JP2983595B2 - Method of manufacturing positive electrode for thin secondary battery - Google Patents

Method of manufacturing positive electrode for thin secondary battery

Info

Publication number
JP2983595B2
JP2983595B2 JP2231689A JP23168990A JP2983595B2 JP 2983595 B2 JP2983595 B2 JP 2983595B2 JP 2231689 A JP2231689 A JP 2231689A JP 23168990 A JP23168990 A JP 23168990A JP 2983595 B2 JP2983595 B2 JP 2983595B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
electrode
secondary battery
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2231689A
Other languages
Japanese (ja)
Other versions
JPH04112459A (en
Inventor
正久 藤本
宣之 好永
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2231689A priority Critical patent/JP2983595B2/en
Publication of JPH04112459A publication Critical patent/JPH04112459A/en
Application granted granted Critical
Publication of JP2983595B2 publication Critical patent/JP2983595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、薄形二次電池に係かり、特にその正極の製
造方法に関するものである。
The present invention relates to a thin secondary battery, and more particularly to a method for producing a positive electrode thereof.

(ロ) 従来の技術 近年、乾電池やリチウム電池で薄形二次電池が提案さ
れている。この種の薄形二次電池は、薄形正極及び薄形
負極及び薄形セパレータの電池構成材料を用い、電池外
装体として金属や高分子ラミネートの薄体材料を用い、
薄形二次電池を構成するものである(例えば特開昭61−
183879号公報参照)。
(B) Conventional technology In recent years, thin secondary batteries such as dry batteries and lithium batteries have been proposed. This type of thin secondary battery uses battery constituent materials of a thin positive electrode, a thin negative electrode, and a thin separator, and uses a thin material of a metal or polymer laminate as a battery exterior,
It constitutes a thin secondary battery (see, for example,
No. 183879).

一般に、薄形二次電池の場合、薄形の電極を用いる
が、この種の電極の作製には真空蒸着、スパッタリン
グ、塗布法などが使われる。特に塗布法はコストが低
く、大面積化も容易なため広く用いられている。そし
て、塗布法では比較的融点の低いポリフッ化ビニリデン
などの結着剤を溶解性の大きい窒素を含む有機溶剤に溶
かし、これに活物質を分散させることによって一種の塗
料を作り、これを集電体などに塗り、乾燥あるいは熱処
理をすることによって薄形電極を形成している。
Generally, in the case of a thin secondary battery, a thin electrode is used, and a vacuum evaporation, sputtering, coating method, or the like is used for manufacturing this kind of electrode. Particularly, the coating method is widely used because the cost is low and the area can be easily increased. In the coating method, a binder such as polyvinylidene fluoride, which has a relatively low melting point, is dissolved in an organic solvent containing nitrogen, which has high solubility, and an active material is dispersed in the solvent to make a kind of paint. A thin electrode is formed by coating a body or the like and drying or heat-treating it.

しかし乍ら、上記塗布法において、結着剤に融点並び
に分解温度の低いポリフッ化ビニリデンを用いているた
め、熱処理温度を上げることができず、窒素含有有機溶
剤が電極中に残存し、電池とした場合にこの有機溶剤が
電解液中に溶け出し、この結果正極或るいは負極側で電
極を構成する活物質が分解するために電池特性、特にサ
イクル特性が悪いという問題があった。
However, in the above-mentioned coating method, since polyvinylidene fluoride having a low melting point and a low decomposition temperature is used as the binder, the heat treatment temperature cannot be increased, and the nitrogen-containing organic solvent remains in the electrode, and the battery and In this case, the organic solvent dissolves into the electrolytic solution, and as a result, the active material constituting the electrode is decomposed on the positive electrode side or the negative electrode side.

更に、薄形電池の場合外装体が薄く、強度がないた
め、ボタン形電池のように外装体によって電極群に圧力
をかけることが不可能であり、電極群や電極群と集電体
の間の密着性が損なわれ、電池性能が低下するという欠
点もあった。
Furthermore, in the case of a thin battery, since the outer body is thin and lacks strength, it is impossible to apply pressure to the electrode group by the outer body as in the case of a button type battery, and between the electrode group and the electrode group and the current collector. There is also a disadvantage that the adhesiveness of the battery is impaired and the battery performance is reduced.

(ハ) 発明が解決しようとする課題 本発明が解決しようとする課題は、上記従来技術の問
題点に鑑み、電極の高い熱処理温度に耐えることのでき
る結着剤を用いて、電極の分解を抑えるとともに、この
電極と電池外装体との密着性を上げることを目的とする
ものである。
(C) Problems to be Solved by the Invention The problem to be solved by the present invention is to solve the problem of the prior art by using a binder capable of withstanding a high heat treatment temperature of the electrode to disassemble the electrode. The object is to increase the adhesion between the electrode and the battery outer casing while suppressing the occurrence of the electric current.

(ニ) 課題を解決するための手段 本発明の薄形二次電池用正極の製造方法は、結着剤と
してのテトラフルオロエチレンを溶解させた、窒素含有
有機物からなる有機溶媒に、金属酸化物を分散させた
後、正極集電体或いは電池外装体に塗着して、正極とす
ることを特徴とする。
(D) Means for Solving the Problems The method for producing a positive electrode for a thin secondary battery according to the present invention is characterized in that a metal oxide is dissolved in an organic solvent composed of a nitrogen-containing organic material in which tetrafluoroethylene as a binder is dissolved. Is dispersed, and then applied to a positive electrode current collector or a battery exterior to form a positive electrode.

ここで、前記窒素含有有機物としては、N−メチル−
2−ピロリドン、N−ビニル−2−ピロリドン、2−ピ
ロリン、N,Nジメチルホルムアミドからなる群から選択
された少なくとも一種を使用することができる。
Here, as the nitrogen-containing organic substance, N-methyl-
At least one selected from the group consisting of 2-pyrrolidone, N-vinyl-2-pyrrolidone, 2-pyrroline, and N, N dimethylformamide can be used.

(ホ) 作用 結着剤をTFEにすることにより熱処理温度を上げるこ
とが可能になり、溶剤を完全に蒸発でき、電池に組み立
てた場合、窒素含有有機物がないためその分解が生じず
電池特性特にサイクル特性が向上する。
(E) Action By using TFE as the binder, it is possible to raise the heat treatment temperature, completely evaporate the solvent, and when assembled into a battery, there is no nitrogen-containing organic matter, so there is no decomposition and the battery characteristics Cycle characteristics are improved.

ここで用いる結着剤としては、融点ならびに分解温度
の高いポリテトラフルオロエチレン(以下PTFEという)
を用いることが望ましい。つまり、PTFEを溶解性の大き
い窒素を含む有機溶剤に溶かし、これに活物質を分散さ
せることによって一種の塗料を作り、これを集電体など
に塗り乾燥あるいは熱処理をすることによって薄形電極
を形成する。
The binder used here is polytetrafluoroethylene (hereinafter referred to as PTFE) with a high melting point and decomposition temperature.
It is desirable to use In other words, PTFE is dissolved in an organic solvent containing nitrogen, which has high solubility, and a kind of paint is made by dispersing the active material in it. Then, this is applied to a current collector or the like and dried or heat-treated to form a thin electrode. Form.

また、窒素含有有機化合物からなる有機溶剤として
は、溶解力の大きなものが望ましいが、具体的には、N
−メチル−2−ピロリドン、N−ビニル−2−ピロリド
ン、2−ピロリン、或るいはN,Nジメチルホルムアミド
が望ましい。
As the organic solvent composed of a nitrogen-containing organic compound, a solvent having a large dissolving power is desirable.
-Methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, 2-pyrroline or N, N dimethylformamide is preferred.

(ヘ) 実施例 以下に実施例を挙げ、本発明を具体的に説明する。(F) Examples The present invention will be specifically described below with reference to examples.

[実施例1] PTFEをN−メチルピロリドンに溶解させ、0.05g/ccの
濃度に調製した溶剤を得た。
[Example 1] PTFE was dissolved in N-methylpyrrolidone to obtain a solvent adjusted to a concentration of 0.05 g / cc.

一方、化学二酸化マンガン80gと水酸化リチウム20gと
を混合した後、空気中にて375℃の熱を加えて20時間熱
処理をして、二酸化マンガンとLi2MnO3が共存した混合
物(以下CDMOという)を得た。これと導電剤としてのグ
ラファイトを90:6の割合で混合し、この混合物を先ほど
調製した溶剤に混合し、20分間超音波を照射し、該溶剤
中に均一に分散させて分散剤を得た。
On the other hand, after mixing 80 g of chemical manganese dioxide and 20 g of lithium hydroxide, heat was applied in air at 375 ° C. and heat-treated for 20 hours to obtain a mixture of manganese dioxide and Li 2 MnO 3 (hereinafter referred to as CDMO). ) Got. This and graphite as a conductive agent were mixed at a ratio of 90: 6, and this mixture was mixed with the solvent prepared above, irradiated with ultrasonic waves for 20 minutes, and uniformly dispersed in the solvent to obtain a dispersant. .

更に、前記分散剤をドクターブレード法によって薄形
電池外装体内面に貼着された集電体表面に塗布した後、
350℃で20時間、真空中で熱処理をして正極を形成させ
た。
Further, after applying the dispersant to the surface of the current collector attached to the inner surface of the thin battery exterior by the doctor blade method,
Heat treatment was performed in a vacuum at 350 ° C. for 20 hours to form a positive electrode.

そして、負極にはリチウム箔を、電解液としてトリフ
ルオロメタンスルホン酸リチウムのプロピレンカーボネ
ート溶液を用いて、第1図に示すような本発明に係わる
薄型二次電池Aを組み立てた。第1図において、1、2
は正、負極、3は該正、負極1、2を隔てるべく電解液
を含浸したセパレータ、4、5は高分子ラミネート製の
正、負極外装体、6、7は正、負極集電体、8は封口樹
脂である。
Then, a thin secondary battery A according to the present invention as shown in FIG. 1 was assembled by using a lithium foil for the negative electrode and a propylene carbonate solution of lithium trifluoromethanesulfonate as the electrolytic solution. In FIG. 1, 1, 2
Are positive and negative electrodes, 3 is a separator impregnated with an electrolytic solution to separate the positive and negative electrodes 1 and 2, 4, 5 is a positive and negative electrode package made of a polymer laminate, 6, 7 are positive, negative electrode current collectors, 8 is a sealing resin.

また、比較のために、結着剤として前記PTFEの代わり
にポリフッ化ビニリデン(以下PFVという)を用いた他
は本発明電池Aと同様にして、比較電池Bを作製した。
For comparison, a comparative battery B was prepared in the same manner as the battery A of the present invention except that polyvinylidene fluoride (hereinafter, referred to as PFV) was used as the binder instead of the PTFE.

これらの電池A、Bについて充放電サイクル試験を行
なった。充電は充電電流1mAで3.6Vまで行い、放電は放
電電流1mAで2.5Vまでとした。この結果を、第2図に示
す。第2図は、電池のサイクル特性比較図である。
These batteries A and B were subjected to a charge / discharge cycle test. Charging was performed up to 3.6 V at a charging current of 1 mA, and discharging was performed up to 2.5 V at a discharging current of 1 mA. The result is shown in FIG. FIG. 2 is a comparison diagram of cycle characteristics of a battery.

同図によれば、電池Aは100サイクル経過しても放電
容量に低下がみられず、初期容量の23.75mAhを維持する
のに対し、電池Bは50サイクル前後で放電容量が初期の
50%(12.5mAh)で低下している。これは、本発明によ
り窒素含有有機化合物が消失し電解液の分解が抑制され
たためであると考えられる。
According to the figure, the discharge capacity of battery A did not decrease even after 100 cycles, and maintained the initial capacity of 23.75 mAh, whereas battery B had an initial discharge capacity of around 50 cycles.
It has decreased at 50% (12.5 mAh). This is considered to be because the nitrogen-containing organic compound disappeared and the decomposition of the electrolytic solution was suppressed by the present invention.

[実施例2] PTFEをN−メチルピロリドンに溶解させ、0.05g/ccの
濃度に調製して溶剤を得た。
Example 2 PTFE was dissolved in N-methylpyrrolidone and adjusted to a concentration of 0.05 g / cc to obtain a solvent.

一方、化学二酸化マンガン80gと水酸化リチウム20gと
を混合した後、空気中にて375℃の温度で20時間熱処理
をして、二酸化マンガンとLi2MnO3が共存したCDMOを得
た。このCDMOと導電剤としてのグラファイトを90:6の割
合で混合し、得られた混合物を先ほど調製した溶剤に混
合し、20分間超音波を照射して該溶剤中に均一に分散さ
せた。
On the other hand, after mixing 80 g of chemical manganese dioxide and 20 g of lithium hydroxide, the mixture was heat-treated in air at 375 ° C. for 20 hours to obtain CDMO in which manganese dioxide and Li 2 MnO 3 coexisted. The CDMO and graphite as a conductive agent were mixed at a ratio of 90: 6, and the obtained mixture was mixed with the solvent prepared above, and irradiated with ultrasonic waves for 20 minutes to be uniformly dispersed in the solvent.

そして、この分散剤をドクターブレード法によって薄
形二次電池外装体内面の集電体表面に塗布した後、350
℃で2時間、真空中で熱処理をして正極を形成させた。
Then, after applying this dispersant to the current collector surface on the inner surface of the thin secondary battery exterior by the doctor blade method, 350
Heat treatment was performed at a temperature of 2 ° C. for 2 hours in a vacuum to form a positive electrode.

また、グラファイトを同様に前記溶剤中に分散させ、
ドクターブレード法にて外装体内面に塗布した後、350
℃で2時間、真空中で熱処理をして負極を形成させた。
Also, graphite is similarly dispersed in the solvent,
After applying to the inner surface of the exterior by the doctor blade method, 350
Heat treatment was performed at a temperature of 2 ° C. for 2 hours in a vacuum to form a negative electrode.

更に、電解液としてトリフルオロメタンスルホン酸リ
チウムのプロピレンカーボネート溶液を用いて、第1図
に示すような本発明に係わる薄形二次電池Cを組み立て
た。
Further, a thin secondary battery C according to the present invention as shown in FIG. 1 was assembled by using a propylene carbonate solution of lithium trifluoromethanesulfonate as an electrolytic solution.

一方、結着剤としてPTFEの代わりにPFVを用いた他は
電池Cと同様にして、比較電池Dを作製した。
On the other hand, a comparative battery D was prepared in the same manner as the battery C except that PFV was used instead of PTFE as a binder.

これらの電池C、Dについて充放電サイクル試験を行
なった。充電は充電電流1mA、3.6Vまで、放電は放電電
流1mAで2.5Vまでとした。この結果を、第3図に示す。
第3図は、サイクル特性比較図である。
These batteries C and D were subjected to a charge / discharge cycle test. Charging was performed at a charging current of 1 mA up to 3.6 V, and discharging was performed at a discharging current of 1 mA up to 2.5 V. The result is shown in FIG.
FIG. 3 is a cycle characteristic comparison diagram.

本発明電池Cは200サイクル経過しても放電容量に低
下がみられず、初期の容量17.5mAhを維持しているのに
対し、比較電池Dは50サイクル前後で放電容量が初期の
60%(10.5mAh)まで低下している。これは、本発明に
より窒素含有有機化合物が消失し電解液の分解が抑制さ
れたためであると考えられる。
Battery C of the present invention did not show a decrease in discharge capacity even after 200 cycles, and maintained the initial capacity of 17.5 mAh, whereas Comparative Battery D had an initial discharge capacity of around 50 cycles.
It has dropped to 60% (10.5mAh). This is considered to be because the nitrogen-containing organic compound disappeared and the decomposition of the electrolytic solution was suppressed by the present invention.

尚、本発明においてPTFEの濃度は0.05〜0.1g/ccが望
ましい。これは、この範囲を外れると、粘度が高すぎた
り、低すぎたりしてうまく塗布できなくなるからであ
る。
In the present invention, the concentration of PTFE is desirably 0.05 to 0.1 g / cc. This is because if it is out of this range, the viscosity will be too high or too low, and it will not be possible to apply well.

また、熱処理温度は溶剤が完全に蒸発する温度以上
で、且つTFEの分解温度以下ならよいが、特に250〜370
℃が望ましい。これは250℃以下ではPTFEが溶解しない
し、370℃以上ではPTFEが分解してしまうからである。
The heat treatment temperature is not less than the temperature at which the solvent completely evaporates, and may be not more than the decomposition temperature of TFE.
C is desirable. This is because PTFE does not dissolve below 250 ° C. and PTFE decomposes above 370 ° C.

(ト) 発明の効果 以上の説明の如く、本発明の薄形二次電池用正極の製
造方法では、結着剤としてのテトラフルオロエチレンを
溶解させた、窒素含有有機物からなる有機溶媒に、金属
酸化物を分散させた後、正極集電体或いは電池外装体に
塗着していることにより、充放電による電極の分解が抑
えられ、電池のサイクル特性が向上するとともに、電極
と集電体との密着性が向上し、集電効率が上がるという
効果が生まれ、その工業的価値は非常に大きい。
(G) Effect of the Invention As described above, in the method for producing a positive electrode for a thin secondary battery according to the present invention, the metal solvent is dissolved in an organic solvent composed of a nitrogen-containing organic substance in which tetrafluoroethylene as a binder is dissolved. After dispersing the oxide, it is applied to the positive electrode current collector or the battery exterior, so that the decomposition of the electrode due to charge and discharge is suppressed, and the cycle characteristics of the battery are improved. This has the effect of improving the adhesion and increasing the current collection efficiency, and is of great industrial value.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明電池の構造を示す断面図、第2図は本発
明電池Aと比較電池Bとのサイクル特性比較図、第3図
は同じく本発明電池Cと比較電池Dとのサイクル特性比
較図である。 1……正極、 2……負極、 3……セパレータ、 4……正極外装体、 5……負極外装体、 6……正極集電体、 7……負極集電体、 8……封口樹脂、 A、C……本発明電池、 B、D……比較電池。
1 is a cross-sectional view showing the structure of the battery of the present invention, FIG. 2 is a comparison diagram of the cycle characteristics of the battery A of the present invention and the comparative battery B, and FIG. It is a comparative figure. DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 4 ... Positive-electrode exterior body, 5 ... Negative-electrode exterior body, 6 ... Positive-electrode collector, 7 ... Negative-electrode current collector, 8 ... Sealing resin , A, C: battery of the present invention; B, D: comparative battery.

フロントページの続き (56)参考文献 特開 昭61−183879(JP,A) 特開 平3−222258(JP,A) 特開 平2−75159(JP,A) 特開 昭61−163571(JP,A) 特開 昭59−12563(JP,A) 特開 昭59−173974(JP,A) 特開 昭56−132773(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/02 H01M 4/62 H01M 10/40 Continuation of front page (56) References JP-A-61-183879 (JP, A) JP-A-3-222258 (JP, A) JP-A-2-75159 (JP, A) JP-A-61-163571 (JP) JP-A-59-12563 (JP, A) JP-A-59-173974 (JP, A) JP-A-56-132773 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB Name) H01M 4/02 H01M 4/62 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】結着剤としてのテトラフルオロエチレンを
溶解させた、窒素含有有機物からなる有機溶媒に、金属
酸化物を分散させた後、正極集電体或いは電池外装体に
塗着して、正極とすることを特徴とする薄形二次電池用
正極の製造方法。
1. A metal oxide is dispersed in an organic solvent composed of a nitrogen-containing organic substance in which tetrafluoroethylene as a binder is dissolved, and then the resultant is applied to a positive electrode current collector or a battery outer package. A method for producing a positive electrode for a thin secondary battery, which is used as a positive electrode.
【請求項2】前記窒素含有有機物が、N−メチル−2−
ピロリドン、N−ビニル−2−ピロリドン、2−ピロリ
ン、N,Nジメチルホルムアミドからなる群から選択され
た少なくとも一種であることを特徴とする請求項1記載
の薄形二次電池用正極の製造方法。
2. The method according to claim 1, wherein said nitrogen-containing organic substance is N-methyl-2-.
The method for producing a positive electrode for a thin secondary battery according to claim 1, wherein the positive electrode is at least one selected from the group consisting of pyrrolidone, N-vinyl-2-pyrrolidone, 2-pyrroline, and N, N dimethylformamide. .
JP2231689A 1990-08-31 1990-08-31 Method of manufacturing positive electrode for thin secondary battery Expired - Fee Related JP2983595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2231689A JP2983595B2 (en) 1990-08-31 1990-08-31 Method of manufacturing positive electrode for thin secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2231689A JP2983595B2 (en) 1990-08-31 1990-08-31 Method of manufacturing positive electrode for thin secondary battery

Publications (2)

Publication Number Publication Date
JPH04112459A JPH04112459A (en) 1992-04-14
JP2983595B2 true JP2983595B2 (en) 1999-11-29

Family

ID=16927456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2231689A Expired - Fee Related JP2983595B2 (en) 1990-08-31 1990-08-31 Method of manufacturing positive electrode for thin secondary battery

Country Status (1)

Country Link
JP (1) JP2983595B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304823B1 (en) * 1994-06-24 2001-11-30 윤종용 Process for producing zinc electrode of nickel-zinc battery

Also Published As

Publication number Publication date
JPH04112459A (en) 1992-04-14

Similar Documents

Publication Publication Date Title
US6051343A (en) Polymeric solid electrolyte and lithium secondary cell using the same
US7422826B2 (en) In situ thermal polymerization method for making gel polymer lithium ion rechargeable electrochemical cells
JP4426154B2 (en) Method for producing electrode film and battery element including the electrode film
KR20140106292A (en) Anode for lithium secondary battery and lithium secondary battery using the same
JP3868231B2 (en) Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2001076733A (en) Composition for forming electrode active material of lithium secondary battery, composition for forming separator, and manufacture of lithium secondary battery using it
KR102094993B1 (en) Anode for lithium secondary battery and lithium secondary battery using the same
JP2003331825A (en) Nonaqueous secondary battery
JP2705529B2 (en) Organic electrolyte secondary battery
JP4086939B2 (en) Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same
JPH06181058A (en) Looseness restraining means of wound electrode body for nonaqueous electrolyte type battery
JP4979049B2 (en) Non-aqueous secondary battery
JP2983595B2 (en) Method of manufacturing positive electrode for thin secondary battery
JP3664560B2 (en) Lithium secondary battery
WO2014073217A1 (en) Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JPH08329946A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPH11238411A (en) Solid electrolyte, lithium secondary battery and electric double layer capacitor
JP3778805B2 (en) Secondary battery
JP3541481B2 (en) Non-aqueous electrolyte secondary battery
JP2002134173A (en) Method for manufacturing nonaqueous secondary battery
JP2001266890A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2002246023A (en) Lithium secondary battery
JP2001345093A (en) Positive electrode for nonaqueous secondary cell, negative electrode for nonaqueous secondary cell and nonaqueous secondary cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees