further performing a step of curing with heat.
JP23739290A 1990-09-07 1990-09-07 Anisotropic conductive material and method for connecting integrated circuit element using the same Pending JPH04117477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23739290A JPH04117477A (en) 1990-09-07 1990-09-07 Anisotropic conductive material and method for connecting integrated circuit element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23739290A JPH04117477A (en) 1990-09-07 1990-09-07 Anisotropic conductive material and method for connecting integrated circuit element using the same

Publications (1)

Publication Number Publication Date
JPH04117477A true JPH04117477A (en) 1992-04-17

Family

ID=17014713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23739290A Pending JPH04117477A (en) 1990-09-07 1990-09-07 Anisotropic conductive material and method for connecting integrated circuit element using the same

Country Status (1)

Country Link
JP (1) JPH04117477A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284262A1 (en) * 2010-05-21 2011-11-24 Purdue Research Foundation Controlled Self Assembly of Anisotropic Conductive Adhesives Based on Ferromagnetic Particles
JP2012129202A (en) * 2010-11-24 2012-07-05 Sekisui Chem Co Ltd Anisotropic conductive paste, connection structure and method for manufacturing connection structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785873A (en) * 1980-11-14 1982-05-28 Matsushita Electric Ind Co Ltd Production of anisotropic electrically conductive adhesive
JPS60133079A (en) * 1983-12-21 1985-07-16 Seikosha Co Ltd Anisotropic electrically conductive adhesive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785873A (en) * 1980-11-14 1982-05-28 Matsushita Electric Ind Co Ltd Production of anisotropic electrically conductive adhesive
JPS60133079A (en) * 1983-12-21 1985-07-16 Seikosha Co Ltd Anisotropic electrically conductive adhesive

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284262A1 (en) * 2010-05-21 2011-11-24 Purdue Research Foundation Controlled Self Assembly of Anisotropic Conductive Adhesives Based on Ferromagnetic Particles
US8816807B2 (en) * 2010-05-21 2014-08-26 Purdue Research Foundation Controlled self assembly of anisotropic conductive adhesives based on ferromagnetic particles
JP2012129202A (en) * 2010-11-24 2012-07-05 Sekisui Chem Co Ltd Anisotropic conductive paste, connection structure and method for manufacturing connection structure

Similar Documents

Publication Publication Date Title
Kristiansen et al. Overview of conductive adhesive interconnection technologies for LCDs
JPH04301817A (en) Liquid crystal display device and its production
JP2547895B2 (en) Semiconductor device mounting method
JPH09281520A (en) Method for connecting circuit board, liquid crystal display device and electronic apparatus
JP2985640B2 (en) Electrode connector and method of manufacturing the same
JPS63151033A (en) Manufacture of semiconductor device
JPH1187429A (en) Mounting method for semiconductor chip
JPH03225934A (en) Connecting method for semiconductor integrated circuit element
US6818461B2 (en) Method of producing mounting structure and mounting structure produced by the same
JPH04117477A (en) Anisotropic conductive material and method for connecting integrated circuit element using the same
JP2003045236A (en) Anisotropy conductive film and connection method of integrated circuit device
JP2937705B2 (en) Connection method of printed wiring board
JP3055193B2 (en) Circuit connection method and liquid crystal device manufacturing method
JP3112470B2 (en) Connection structure of electric element and liquid crystal panel
JP2961825B2 (en) Liquid crystal device manufacturing method
JPH0577939U (en) Circuit connection method
JP3031134B2 (en) How to connect electrodes
JPH04317347A (en) Connecting method for integrated circuit element
JP4032320B2 (en) Electrode connection method
JPS63299242A (en) Connection of semiconductor device
JP2002076208A (en) Packaging structure of semiconductor device and display of structure and its manufacturing method
JP2000174066A (en) Method of mounting semiconductor device
JP2880894B2 (en) Structure of liquid crystal display element and method of manufacturing the same
JPH08102464A (en) Bump electrode structure and its forming method, and connection structure using bump electrode and its connection method
JP3041980B2 (en) Liquid crystal panel and method of manufacturing liquid crystal panel