JPH04112459A - Thin form secondary battery - Google Patents

Thin form secondary battery

Info

Publication number
JPH04112459A
JPH04112459A JP2231689A JP23168990A JPH04112459A JP H04112459 A JPH04112459 A JP H04112459A JP 2231689 A JP2231689 A JP 2231689A JP 23168990 A JP23168990 A JP 23168990A JP H04112459 A JPH04112459 A JP H04112459A
Authority
JP
Japan
Prior art keywords
battery
electrode
organic solvent
ptfe
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2231689A
Other languages
Japanese (ja)
Other versions
JP2983595B2 (en
Inventor
Masahisa Fujimoto
正久 藤本
Noriyuki Yoshinaga
好永 宣之
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2231689A priority Critical patent/JP2983595B2/en
Publication of JPH04112459A publication Critical patent/JPH04112459A/en
Application granted granted Critical
Publication of JP2983595B2 publication Critical patent/JP2983595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress decomposition of electrode due. to charging and discharg ing and enhance the cycle characteristics of battery as well as tight contacting of electrode with an electricity collector by using a binder in which polytetrafluoroethylene(PTFE) is dissolved in an organic solvent including nitro gen. CONSTITUTION:As a binder is used PTFE having a high melting point and a high decomposition temperature. PTFE is dissolved in an organic solvent incl. N having a large dissolutiveness, and therein an active substance is dis persed. Thus a sort of coating is prepared and applied to an electricity collector etc., followed by drying or heat treatment, and thus a thin form electrode is accomplished. Examples of N-containing organic solvent are N-methyl-2- pyrrolidone, N-vinyl-2-pyrrolidone, 2-pyrroline, and N, N-dimethylformamide. Use of this binder enables raising the heat treatment temp. to permit perfect evaporation of the solvent. Also decomposition of the electrode can be suppressed, and tight contacting of electrode with the battery armoring be enhanced.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、薄形二次電池に係かり、特にその正極に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a thin secondary battery, and particularly to a positive electrode thereof.

(ロ) 従来の技術 近年、乾電池やリチウム電池で薄形二次電池が提案され
ている。この種の薄形二次電池は、薄形正極及び薄形負
極及び薄形セパレータの電池構成材料を用い、電池外装
体として金属や高分子ラミネートの薄倖材料を用い、薄
形二次電池を構成するものである(例えば特開昭61.
−183879号公報参照)。
(b) Conventional technology In recent years, thin secondary batteries such as dry cells and lithium batteries have been proposed. This type of thin secondary battery uses battery constituent materials such as a thin positive electrode, a thin negative electrode, and a thin separator, and uses a thin material such as metal or polymer laminate as the battery exterior body. (For example, JP-A-61.
(Refer to Publication No.-183879).

一般に、薄形二次電池の場合、薄形の電極を用いるが、
この種の電極の作製には真空蒸着、スパッタリング、塗
布法などが使われる。特に塗布法はコストが低く、大面
積化も容易なため広く用いられている。そして、塗布法
では比較的融点の低いポリフッ化ビニリデンなどの結着
剤を溶解性の大きい窒素を含む有機溶剤に溶かし、これ
に活物質を分散させることによって一種の塗料を作り、
これを集電体などに塗り、乾燥あるいは熱処理をするこ
とによって薄形電極を形成している。
Generally, thin electrodes are used for thin secondary batteries, but
Vacuum deposition, sputtering, coating methods, etc. are used to fabricate this type of electrode. In particular, the coating method is widely used because it is low in cost and can easily be applied to a large area. In the coating method, a type of paint is created by dissolving a binder such as polyvinylidene fluoride, which has a relatively low melting point, in a highly soluble nitrogen-containing organic solvent and dispersing the active material in this.
Thin electrodes are formed by coating this on a current collector and drying or heat-treating it.

しかし乍ら、11記塗4」法において、結着剤に融点並
びに分解温度の低いポリフン化ビニリデンを用いている
ため、熱処理温度を上げることができず、窒素含有有機
溶剤が電極中に残存し、電池とした場合にこの有機溶剤
が電解液中に溶は出し、この結果正極或るいは負極側で
電極を構成する活物質が分解するために電池特性、特に
サイクル特性が悪いという問題があった。
However, in the method 11 Coating 4, polyvinylidene fluoride, which has a low melting point and decomposition temperature, is used as a binder, so the heat treatment temperature cannot be raised, and the nitrogen-containing organic solvent remains in the electrode. When used as a battery, this organic solvent dissolves into the electrolyte, resulting in the decomposition of the active material constituting the electrode on the positive or negative electrode side, resulting in poor battery characteristics, especially cycle characteristics. Ta.

更に、薄形電池の場合外装体が薄く、強度がないため、
ボタン形電池のように外装体によって電極群に圧力をか
けることが不可能であり、電極群や電極群と集を体の間
の密着性が損なわれ、電池性能が低下するという欠点も
あった。
Furthermore, in the case of thin batteries, the outer body is thin and lacks strength.
Unlike button-type batteries, it is impossible to apply pressure to the electrode group using the exterior body, and there is also the disadvantage that the adhesion between the electrode group and the electrode group and the body is impaired, resulting in a decrease in battery performance. .

(ハ) 発明が解決しようとする課題 本発明が解決しようとする課題は、上記従来技術の問題
点に鑑み、電極の高い熱処理温度に耐えることのできる
結着剤を用いて、電極の分解を抑えるとと乙に、このT
L極と電池外装体との密着性を上げることを目的とする
ものである。
(c) Problems to be Solved by the Invention In view of the problems of the prior art described above, the problem to be solved by the present invention is to prevent decomposition of the electrode by using a binder that can withstand the high heat treatment temperature of the electrode. If you want to keep it down, this T
The purpose is to improve the adhesion between the L pole and the battery exterior.

(ニ) 課題を解決するための手段 本発明は、電池外装体内に、正、負極と、正、負極集電
体と、電解液を含浸させたセパレータとを収納してなる
薄形二次電池において、前記正極として、窒素を含むと
ともに結着剤たるテトラフルオロエチレン(以下TFE
という)を溶解或るいは分散させた有機溶媒に、活物質
、或るいは活物質と導電剤との混合物を分散或るいは溶
解させた後、前記集電体或るいは前記電池外装体内面に
塗布せしめて形成したものを用いたものである。
(d) Means for Solving the Problems The present invention provides a thin secondary battery comprising positive and negative electrodes, positive and negative electrode current collectors, and a separator impregnated with an electrolyte in a battery exterior. In this case, as the positive electrode, tetrafluoroethylene (hereinafter referred to as TFE) containing nitrogen and serving as a binder is used.
After dispersing or dissolving an active material, or a mixture of an active material and a conductive agent, in an organic solvent in which a conductive agent is dissolved or dispersed, the inner surface of the current collector or the battery outer casing is The material was formed by applying a coating to the surface.

ここで前記有機溶媒としては、N−メチル−2−ピロリ
ドン、N−ビニル−2−ピロリドン、2−ピロリン、N
、Nジメチルホルムアミドからなる群より選択された少
なくとも1種を用いることができる。
Here, the organic solvents include N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, 2-pyrroline, N-
, N-dimethylformamide can be used.

(ホ)作用 結着剤をTFEにすることにより熱処理温度を上げるこ
とが可能になり、溶剤を完全に蒸発でき、電池に組み立
てた場合、窒素含有有機物がないためその分解が生じず
電池特性特にサイクル特性が向上する。
(e) By using TFE as the functional binder, it is possible to raise the heat treatment temperature, the solvent can be completely evaporated, and when assembled into a battery, there is no nitrogen-containing organic matter, so decomposition does not occur, making it possible to improve the battery properties. Improves cycle characteristics.

ここで用いる結着剤としては、融点ならびに分解温度の
高いポリテトラフルオロエチレン(以下PTFEという
)を用いることが望ましい。つまり、PTFEを溶解性
の大きい窒素を含む有機溶剤に溶かし、これに活物質を
分散させることによって一種の塗料を作り、これを集電
体などに塗り乾燥あるいは熱処理をすることによって薄
形電極を形成する。
As the binder used here, it is desirable to use polytetrafluoroethylene (hereinafter referred to as PTFE), which has a high melting point and high decomposition temperature. In other words, a type of paint is created by dissolving PTFE in a highly soluble nitrogen-containing organic solvent and dispersing the active material therein, and then applying this to a current collector and drying or heat-treating it to create a thin electrode. Form.

また、窒素含有有機溶剤としては、溶解力の大きなもの
が望ましいが、具体的には、N−メチル−2−ピロリド
ン、N−ビニル−2−ピロリドン、2−ピロリン、或る
いはN、Nジメチルホルムアミドが望ましい。
In addition, as the nitrogen-containing organic solvent, it is desirable to use one with a large dissolving power. Specifically, N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, 2-pyrroline, or N,N dimethyl Formamide is preferred.

(へ) 実施例 以下に実施例を挙げ、本発明を具体的に説明する。(f) Examples EXAMPLES The present invention will be specifically described below with reference to Examples.

[実施例1] PTFEをN−メチルピロリドンに溶解させ、0、05
g/ccの濃度に調製した溶剤を得た。
[Example 1] PTFE was dissolved in N-methylpyrrolidone, and 0.05
A solvent prepared to a concentration of g/cc was obtained.

一方、化学二酸化マンガン80gと水酸化リチウム20
gとを混合した後、空気中にて375℃の熱を加えて2
0時間熱処理をして、二酸化マンガンとLitMnO+
が共存した混合物(以下CDMOという)を得た。これ
と導電剤としてのグラファイトを90=6の割合で混合
し、この混合物を先はど調製した溶剤に混合し、20分
間超音波を照射し、該溶剤中に均一に分散させて分散剤
を得た。
On the other hand, 80g of chemical manganese dioxide and 20g of lithium hydroxide
After mixing with g, heat at 375℃ in air to
After 0 hour heat treatment, manganese dioxide and LitMnO+
(hereinafter referred to as CDMO) was obtained. This and graphite as a conductive agent are mixed in a ratio of 90=6, this mixture is mixed with the previously prepared solvent, and ultrasonic waves are irradiated for 20 minutes to uniformly disperse the dispersant in the solvent. Obtained.

更に、前記分散剤をドクターブレード法によって薄形電
池外装体内面に貼着された集電体表面に塗布した後、3
50℃で20時間、真空中で熱処理をして正極を形成さ
せた。
Furthermore, after applying the dispersant to the surface of the current collector attached to the inner surface of the thin battery outer casing by a doctor blade method, 3
A positive electrode was formed by heat treatment in vacuum at 50° C. for 20 hours.

そして、負極にはリチウム箔を、電解液としてトリフル
オロメタンスルホン酸リチウムのプロピレンカーボネー
ト溶液を用いて、第1図に示すような本発明に係わる薄
型二次電池Aを組み立てた。第1図において、1.2は
正、負極、3は該正、負極1.2を隔てるべく電解液を
含浸したセパレーク、4.5は高分子ラミネート製の正
、負極外装体、6,7は正、負極集電体、8は封口樹脂
である。
Then, a thin secondary battery A according to the present invention as shown in FIG. 1 was assembled using a lithium foil as a negative electrode and a propylene carbonate solution of lithium trifluoromethanesulfonate as an electrolyte. In FIG. 1, 1.2 is a positive and negative electrode, 3 is a separator impregnated with electrolyte to separate the positive and negative electrodes 1.2, 4.5 is a positive and negative electrode exterior made of polymer laminate, 6, 7 are positive and negative electrode current collectors, and 8 is a sealing resin.

また、比較のために、結着剤として前記PTFEの代わ
りにポリフッ化ビニリデン(以下PFVという)を用い
た他は本発明電池Aと同様にして、比較電池Bを作製し
た。
For comparison, a comparative battery B was prepared in the same manner as the battery A of the present invention except that polyvinylidene fluoride (hereinafter referred to as PFV) was used as a binder instead of the PTFE.

これらの電池A、Bについて充放電サイクル試験を行な
った。充電は充電電流1mAで3.6■まで行い、放電
は放電電流1mAで2.5vまでとした。この結果を、
第2図に示す。第2図は、電池のサイクル特性比較図で
ある。
A charge/discharge cycle test was conducted on these batteries A and B. Charging was performed up to 3.6 V at a charging current of 1 mA, and discharging was performed up to 2.5 V at a discharging current of 1 mA. This result,
Shown in Figure 2. FIG. 2 is a comparison diagram of cycle characteristics of batteries.

同図によれば、電池Aは100サイクル経過しても放電
容量に低下がみられず、初期容量の23.75mAhを
維持するのに対し、電池Bは50サイクル前後で放電容
量が初期の50χ(12,5mAh)で低下している。
According to the figure, battery A shows no decrease in discharge capacity even after 100 cycles and maintains its initial capacity of 23.75 mAh, whereas battery B's discharge capacity decreases to 50 mAh after around 50 cycles. (12.5mAh).

これは、本発明により窒素含有有機化合物が消失し電解
液の分解が抑制されたためであると考えられる。
This is considered to be because the present invention eliminates nitrogen-containing organic compounds and suppresses decomposition of the electrolyte.

[実施例2] PTFEをN−メチルピロリドンに溶解させ、0、05
g/ccの濃度に調製して溶剤を得た。
[Example 2] PTFE was dissolved in N-methylpyrrolidone and 0.05
A solvent was obtained by adjusting the concentration to g/cc.

一方、化学二酸化マンガン80gと水酸化リチウム20
gとを混合した後、空気中にて375℃の温度で20時
間熱処理をして、二酸化マンガンとLi *MnOsが
共存したCDMOを得た。このCDMOと導電剤として
のグラファイトを90:6の割合で混合し、得られた混
合物を先はど調製した溶剤に混合し、20分間超音波を
照射して該溶剤中に均一に分散させた。
On the other hand, 80g of chemical manganese dioxide and 20g of lithium hydroxide
After mixing with g, a heat treatment was performed in air at a temperature of 375° C. for 20 hours to obtain CDMO in which manganese dioxide and Li*MnOs coexisted. This CDMO and graphite as a conductive agent were mixed at a ratio of 90:6, the resulting mixture was mixed with the previously prepared solvent, and ultrasonic waves were irradiated for 20 minutes to uniformly disperse it in the solvent. .

そして、この分散剤をドクターブレード法によって薄形
二次電池外装体内面の集電体表面に塗布した後、350
℃で2時間、真空中で熱処理をして正極を形成させた。
Then, after applying this dispersant to the current collector surface on the inner surface of the thin secondary battery exterior body using a doctor blade method,
A positive electrode was formed by heat treatment at ℃ for 2 hours in vacuum.

また、グラファイトを同様に前記溶剤中に分散させ、ド
クターブレード法にて外装体内面に塗布した後、350
℃で2時間、真空中で熱処理をして負極を形成させた。
Graphite was similarly dispersed in the solvent and applied to the inner surface of the exterior body using a doctor blade method.
A negative electrode was formed by heat treatment at ℃ for 2 hours in vacuum.

更に、電解液としてトリフルオロメタンスルホン酸リチ
ウムのプロピレンカーボネート溶液を用いて、第1図に
示すような本発明に係わる薄形二次電池Cを組み立てた
Furthermore, a thin secondary battery C according to the present invention as shown in FIG. 1 was assembled using a propylene carbonate solution of lithium trifluoromethanesulfonate as an electrolyte.

一方、結着剤としてPTFEの代わりにPFVを用いた
他は電池Cと同様にして、比較電池りを作製した。
On the other hand, a comparative battery was prepared in the same manner as Battery C except that PFV was used instead of PTFE as a binder.

これらの電池C,Dについて充放電サイクル試験を行な
った。充電は充電電流1mA、3.6vまで、放電は放
電電流1mAで2.5vまでとした。この結果を、第3
図に示す。第3図は、サイクル特性比較図である。
A charge/discharge cycle test was conducted on these batteries C and D. Charging was performed at a charging current of 1 mA up to 3.6 V, and discharging was performed at a discharging current of 1 mA up to 2.5 V. This result is shown in the third
As shown in the figure. FIG. 3 is a comparison chart of cycle characteristics.

本発明電池Cは200サイクル経過しても放電容量に低
下がみられず、初期の容量17.5mAhを維持してい
るのに対し、比較電池りは5oサイクル前後で放電容量
が初期の60χ(10,5mAh)まで低下している。
Inventive battery C shows no decrease in discharge capacity even after 200 cycles and maintains its initial capacity of 17.5 mAh, whereas the comparative battery has a discharge capacity of 60 mAh ( 10.5mAh).

これは、本発明により窒素含有有機化合物が消失し電解
液の分解が抑制されたためであると考えられる。
This is considered to be because the present invention eliminates nitrogen-containing organic compounds and suppresses decomposition of the electrolyte.

尚、本発明においてPTFEの濃度は0.05−0.1
g/ccが望ましい。これは、この範囲を外れると、粘
度が高すぎたり、低すぎたりしてうまく塗布できなくな
るからである。
In addition, in the present invention, the concentration of PTFE is 0.05-0.1
g/cc is desirable. This is because, if it is outside this range, the viscosity will be too high or too low and it will not be possible to apply it properly.

また、熱処理温度は溶剤が完全に蒸発する温度以上で、
且つTFEの分解温度以下ならよいが、特に250〜3
70℃が望ましい。これは250を以下ではPTFEが
溶解しないし、370℃以上ではPTFEが分解してし
まうからである。
In addition, the heat treatment temperature is above the temperature at which the solvent completely evaporates,
In addition, it is fine as long as it is below the decomposition temperature of TFE, especially 250 to 3
70°C is desirable. This is because PTFE does not dissolve at temperatures below 250°C, and PTFE decomposes at temperatures above 370°C.

(ト)  発明の効果 以上の説明の如く、本発明は電池外装体内に、正、負極
と、正、負極集電体と、電解液を含浸させたセパレータ
とを収納してなる薄型二次電池において、前記正極とし
て、窒素を含むとともに結着剤たるテトラフルオロエチ
レンを溶解或るいは分散させた有機溶媒に、活物質、或
るいは活物質と導電剤との混合物を分散域るいは溶解さ
せた後、前記集電体或るいは前記電池缶内面に塗布せし
めて形成したものを用いたことにより、充放電による電
極の分解が抑えられ、電池のサイクル特性が向上すると
ともに、電極と集電体との密着性が向上し、集電効率が
上がるという効果が生まれ、その工業的価値は非常に大
きい。
(G) Effects of the Invention As explained above, the present invention provides a thin secondary battery comprising a positive and negative electrode, a positive and negative electrode current collector, and a separator impregnated with an electrolyte in a battery exterior. As the positive electrode, an active material or a mixture of an active material and a conductive agent is dissolved or dissolved in an organic solvent containing nitrogen and in which tetrafluoroethylene as a binder is dissolved or dispersed. Then, by using a material formed by coating the current collector or the inner surface of the battery can, decomposition of the electrode due to charging and discharging is suppressed, the cycle characteristics of the battery are improved, and the electrode and current collector are It has the effect of improving adhesion to the body and increasing current collection efficiency, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池の構造を示す断面図、第2図は本発
明電池Aと比較電池Bとのサイクル特性比較図、第3図
は同じく本発明電池Cと比較電池りとのサイクル特性比
較図である。 l・・正極、 2・・・負極、 3 ・・セパレータ、 4・・・正極外装体、 5・・・負極外装体、 6・・・正極集電体、 7・・・負極集電体、 8・・・封口樹脂、 A、C・・・・・本発明電池、 B、D・・・・・比較電池。 第1図 第2図
Figure 1 is a sectional view showing the structure of the battery of the present invention, Figure 2 is a comparison diagram of cycle characteristics between battery A of the present invention and comparative battery B, and Figure 3 is a cycle characteristic of battery C of the present invention and comparative battery. It is a comparison diagram. 1...Positive electrode, 2...Negative electrode, 3...Separator, 4...Positive electrode casing, 5...Negative electrode casing, 6...Positive electrode current collector, 7...Negative electrode current collector, 8...Sealing resin, A, C...Battery of the present invention, B, D...Comparison battery. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)電池外装体内に、正、負極と、正、負極集電体と
、電解液を含浸させたセパレータとを収納してなる薄形
二次電池において、 前記正極として、窒素を含むとともに結着剤たるテトラ
フルオロエチレンを溶解或るいは分散させた有機溶媒に
、活物質、或るいは活物質と導電剤との混合物を分散或
るいは溶解させた後、前記集電体或るいは前記電池外装
体内面に塗布せしめて形成したものを用いることを特徴
とする薄形二次電池。
(1) In a thin secondary battery in which a positive and negative electrode, a positive and negative electrode current collector, and a separator impregnated with an electrolyte are housed in a battery exterior, the positive electrode contains nitrogen and binds. After dispersing or dissolving an active material or a mixture of an active material and a conductive agent in an organic solvent in which tetrafluoroethylene, which is an adhesive, is dissolved or dispersed, A thin secondary battery characterized by using a battery formed by coating the inner surface of a battery exterior body.
(2)前記有機溶媒として、N−メチル−2−ピロリド
ン、N−ビニル−2−ピロリドン、2−ピロリン、N、
Nジメチルホルムアミドからなる群より選択された少な
くとも1種を用いることを特徴とする請求項(1)記載
の薄形二次電池。
(2) As the organic solvent, N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, 2-pyrroline, N,
The thin secondary battery according to claim 1, characterized in that at least one selected from the group consisting of N dimethylformamide is used.
JP2231689A 1990-08-31 1990-08-31 Method of manufacturing positive electrode for thin secondary battery Expired - Fee Related JP2983595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2231689A JP2983595B2 (en) 1990-08-31 1990-08-31 Method of manufacturing positive electrode for thin secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2231689A JP2983595B2 (en) 1990-08-31 1990-08-31 Method of manufacturing positive electrode for thin secondary battery

Publications (2)

Publication Number Publication Date
JPH04112459A true JPH04112459A (en) 1992-04-14
JP2983595B2 JP2983595B2 (en) 1999-11-29

Family

ID=16927456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2231689A Expired - Fee Related JP2983595B2 (en) 1990-08-31 1990-08-31 Method of manufacturing positive electrode for thin secondary battery

Country Status (1)

Country Link
JP (1) JP2983595B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304823B1 (en) * 1994-06-24 2001-11-30 윤종용 Process for producing zinc electrode of nickel-zinc battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304823B1 (en) * 1994-06-24 2001-11-30 윤종용 Process for producing zinc electrode of nickel-zinc battery

Also Published As

Publication number Publication date
JP2983595B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
US11699781B2 (en) Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same
TWI330423B (en) Pre-treatment method of electrode active material
JP2003086162A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
KR20170120735A (en) Method for menufacturing a cathode of lithium primary battery
JPH08195199A (en) Electrode for battery and secondary battery using it
Yeo et al. Electrochemical properties of large-sized pouch-type lithium ion batteries with bio-inspired organic cathode materials
JP2705529B2 (en) Organic electrolyte secondary battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JPS63121258A (en) Nonaqueous secondary battery
WO2014073217A1 (en) Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JPS59173977A (en) Lithium secondary battery
JPH11144735A (en) Battery
JPH0325866A (en) Secondary battery
JPH04112459A (en) Thin form secondary battery
JP2002015726A (en) Gel electrolyte secondary battery
JP2003203675A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
JPH07312216A (en) Lithium secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
JP2003115298A (en) Nonaqueous electrolyte battery
JP2002298851A (en) Secondary battery
JPS62119867A (en) Manufacture of active material for positive electrode of battery with organic electrolytic solution
JPH11238525A (en) Sheet-like electrolyte and lithium secondary battery
JPH04171676A (en) Solid-electrolyte battery
JPH01302659A (en) Organic solvent battery
JP2003297356A (en) Positive electrode black mix slurry for lithium secondary battery, positive electrode using the same, and lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees