JPH04111910A - Method for controlling shape of rolled stock in multistage rolling mill - Google Patents

Method for controlling shape of rolled stock in multistage rolling mill

Info

Publication number
JPH04111910A
JPH04111910A JP2229636A JP22963690A JPH04111910A JP H04111910 A JPH04111910 A JP H04111910A JP 2229636 A JP2229636 A JP 2229636A JP 22963690 A JP22963690 A JP 22963690A JP H04111910 A JPH04111910 A JP H04111910A
Authority
JP
Japan
Prior art keywords
shape
rolled material
plate shape
control
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2229636A
Other languages
Japanese (ja)
Other versions
JPH07102380B2 (en
Inventor
Yasushi Maeda
恭志 前田
Kazuo Nose
能勢 和夫
Hajime Tsubono
坪野 肇
Tetsuya Wakebe
分部 哲也
Masakazu Shimomura
下村 雅一
Eiji Yoshida
栄治 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2229636A priority Critical patent/JPH07102380B2/en
Publication of JPH04111910A publication Critical patent/JPH04111910A/en
Publication of JPH07102380B2 publication Critical patent/JPH07102380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/42Control of flatness or profile during rolling of strip, sheets or plates using a combination of roll bending and axial shifting of the rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/14Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls
    • B21B13/147Cluster mills, e.g. Sendzimir mills, Rohn mills, i.e. each work roll being supported by two rolls only arranged symmetrically with respect to the plane passing through the working rolls

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To execute shape control with extremely high shape convergence without the generation of hunting by adapting the estimated shape of rolling material as the detected value of sheet shape at present point of time, calculating the manipulated variable of each actuator to minimize the value of overall performance function and operating each actuator. CONSTITUTION:The manipulated variable of a means 12 for pushing back-up roll (i.e., the increment for pushing the a back-up roll 5), manipulated variable of a means 13 for moving tapered roll (i.e., movement of a pair of upper and lower tapered rolls 3, 3) and manipulated variable of a means 11 for moving the drawing down position (i.e., correction that is added to the control signal (e) from a thickness controller 9) are calculated based on the detected signal (f) from a sheet shape detector 6 and the target sheet shape signal (g) that is preliminarily set with a sheet shape controller 10 and they are respectively outputted as control signals (h), (i), (d). And, the positions of the back-up roll 5 and tapered rolls 3, 3 are respectively operated by manipulated variables that is instructed according to the control signals (h), (i) with the means 12 for pushing back-up roll and means 13 for moving the tapered rolls and the sheet shape of rolled stock 1 is controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多段圧延機における圧延材の形状制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for controlling the shape of a rolled material in a multi-high rolling mill.

(従来の技術) 近年、銅合金等の薄板圧延においては、製品の板厚精度
に対する要求を満たずために、多段圧延機において自動
板厚制御が行なわれるだけでなく、その板形状について
も高い精度が要求されるようになり、自動形状制御方法
が開発されている。
(Prior technology) In recent years, in the rolling of thin plates of copper alloys, etc., in order to meet the requirements for the thickness accuracy of products, not only automatic plate thickness control is performed in multi-high rolling mills, but also high precision is applied to the plate shape. As precision is required, automatic shape control methods are being developed.

この種の多段圧延機におりる圧延材の形状制御は、一般
に、各圧延機特有の形状制御アクチュエータの制御量を
、圧延機出側に設置された形状検出器から検出した形状
データに基いて、形状制御装置内に組み込んだ独自の制
御アルゴリスムにより算出し、その算出された制御量だ
け各アクチュエータを作動させることによって行われる
ものである(例えば、特開昭55−45562号公報、
特開昭63−16804号公報、特開昭63−1680
6号公報、特開昭62−21814号公報参照)。
Shape control of the rolled material in this type of multi-high rolling mill is generally based on shape data detected from a shape detector installed on the exit side of the rolling mill to control the control amount of the shape control actuator unique to each rolling mill. , is calculated by a unique control algorithm built into the shape control device, and is performed by operating each actuator by the calculated control amount (for example, Japanese Patent Laid-Open No. 55-45562,
JP-A-63-16804, JP-A-63-1680
(See Japanese Patent Application Laid-Open No. 62-21814).

これらの従来技術のうち、特開昭63−16806号公
報に開示されたものでは、圧延十Aがロールハイドから
形状検出器に至るまでの移送時間による時間遅れをも考
慮して、形状パラメータの推定値に補正を加える手法が
採用されており、このことによって、広範囲の圧延条件
に対応して、圧延速度の低速領域から速い応答性を示し
、より良好な板形状を得ることができるとされている。
Among these conventional techniques, the one disclosed in Japanese Patent Application Laid-Open No. 63-16806 takes into account the time delay caused by the transfer time of rolling 10A from the roll hide to the shape detector, and calculates the shape parameters. A method of correcting the estimated values has been adopted, and it is said that this allows for a wide range of rolling conditions, a fast response from low rolling speeds, and a better plate shape. ing.

(発明が解決しようとする課題) ところで、この種の多段圧延機に設置される形状検出器
は、圧延材に当接して回転する形状検出ローうによって
検出される圧延材の微小な張力変化を形状の変化に変換
する構成のものが一般的であり、このため、形状検出の
ための時間が当該圧延機における制御周期、即ち、デー
タ′す°ンプリングの時間間隔より長い場合があった。
(Problem to be Solved by the Invention) By the way, the shape detector installed in this type of multi-high rolling mill detects minute tension changes in the rolled material detected by the shape detection row that rotates in contact with the rolled material. Generally, the rolling mill is configured to convert the shape into a change, and therefore, the time required to detect the shape is sometimes longer than the control cycle of the rolling mill, that is, the data sampling time interval.

また、検出ローラからのデータに誤差が多いときには、
この誤差による誤動作を防止すべく、検出形状と目標形
状との差の時間的な重み付き平均値を算出し、いわゆる
PI若しくはPID制御を行う場合もあるが、このよう
な場合には、より正確な形状データを得るのに更に多く
の時間を要し、時には板形状の制御周期の2倍以上の時
間を要する場合もある。
Also, if there are many errors in the data from the detection roller,
In order to prevent malfunctions due to this error, a time-weighted average value of the difference between the detected shape and the target shape is sometimes calculated and so-called PI or PID control is performed. It takes more time to obtain accurate shape data, and sometimes it takes more than twice the control cycle of the plate shape.

このように、形状検出のための時間による時間遅れは、
通常、前記した圧延材の移送時間tごよる時間遅れより
もはるかに長く、実際上は問題となる場合が多いにも拘
らず、前記従来の技術においては、何らこの点について
考慮されていなかった。
In this way, the time delay due to time for shape detection is
Normally, this is much longer than the time delay caused by the transfer time t of the rolled material, which is often a problem in practice, but the above-mentioned conventional technology does not take this point into account. .

即ち、前記した従来の技術では、その制御アルゴリズム
中に、このような制御周期以上の時間遅れが生じる場合
についての考慮は何らなされておらず、検出された板形
状に対してそのまま制御量を計算して形状制御しようと
していたので、制御ゲインを調整することでしか形状修
正を調整することができず、そのためその形状修正に非
常に長い時間を要していた。また、逆に制御ゲインを」
二げて一挙に形状修正しようとすれば、制御周期以上の
時間遅れが生じている場合には、ハンチングが生ずる結
果となる。
In other words, in the conventional technology described above, no consideration is given to the case where a time delay longer than the control cycle occurs during the control algorithm, and the control amount is directly calculated for the detected plate shape. Therefore, the shape correction could only be adjusted by adjusting the control gain, and as a result, the shape correction took a very long time. Also, conversely, control gain
If an attempt is made to correct the shape all at once, hunting will occur if there is a time delay longer than the control period.

本発明は、このような実情に鑑みて成されたもので、制
御周期以上の時間遅れが生じている場合にでも、その遅
れに伴う板形状の予測を適切に行なうことにより、ハン
チングが生ずることなくしかも形状収束性の極めて高い
形状制御を行うことのできる多段圧延機における圧延材
の形状制御方法を提供することを目的とする。
The present invention has been developed in view of the above circumstances, and even when a time delay longer than the control cycle occurs, it is possible to prevent hunting by appropriately predicting the plate shape due to the delay. It is an object of the present invention to provide a method for controlling the shape of a rolled material in a multi-high rolling mill, which can perform shape control with extremely high shape convergence.

(課題を解決するための手段) 上記目的を達成すべく、本発明は次のような技術的手段
を講じた。
(Means for Solving the Problems) In order to achieve the above object, the present invention has taken the following technical means.

即ち、請求項(1)記載の発明は、多段圧延機の出側に
設置した板形状検出器により検出された圧延材の板形状
と予め設定された目標板形状との差、および、各アクチ
ュエータの操作量変更に対する圧延材の板厚変化量と予
め設定された前記各アクチュエータの操作量変更時の目
標板厚変化量との差を用いて、圧延材の出側板形状およ
び板厚を評価する総合評価関数が予め定義・設定され、
圧延材の板形状制御中には、前記板形状検出器により圧
延材の板形状を常時検出し、前記板形状検出器からの現
時点におりる検出結果と各アクチュエータの過去の制御
量とから現時点における圧延材の予測形状を算出し、そ
の圧延材の予測形状を現時点における板形状の検出値と
して採用して前記総合評価関数の値を最小にする各アク
チュエータの操作量を演算し、この演算された操作量に
基いて各アクチュエータを作動させ、圧延材の形状を逐
次制御することを特徴とする。
That is, the invention described in claim (1) is based on the difference between the plate shape of the rolled material detected by the plate shape detector installed on the exit side of the multi-high rolling mill and a preset target plate shape, and the difference between the plate shape of the rolled material and the target plate shape set in advance, and the Evaluate the outlet side plate shape and plate thickness of the rolled material using the difference between the amount of change in thickness of the rolled material in response to a change in the amount of operation of the rolled material and the preset target amount of change in thickness when changing the amount of operation of each of the actuators. A comprehensive evaluation function is defined and set in advance,
During plate shape control of the rolled material, the plate shape of the rolled material is constantly detected by the plate shape detector, and the current detection result from the plate shape detector and the past control amount of each actuator are used to determine the current state of the rolled material. Calculate the predicted shape of the rolled material at , use the predicted shape of the rolled material as the detected value of the current plate shape, calculate the operation amount of each actuator that minimizes the value of the comprehensive evaluation function, and calculate the operation amount of each actuator that minimizes the value of the comprehensive evaluation function. The method is characterized in that each actuator is actuated based on the manipulated variable to sequentially control the shape of the rolled material.

また、請求項(2)記載の発明は、多段圧延機の出側に
設置した板形状検出器により検出された圧延材の板形状
と予め設定された目標板形状との差、および、各アクチ
ュエータの操作量変更に対する圧延材の板厚変化量と予
め設定された前記各アクチュエータの操作量変更時の目
標板厚変化量との差を用いて、圧延材の出側板形状およ
び板厚を評価する総合評価関数が予め定義・設定され、
圧延材の板形状制御中には、前記板形状検出器により圧
延材の板形状を常時検出し、前記板形状検出器からの現
時点における検出結果と各アクチュエータの過去の制御
量、および、制御周期間で生じた圧延速度の変化量又は
制御周期間で生じた板厚変化、圧延速度の変化による荷
重変化量とから現時点における圧延材の予測形状を算出
し、その圧延材の予測形状を現時点におりる板形状の検
出値として採用して前記総合評価関数の値を最小にする
各アクチュエータの操作量を演算し、この演算された操
作量に暴いて各アクチュエータを作動させ、圧延材の形
状を逐次制御することを特徴とする。
In addition, the invention described in claim (2) is based on the difference between the plate shape of the rolled material detected by a plate shape detector installed on the exit side of the multi-high rolling mill and a preset target plate shape, and Evaluate the outlet side plate shape and plate thickness of the rolled material using the difference between the amount of change in thickness of the rolled material in response to a change in the amount of operation of the rolled material and the preset target amount of change in thickness when changing the amount of operation of each of the actuators. A comprehensive evaluation function is defined and set in advance,
During plate shape control of the rolled material, the plate shape of the rolled material is constantly detected by the plate shape detector, and the current detection result from the plate shape detector, the past control amount of each actuator, and the control cycle are The predicted shape of the rolled material at the present time is calculated from the amount of change in rolling speed that occurred during the period, the change in plate thickness that occurred during the control cycle, and the amount of load change due to the change in rolling speed, and the predicted shape of the rolled material is calculated at the current time. The operation amount of each actuator that minimizes the value of the comprehensive evaluation function is calculated by employing it as the detected value of the rolling plate shape, and each actuator is operated in accordance with the calculated operation amount to determine the shape of the rolled material. It is characterized by sequential control.

(作 用) 請求項(1)記載の発明では、現時点kにおける圧延材
の予測形状fi’(k)を、板形状検出器からの現時点
kにおりる検出結果fi’(k)と各アクチュエータの
過去の制御量Δxj(k−1)とから算出しく後述する
θ0)′ 式参照)、この予測形状fi’(k)に基い
て、総合評価関数Jの値を最小にする各アクチュエータ
の操作量Δxj (k)が演算される。
(Function) In the invention described in claim (1), the predicted shape fi'(k) of the rolled material at the current time k is calculated by combining the detection result fi'(k) from the plate shape detector at the current time k and each actuator. Based on this predicted shape fi'(k), each actuator is operated to minimize the value of the overall evaluation function J. A quantity Δxj (k) is calculated.

従って、例えば検出結果fi0(k)を得るための時間
が、制御周期よりも長くなっているような場合にでも、
各時点kにおける圧延材の実際の形状が、前記予測形状
fi’ (k)によってリアルタイムに得られているの
と同じこととなり、ハンチングが生ずるのを防止できる
と共に、制御ゲインを上げても板形状の収束性が極めて
良好なものとなる。
Therefore, even if, for example, the time to obtain the detection result fi0(k) is longer than the control period,
The actual shape of the rolled material at each time point k is the same as that obtained in real time by the predicted shape fi' (k), which makes it possible to prevent hunting from occurring, and even if the control gain is increased, the shape of the rolled material remains unchanged. The convergence is extremely good.

また、請求項(2)記載の発明では、前記予測形状fi
’(k)を構成するのに、各アクチュエータの過去の制
御量Δxj(k−1)のみならず、制御周期間で生じた
圧延速度の変化量Δ■、または板厚変化、圧延速度の変
化による荷重変化量ΔPをも考慮することにより、それ
らの変化が生じた場合の板形状への影響をも予め予測す
ることにしている。
Further, in the invention according to claim (2), the predicted shape fi
'(k), not only the past control amount Δxj(k-1) of each actuator, but also the amount of change Δ■ in rolling speed that occurred during the control cycle, change in plate thickness, change in rolling speed By also considering the amount of load change ΔP due to the change in load, the influence on the plate shape when these changes occur is also predicted in advance.

(実施例) 以下、図面に基いて本発明の一実施例につき詳述する。(Example) Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

第1図は本発明方法が適用される装置を示す全体構成図
、第2図は本発明方法が適用される多段圧延機の正面図
である。本実施例では、20段圧延機に本発明の方法を
適用した場合を示す。
FIG. 1 is an overall configuration diagram showing an apparatus to which the method of the present invention is applied, and FIG. 2 is a front view of a multi-high rolling mill to which the method of the present invention is applied. This example shows a case where the method of the present invention is applied to a 20-high rolling mill.

第1.2図において、1は薄板である圧延材、2は圧延
材1に当接する上下一対のワークロール、3はワークロ
ール2の背後に設置されたテーバロルである第1中間ロ
ール、4は第1中間ロール3の背後に設置された第2中
間ロール、5は第2中間ロール4のさらに背後に設置さ
れたバックアップロールで、これらのロール2〜5によ
り20段圧延機が構成されている。
In Fig. 1.2, 1 is a rolled material that is a thin plate, 2 is a pair of upper and lower work rolls that contact the rolled material 1, 3 is a first intermediate roll that is a taber roll installed behind the work roll 2, and 4 is a A second intermediate roll 5 is installed behind the first intermediate roll 3, and 5 is a backup roll installed further behind the second intermediate roll 4. These rolls 2 to 5 constitute a 20-high rolling mill. .

また、6は20段圧延機から若干離れた下流側の位置に
配置され圧延材1の圧延方向の伸び(板形状)を検出す
る板形状検出器で、板幅方向に沿って複数(本実施例で
はn個)の形状センサ要素を配列して構成されている。
Further, numeral 6 denotes a plate shape detector which is arranged at a downstream position slightly away from the 20-high rolling mill and detects the elongation (plate shape) of the rolled material 1 in the rolling direction. In the example, it is configured by arranging n shape sensor elements.

7.8ばそれぞれ20段圧延機の上流側および下流側の
適当な位置に配置された圧延材1の入側板厚および出側
板厚を検出する板厚計、9は板厚計7,8による検出結
果に基づき適宜数のロール圧下位置移動手段(板厚制御
用アクチュエータ)11へ操作量を制御信号eとして出
力し制御する板厚制御装置、10は板形状検出器6によ
る検出結果に基づき適宜数のバックアップロール押し込
み手段12およびテーバロール移動手段13(いずれも
板形状制御用アクチュエータ)へ操作量を出力して制御
する板形状制御装置である。
7. 8 is a plate thickness gauge that detects the entrance plate thickness and exit plate thickness of the rolled material 1, which are placed at appropriate positions on the upstream and downstream sides of the 20-high rolling mill, respectively; 9 is based on plate thickness gauges 7 and 8; A plate thickness control device outputs the operation amount as a control signal e to an appropriate number of roll reduction position moving means (actuators for plate thickness control) 11 based on the detection results, and controls the plate thickness control device 10 as appropriate based on the detection results by the plate shape detector 6. This is a plate shape control device that outputs an operation amount to a number of backup roll pushing means 12 and Taber roll moving means 13 (both actuators for plate shape control) to control them.

このような構成の装置により、本実施例では、本発明の
方法による圧延材1の板形状制御が次のように行なわれ
る。
In this embodiment, with the apparatus having such a configuration, control of the plate shape of the rolled material 1 by the method of the present invention is performed as follows.

まず、板厚制御装置9は、板厚計7,8からの検出信号
a、bと予め設定された目標出側板厚信号Cとに基づい
て、通常のフィードフォワード型板厚制御及びフィード
バック型板厚制御により操作量を演算して制御信号eを
出力する。この制御信号eは、後述する板形状制御装置
10により演算された操作量である制御信号dを加算さ
れることで、バックアンプロール押し込み手段12およ
びテーバロール移動手段13の操作量を変更するこ七に
よって生じる板厚変化を考慮した補正がなされることに
なる。このような補正の後、その制御信号が、ロール圧
下位置移動手段11へ出力され、指示された操作量だけ
20段圧延機におけるロール圧下位置が操作され、圧延
材1の板厚が制御される。
First, the plate thickness control device 9 performs normal feedforward type plate thickness control and feedback type plate thickness control based on detection signals a and b from the plate thickness gauges 7 and 8 and a preset target exit side plate thickness signal C. The operation amount is calculated by thickness control and a control signal e is output. This control signal e changes the operation amount of the back unroll pushing means 12 and the Taber roll moving means 13 by adding the control signal d which is the operation amount calculated by the plate shape control device 10 described later. Corrections will be made taking into account changes in plate thickness caused by the above. After such correction, the control signal is output to the roll reduction position moving means 11, the roll reduction position in the 20-high rolling mill is operated by the instructed operation amount, and the thickness of the rolled material 1 is controlled. .

一方、板形状制御装置10は、板形状検出器6からの検
出信号fならびに予め設定された目標板形状信号gに基
づいて、バックアップロール押し込み手段12の操作量
(即ち、バックアップロール5の押し込み増分量)ΔX
、〜ΔX4と、テーパロール移動手段13の操作量(即
ち、上下一対のテーバロール3,3の移動量)ΔXS+
ΔX6と、ロール圧下位置移動手段11の操作量(即ち
、板厚制御装置9からの制御信号eに加算される補正骨
)ΔX7+Δx8とを演算し、それぞれ制御信号り、i
、dとして出力する。
On the other hand, the plate shape control device 10 controls the amount of operation of the backup roll pushing means 12 (i.e., increases the amount of pushing of the backup roll 5) based on the detection signal f from the plate shape detector 6 and the preset target plate shape signal g. Quantity) ΔX
, ~ΔX4, and the operation amount of the tapered roll moving means 13 (that is, the amount of movement of the pair of upper and lower Taper rolls 3, 3) ΔXS+
ΔX6 and the operation amount of the roll reduction position moving means 11 (i.e., the correction bone added to the control signal e from the plate thickness control device 9) ΔX7+Δx8 are calculated, and the control signals i and i are calculated.
, d.

そして、バックアップロール押し込め手段12およびテ
ーパロール移動手段13により、それぞれ制御信号り、
iに応じて指示された操作量だけバッファツブロール5
およびテーパロール3,3の位置が操作され、圧延材1
の板形状が制御される。
Then, the backup roll pushing means 12 and the tapered roll moving means 13 send control signals, respectively.
Buffer roll 5 by the amount of operation specified according to i
The positions of the tapered rolls 3 and 3 are operated, and the rolled material 1
The shape of the plate is controlled.

ところで、本発明の特徴的な部分は、板形状制御装置1
0にて行なわれる操作量ΔX、〜Δ×8の演算手段にあ
る。以下に、その演算手段について詳細に説明する。
By the way, the characteristic part of the present invention is that the plate shape control device 1
The operation amount ΔX, which is performed at 0, is in the calculation means of Δ×8. The calculation means will be explained in detail below.

即ち、板形状制御装置10には、下式(4)にて、圧延
材1の出側板形状および板厚を評価する総合評価関数J
が予め定義・設定されている。
That is, the plate shape control device 10 has a comprehensive evaluation function J that evaluates the outlet side plate shape and plate thickness of the rolled material 1 using the following equation (4).
are defined and set in advance.

この総合評価関数Jは、板形状検出器6からの出側板形
状と予め設定された目標板形状との差、および、各アク
チュエータ11〜13の操作量変更に対する板厚変化量
と予め設定された各アクチュエータ11〜13の操作量
変更時の目標板厚変化量との差を用いて定義されている
This comprehensive evaluation function J is calculated based on the difference between the outlet side plate shape from the plate shape detector 6 and a preset target plate shape, and the amount of change in plate thickness corresponding to the change in the operation amount of each actuator 11 to 13. It is defined using the difference from the target plate thickness change amount when changing the operation amount of each actuator 11 to 13.

ここで、出側板形状と目標板形状との差は、下式(1)
による誤差形状ei(k)、 ei(k)−fio(k)−fi”(k)  (i =
 1〜n)−(1)に関し、下式(2)に示す通り、現
時点の誤差形状ei(k)と、現時点よりも1時点前の
誤差形状の差ei (k) −ei (k−1)との重
み付き合計量として求められる。
Here, the difference between the exit side plate shape and the target plate shape is calculated using the following formula (1).
The error shape ei(k), ei(k) − fio(k) − fi”(k) (i =
1 to n) - (1), as shown in the following equation (2), the difference between the current error shape ei (k) and the error shape one point before the current time ei (k) - ei (k-1 ) is calculated as the weighted sum of

ε1(k)=に+・ei(k)  +Kp・I:ei(
k)−ei(k−1))(i −1〜n)・・・〔2) 即ち、この(2)式は、偏差信号εi (k)に関して
いわゆるPI制御を行うことを示しており、これによっ
て形状検出時間は長くなるが、残留偏差は除かれて検出
誤差に伴う誤動作を防止することができる。
ε1(k)=to+・ei(k) +Kp・I:ei(
k)-ei(k-1))(i-1~n)...[2) In other words, this equation (2) indicates that so-called PI control is performed regarding the deviation signal εi (k), Although this lengthens the shape detection time, residual deviations are removed and malfunctions due to detection errors can be prevented.

また、各アクチュエータ11〜13゛の操作量変更に対
する板厚変化量と予め設定された各アクチュエータ11
〜13の操作量変更時の目標板厚変化量との差は、下式
(3)により求められる。
In addition, the amount of plate thickness change corresponding to the change in the operation amount of each actuator 11 to 13'' and the preset value of each actuator 11
The difference from the target plate thickness change amount at the time of changing the operation amount of ~13 is determined by the following formula (3).

εn++(k)=L++’(k)−f+m”(k)・・
・(3)そして、この場合、総合評価関数Jは下式(4
)式の通りになる。
εn++(k)=L++'(k)-f+m"(k)...
・(3) In this case, the comprehensive evaluation function J is calculated by the following formula (4
) is as follows.

、J−Σ ei (k) ”・匈12      ・・
・(4)ただし、fio(k) (i = 1〜n)は
板形状検出器6を構成するi番目の形状センサ要素によ
る時点にでの測定板伸び値、fi”(k) (i = 
l〜n )は上記i番目の形状センサ要素に対する時点
kにおける目標板伸び値、f7や+ 。(k)は各アク
チュエータ11〜13の操作量変更に対する板厚変化量
、f、。11k)は各アクチュエータ11〜13の操作
量変更時の目標板厚変化量、wi(i= 1〜n −1
−1)は偏差ε1(k)に対する重み係数、K、、に、
は、それぞれ、現時点の誤差形状ei(k) 、および
、現時点よりも1時点前の誤差形状の差ei (k) 
−ei (k−1)に対する重み係数である。
, J−Σ ei (k)”・匈12 ・・
-(4) However, fio(k) (i = 1 to n) is the plate elongation value measured at the time by the i-th shape sensor element constituting the plate shape detector 6, fi''(k) (i =
l to n) are the target plate elongation values at time k for the i-th shape sensor element, f7 and +. (k) is the amount of plate thickness change, f, with respect to the change in the operation amount of each actuator 11 to 13. 11k) is the target plate thickness change amount when changing the operation amount of each actuator 11 to 13, wi (i = 1 to n −1
-1) is the weighting coefficient for the deviation ε1(k), K, ,
are the difference between the current error shape ei (k) and the error shape one point before the current time ei (k), respectively.
-ei is a weighting factor for (k-1).

このような評価関数Jを導入するとともに、各アクチュ
エータ11〜13の操作量変更に伴う圧延材1の板形状
および板厚の影響係数式を、本実施例では、下式(5)
のように作成する。
In addition to introducing such an evaluation function J, in this example, the influence coefficient formula of the plate shape and plate thickness of the rolled material 1 due to the change in the operation amount of each actuator 11 to 13 is expressed by the following formula (5).
Create it like this.

(i−1〜n+1)   ・・・(5)ただし、Δxj
(k)(j −1〜m;本実施例ではm−8)はここで
求めるべき各アクチュエータ11〜13の現時点kにお
ける操作量の変更量、Δxj(k−/)(l−1〜M)
は各アクチュエータ11〜13の現時点により1時点前
における操作量の変更量、K。
(i-1 to n+1) ... (5) However, Δxj
(k) (j -1 to m; m-8 in this embodiment) is the amount of change in the operation amount of each actuator 11 to 13 at the current moment k to be determined here, Δxj (k-/) (l-1 to M )
is the amount of change in the operation amount of each actuator 11 to 13 at the current point in time, K.

は前記Δxj(k−1”)に対する予測ゲイン、Δfi
(k”)(i−1〜n)は各アクチュエータ11〜13
の操作量をΔxj (k)だけ変更した場合に1番目の
形状センサ要素にて検出される形状変化予測量、Δf7
゜1(k゛)は各アクチュエータ11〜13の操作量を
Δxj (k)だけ変更した場合に板厚計8にて検出さ
れる板厚変化予測量、αji(j=1〜m、i=1〜n
+1)はΔxj (k)のΔfi(k’)への影響係数
である。
is the prediction gain for the above Δxj(k-1''), Δfi
(k”) (i-1 to n) are each actuator 11 to 13
The predicted shape change amount detected by the first shape sensor element when the operation amount of is changed by Δxj (k), Δf7
゜1(k゛) is the predicted amount of plate thickness change detected by the plate thickness gauge 8 when the operation amount of each actuator 11 to 13 is changed by Δxj (k), αji(j=1 to m, i= 1~n
+1) is the influence coefficient of Δxj (k) on Δfi(k').

このように、本実施例では、各アクチュエータ11〜1
3における過去の出力データΔxj(k−1)を重みに
、付きの級数和として従前の影響係数式に組み込むこと
により、検出時間遅れに伴う形状変化をあらかじめ予測
しており、この点に本願発明の最大の特徴がある。
In this way, in this embodiment, each actuator 11 to 1
By incorporating the past output data Δxj (k-1) in 3 as a weight into the conventional influence coefficient equation as a series sum, the shape change due to the detection time delay is predicted in advance, and the present invention is advantageous in this respect. It has the biggest feature.

尚、過去のデータをいくつまで考慮するか、即ち、(5
)式におけるMをいくらにするかについては、検出時間
の遅れを八T、制御周期をΔtとすれば、M−ΔT/Δ
を程度あれば十分であると考えられ、本実施例では、M
=3とした。
Furthermore, how much past data should be considered, that is, (5
), if the detection time delay is 8T and the control period is Δt, then M - ΔT/Δ
It is considered that it is sufficient if M
= 3.

また、Δxj(k−1>  に対する予測ゲインに、は
、検出形状の遅れを表わすパラメータとなっており、形
状検出器における時間遅れに対して適宜選定すればよく
、本実施例では、KI=xz=L=1.0としている。
In addition, the prediction gain for Δxj(k-1>) is a parameter representing the delay of the detected shape, and may be selected as appropriate for the time delay in the shape detector. In this example, KI=xz =L=1.0.

そして、(2)〜(4)式に、 fi’(k) −fi”(k)−Δf i (k)(i
−1〜n+1)   ・・・(6)を代入し、板厚、板
形状の総合評価関数Jが時々刻々最小となるように、板
形状制御中に板形状検出器6により時々刻々検出される
圧延材1の板形状検出値fi’(k)、 fio(k−
1) (i =1〜n)に基づいて、次のアルゴリズム
により、各操作量変更量Δxj(k)(j−1〜m)を
算出し、各アクチュエータ11〜13を操作する。
Then, in equations (2) to (4), fi'(k) −fi”(k)−Δf i (k)(i
−1 to n+1) ... (6) is substituted, and the plate shape detector 6 detects every moment during the plate shape control so that the overall evaluation function J of the plate thickness and plate shape becomes the minimum every moment. Detected plate shape values fi'(k), fio(k-
1) Based on (i = 1 to n), each operation amount change amount Δxj (k) (j-1 to m) is calculated by the following algorithm, and each actuator 11 to 13 is operated.

今、偏差信号ε1(k)(i−1〜n+1)を、ε1(
k)−に+・ei(k)+Kp・(ei(k)−ei(
k−1))ei(k)−fi’(k)  fi”(k)
ei(k−1)=fi0(k−1)−fi”(k−1)
 −(7)(i −1〜n) ε□I(k) = 。
Now, the deviation signal ε1(k) (i-1 to n+1) is expressed as ε1(
k) − to +・ei(k)+Kp・(ei(k)−ei(
k-1)) ei(k)-fi'(k) fi''(k)
ei(k-1)=fi0(k-1)-fi"(k-1)
−(7)(i −1~n) ε□I(k) = .

とし、各アクチュエータ11〜13をΔxj (k)だ
け動かすと、総合評価関数Jは、 ・・・(8) と表わされる。この総合評価関数Jを最小化するために
は、 でなければならない。即ち、(8)、 (9)式より、
・・・00) (ただし、s=1〜m)となる。そして、この00)式
をΔxj (k)について解くことにより、板厚、板形
状についての総合評価関数Jを最小化するための各アク
チュエータ11〜13の操作量の変更量が得られる。
When each actuator 11 to 13 is moved by Δxj (k), the comprehensive evaluation function J is expressed as (8). In order to minimize this comprehensive evaluation function J, it must be as follows. That is, from equations (8) and (9),
...00) (However, s=1 to m). By solving this equation 00) for Δxj (k), the amount of change in the operation amount of each actuator 11 to 13 for minimizing the comprehensive evaluation function J regarding the plate thickness and plate shape can be obtained.

ところで、上記00)式を別の見方で表現すれば、従来
、予測制御を行なわなかった場合には、前記(7)式に
おける操作は別として、測定値fi0(k)をそのまま
形状制御のためのパラメータとして用いていたのに対し
て、本実施例における予測制御を行う場合には、その測
定値fi0(k)をそのまま用いる代わりに、次式00
)式で定義される予測形状fi’(k)なる値を用いて
いることと同じことを意味する。
By the way, to express the above equation 00) from another perspective, when predictive control was not performed in the past, apart from the operation in equation (7) above, the measured value fi0(k) was used as it was for shape control. However, when performing predictive control in this embodiment, instead of using the measured value fi0(k) as it is, the following equation 00
) This means the same thing as using the value of the predicted shape fi'(k) defined by the equation.

fi’ (k) −fio(k)+Σ αji°(ΣK
k’Δxj(k−ZN・・00) 即ち、本実施例では、逐次得られる現時点kにおける測
定値fi’(k)に、過去の出力データであるΔxDk
−/)の重みに、付き級数和を加えて予測形状fi’(
k)を構成し、このfi’(k)に基いて形状制御を行
っているとも言えるのである。
fi' (k) −fio(k)+Σ αji°(ΣK
k'Δxj (k-ZN...00) In other words, in this embodiment, the past output data ΔxDk is added to the measured value fi'(k) at the current point k that is sequentially obtained.
−/), add the sum of the attached series to the weight of the predicted shape fi'(
k), and it can be said that shape control is performed based on this fi'(k).

尚、上述したアルゴリズムによれば、圧延初期等の形状
不良状態のはなはだしいときには、制御目標信号レベル
が過大となり、応答特性による制約から目標信号に追従
できないアクチュエータ11〜13もでてくる。従って
、本実施例では、次のステップ■〜■を板形状制御装置
10にて実施することで、目標信号に追従できないアク
チュエータ11〜13の発生を防止している。
According to the above-mentioned algorithm, when the shape is extremely defective, such as at the beginning of rolling, the control target signal level becomes excessive, and some of the actuators 11 to 13 are unable to follow the target signal due to constraints due to response characteristics. Therefore, in this embodiment, the plate shape control device 10 performs the following steps (1) to (2) to prevent the actuators 11 to 13 from being unable to follow the target signal.

■圧延条件(圧延速度、圧延荷重)により予め定義した
関数に基づき、各アクチュエータ11〜13の移動可能
速度を計算する。
(2) Calculate the movable speed of each actuator 11 to 13 based on a function defined in advance according to rolling conditions (rolling speed, rolling load).

■各アクチュエータ現在位置から、位置限界より制約さ
れる移動可能限界値を計算する。
■Calculate the movable limit value constrained by the position limit from each actuator's current position.

■移動可能速度から求まる各アクチュエータ11〜13
の1制御周期当たりの移動可能限界値を計算する。
■Each actuator 11 to 13 determined from the movable speed
The movable limit value per control cycle is calculated.

■ステップ■、■で求めた移動可能限界値の小さい方を
最終的な移動可能限界値として設定する。
■Set the smaller of the movable limit values obtained in steps (■) and (2) as the final movable limit value.

■板形状検出器6からの検出形状と目標形状との誤差形
状に基づき、総合評価関数Jを最小にする各アクチュエ
ータ11〜13の移動量目標値を前述のごとく計算する
(2) Based on the error shape between the detected shape from the plate shape detector 6 and the target shape, the movement amount target value of each actuator 11 to 13 that minimizes the comprehensive evaluation function J is calculated as described above.

■前ステップ■で計算した目標値がステップ■で求めた
移動可能限界値を超えているアクチュエータが存在する
場合には、当該アクチュエータの移動量目標値を移動可
能限界値に置き換えるとともに、当該アクチュエータが
移動可能限界値まで移動したときの形状変化量を計算し
、現時点の誤差形状から差し引き、当該アクチュエータ
を使用可能アクチュエータから除外して、再度ステップ
■の総合評価関数Jを最小化する残りのアクチュエータ
の移動目標値を求め、移動限界のチェンクを行う。これ
を、移動限界の制約にかかるアクチュエータが無(なる
か、または、すべてのアクチュエータ11〜13が使用
可能アクチュエータで無くなるまで繰り返す。
■If there is an actuator for which the target value calculated in the previous step ■ exceeds the movable limit value determined in step Calculate the amount of shape change when moving to the movable limit value, subtract it from the current error shape, exclude the relevant actuator from the usable actuators, and minimize the overall evaluation function J in step ① of the remaining actuators. Find the movement target value and change the movement limit. This process is repeated until there are no actuators subject to the movement limit restriction, or until all actuators 11 to 13 are available.

■制御ゲインを乗算して最終的な各アクチュエータ11
〜13の移動目標値を計算する。
■Multiply the control gain to obtain the final value for each actuator 11
Calculate the moving target value of ~13.

本実施例では、このようにして得られた各アクチュエー
タ11〜13の操作量をΔxj(k)(j =1〜8)
に基いて、前述したロール圧下位置移動手段11゜バッ
クアップロール押し込み手段12.テーパロール移動手
段13による圧延材1の板形状の制御が行なわれるので
ある。
In this example, the operation amount of each actuator 11 to 13 obtained in this way is expressed as Δxj(k) (j = 1 to 8)
Based on the above-mentioned roll rolling position moving means 11.backup roll pushing means 12. The plate shape of the rolled material 1 is controlled by the tapered roll moving means 13.

次に、本発明の方法を実際の圧延材の形状制御に適用し
て得られた実験結果と、従来の方法で形状制御した場合
の実験結果を、それぞれ第3図及び第4図に示す。
Next, FIGS. 3 and 4 show experimental results obtained by applying the method of the present invention to shape control of an actual rolled material, and experimental results obtained when shape control was performed using a conventional method, respectively.

ここでは材質が、銅合金(RFC)から成る薄板を板幅
630mm、板厚0 、5 mmの条件下で実験を行っ
た。
Here, experiments were conducted using thin plates made of copper alloy (RFC) with a width of 630 mm and thicknesses of 0 and 5 mm.

尚、同図において、1.1−unitは、長さ1mの圧
延材の圧延方向の伸びが基準値よりも10−5mだけ長
いことを示している。また、(Ds L)はドライブ側
のラテラル方向、 (Ws L)はワーク側のラテラル
方向、(Cr#1〜#4)はそれぞれクラウン位置、 
(Ws T)はワーク側のチルト(傾斜圧下)方向にお
ける各制御量を示しており、それぞれ横軸は時間を表わ
し、その1マスは1分間を示す。
In addition, in the figure, 1.1-unit indicates that the elongation in the rolling direction of a rolled material having a length of 1 m is longer than the reference value by 10-5 m. In addition, (Ds L) is the lateral direction on the drive side, (Ws L) is the lateral direction on the work side, (Cr#1~#4) is the crown position, respectively.
(Ws T) indicates each control amount in the tilt (tilt downward) direction on the work side, and the horizontal axis indicates time, and one square indicates one minute.

これらの図に示すように、本実施例によれば、いわゆる
ハンチングが生ずることなく、非常に短い時間(約1〜
2分程度)で極めて高い収束性能が得られていることが
よくわかる。
As shown in these figures, according to this example, so-called hunting does not occur and the time is very short (approximately 1 to 10 minutes).
It is clear that extremely high convergence performance is obtained in about 2 minutes).

次に、本実施例において採用した形状予測が理論的にも
妥当なものであることを、以下に最も簡単にモデル化さ
れた問題について実際に解析することにより、説明する
ことにする。
Next, the theoretical validity of the shape prediction adopted in this example will be explained by actually analyzing the simplest modeled problem.

即ち、ここではi=1、j=1として当該圧延機Qこお
げろ形状制御の問題を、第5図に示す如く、仮想線材の
1次元問題として仮定して説明を進める。
That is, here, the explanation will proceed assuming that i = 1 and j = 1, and the problem of controlling the shape of the rolling mill Q is assumed to be a one-dimensional problem of a virtual wire rod, as shown in FIG.

同図において、21はワークロール、22は仮想線材、
23は該線材22の形状を検出する形状検出器を示し、
該検出器23で検出された現時点kにおける測定値f 
(k)に基いて形状制御装置24内で制御量Δx(k)
が算出され、その値に応して線材23の形状制御が実行
されるものとする。また、現時点kにおけるロール21
直下での実形状をfR(k)  とする。
In the figure, 21 is a work roll, 22 is a virtual wire,
23 indicates a shape detector that detects the shape of the wire 22;
Measured value f at the current moment k detected by the detector 23
(k), the control amount Δx(k) is set within the shape control device 24.
is calculated, and the shape control of the wire rod 23 is performed according to the calculated value. Also, roll 21 at the current moment k
Let the actual shape immediately below be fR(k).

以上のように仮定した場合、経時的に進行する制御系を
表に示すと次の(表−1)のようになる。
Under the above assumptions, the control system that progresses over time is shown in a table as shown in Table 1 below.

(次     葉) 表−1 (一般にfR(k) −fR(k −1) −gf(k
−1))但し、gは制御ゲイン、αはΔx (k)だけ
制御量を変更した場合の影響係数を示す。
(Next leaf) Table 1 (Generally fR(k) -fR(k -1) -gf(k
-1)) where g is the control gain and α is the influence coefficient when the control amount is changed by Δx (k).

そして、形状制御装置24内において測定値f (k)
を得るのに、逐次ΔTだけの時間がかかるとして、その
時間遅れ八Tが制御周期Δtの2倍程度であると仮定す
ると、 f (k)−げ(k−2)(k≧4) ・・・(11)
の関係が成り立ち、更に当初の3時点k =1.2.3
においては、f(1)−f(2)−f(3)=C(定数
)が検出されていることになる。
Then, in the shape control device 24, the measured value f (k)
Assuming that it takes ΔT to obtain ΔT sequentially, and assuming that the time delay 8T is about twice the control period Δt, then f (k)−ge(k−2)(k≧4) ・...(11)
The following relationship holds true, and the initial three time points k = 1.2.3
In this case, f(1)-f(2)-f(3)=C (constant) is detected.

ここで、実形状の初期値fR(1) −f(1)として
、先ず、本実施例のような予測制御を行なわなかった場
合について、fR(k)を逐次計算すれば、次のように
なる。ただし、k≧4については、上記(11)式を用
いている。
Here, if the initial value fR(1) -f(1) of the actual shape is used, and fR(k) is sequentially calculated in the case where predictive control as in this embodiment is not performed, the following is obtained. Become. However, for k≧4, the above equation (11) is used.

r”(1) −fR(1) =C fR(2) =fR(1)  gf(1)−(1−g)
CfR(3) −fR(2)−gf(2) = (1−
g)C−gc−(1−2g)CfR(4) −fR(3
) −gf (3) = (1,−2g) −gC= 
(1−3g)CfR(5) −fR(4)−gf (4
) −(1−3g)C−gfR(2)= (1−4g+
g2)CrR(6) =fR(5) −gf (5) 
−(1−4g+g2)C−gfR(3)−(1−5g+
3g2)C fR(7) −fR(6)−gf(6) = (1−5
g+3g”)C−gfR(4)= <1−6g+6g”
)C fR(8) =fR(7)−gf(7) −(1−6g
+6g”)C−gfR(5)−(1−7g+10g2−
g’)C r”(9)=f”(8)  gf(8)−(1−7g4
40g2−g’)C−gf!(6)−(1−8g+15
g2−4g3)C rR(10) = fR(9) −gf (9) = 
(1−8g+15g2−4g’) C=gfR(7)=
 (1−9g+21g”−10g3)Cそして、上記の
ように算出されたfR(k)を例えばg=0.5 、C
=1.0としてプロットすれば、第6図に示すようにな
り、予測制御を行なわない場合にハンチングが発生して
いるのがよくわかる。
r”(1) −fR(1) =C fR(2) =fR(1) gf(1)−(1−g)
CfR(3) −fR(2)−gf(2) = (1−
g) C-gc-(1-2g)CfR(4) -fR(3
) −gf (3) = (1, −2g) −gC=
(1-3g)CfR(5) -fR(4)-gf (4
) −(1-3g)C-gfR(2)=(1-4g+
g2) CrR(6) = fR(5) −gf (5)
-(1-4g+g2)C-gfR(3)-(1-5g+
3g2) C fR(7) -fR(6)-gf(6) = (1-5
g+3g”)C-gfR(4)=<1-6g+6g”
)C fR(8) =fR(7)-gf(7)-(1-6g
+6g”)C-gfR(5)-(1-7g+10g2-
g')C r"(9)=f"(8) gf(8)-(1-7g4
40g2-g')C-gf! (6)-(1-8g+15
g2-4g3)C rR(10) = fR(9) -gf (9) =
(1-8g+15g2-4g') C=gfR(7)=
(1-9g+21g''-10g3)C Then, calculate fR(k) as above, for example, g=0.5,C
If plotted with =1.0, the result will be as shown in FIG. 6, and it can be clearly seen that hunting occurs when predictive control is not performed.

次に、上記と同し問題を本実施例に係る予測制御を用い
た場合にどのようになるかについて説明する。
Next, a description will be given of how the same problem as above occurs when the predictive control according to this embodiment is used.

今、現時点kにおける予測形状をf”(k)とおき、こ
れを実測値f (k)で表わすと、前記θ0)°式より
次の02)式のようになる。ただし、重みに、について
は全て1.0としている。
Now, let f''(k) be the predicted shape at the current moment k, and express it by the actual measurement value f(k). From the above equation θ0)°, the following equation 02) is obtained. However, regarding the weight, are all set to 1.0.

f’(k) =f(k)+αΔx(k−1) + (X
Δx(k−2)−02)また、従来、実測値f (k)
をそのまま用いて形状制御していた代わりに、この予測
形状f’(k)を用いるのであるから、 αΔx(k) −−gf’ (k)  ・・・(13)
が成り立ち、この02) (13)式から次式圓弐が得
られる。
f'(k) = f(k)+αΔx(k-1) + (X
Δx(k-2)-02) Also, conventionally, the actual measured value f (k)
Instead of using the shape as it is to control the shape, this predicted shape f'(k) is used, so αΔx(k) −−gf' (k) ...(13)
holds true, and from this equation 02) (13), the following equation is obtained.

f’ (k) =f (k) −gf’ (k−1) 
−gf’ (k−2)  ・・・θ滲また、この場合、
先述と同様に経時的に進行する制御系を表にすると次の
(表−2)のようになる、 表−2 −fR(k−1)−gf’(k−1))fR(k) =
f’(1) −f(1)=C(定を逐次計算すれば、以
下に示 (一般にfR(k) そして、初期値 数)として、fR(k) すようになる。
f' (k) = f (k) - gf' (k-1)
-gf' (k-2) ...θ leakage Also, in this case,
Similarly to the above, if we tabulate the control system that progresses over time, it will look like the following (Table 2): Table 2 -fR(k-1)-gf'(k-1))fR(k) =
f'(1) -f(1)=C (If the constant is calculated sequentially, fR(k) will be obtained as shown below (generally fR(k) and the initial value number).

fR(1) −f’ (1) =C fR(2) =fR(1) −gf’ (1) −(1
fR(3) −fR(2) −gf’ (2) = (
1fR(4) −fR(3) −gf’ (3) = 
(1g)C g)C−g(f(2)−gf’ (1))g)C−g(
1−g)C g) 2G g) 2C−g (f (3) −gf ’ (2)g
)2C−g(1−g)2G g) 3C gf’ (1)) fR(5) −fR(4) −gf’ (4) −(1
−g)3C−g(f(4)−gf”(3) −gf ’
 (2))−(1−g>3C−g(1−g)3C −(1−g) ’C 従って、以下、f R(k) =(1−g)”・Cとな
ることは明らかであり、ここでg =0.5を代入する
と、fR(k)はヘキ級数的に収束していくことになる
fR(1) -f' (1) =C fR(2) =fR(1) -gf' (1) -(1
fR(3) −fR(2) −gf' (2) = (
1fR(4) -fR(3) -gf' (3) =
(1g)C g)C-g(f(2)-gf' (1))g)C-g(
1-g)C g) 2G g) 2C-g (f (3) -gf' (2)g
)2C-g(1-g)2G g) 3C gf' (1)) fR(5) -fR(4) -gf' (4) -(1
-g)3C-g(f(4)-gf"(3)-gf'
(2)) - (1-g>3C-g(1-g)3C -(1-g) 'C Therefore, it is clear that f R(k) = (1-g)''・C below. If g = 0.5 is substituted here, fR(k) will converge in a hexaseries manner.

ところで、このことは、前記した(II)04)式及び
制御関係式fR(k) −f R(k−1) −gf’
(k−1)  ・・・05)とからも容易に導くことが
できる。
By the way, this means that the above-mentioned equation (II)04) and the control relational equation fR(k) -f R(k-1) -gf'
(k-1) ...05).

即ち、上記05)式よりgf’ (k−1) = fR
(k−1)−f”(k)となり、これを04式に代入す
ると、 f’(k) =f(k)−gf’(k−1)−gf’(
k−2)−f(k)−(fR(k−1)−fR(k) 
1−(fR(k−2)−fR(k−1) )−f(k)
+(fR(k)−fR(k−2))となる。
That is, from the above formula 05), gf' (k-1) = fR
(k-1)-f''(k), and by substituting this into formula 04, f'(k) = f(k)-gf'(k-1)-gf'(
k-2)-f(k)-(fR(k-1)-fR(k)
1-(fR(k-2)-fR(k-1))-f(k)
+(fR(k)-fR(k-2)).

ここで、前記(11)式f(k) −fR(k−2)よ
り、f’(k)  =fR(k−2)+  (fR(k
)−fR(k−2)1=fR(k) となり、結局、予測形状f”(k)と実形状fR(k)
とが一致することになる。
Here, from the formula (11) f(k) −fR(k-2), f'(k) = fR(k-2)+ (fR(k
)-fR(k-2)1=fR(k), and in the end, the predicted shape f''(k) and the actual shape fR(k)
will match.

従って、このf’(k) −fR(k)をもとの05)
式に代入すると、 f R(k) = fR(k−1) −gfR(k−1
)−(1−g)・fR(k−1) となり、fR(k) =(1−g) l′−’・f”(
1)が得られる。
Therefore, this f'(k) −fR(k) is the original 05)
Substituting into the equation, f R(k) = fR(k-1) - gfR(k-1
)−(1−g)・fR(k−1), and fR(k) =(1−g) l′−′・f”(
1) is obtained.

以上の説明からもわかるように、本実施例で採用した予
測制御のための式00102)式を用いる限り、結局、
ワークロール直下で得られているであろうところの圧延
材の現時点における実形状を、測定値を得るためのタイ
ムロスに関係なく、リアルタイムで得られていることと
同じことになり、制御ゲインを大きくしてもハンチング
が生じることなく、非常に収束性能に優れた形状制御が
行われることになるのである。
As can be seen from the above explanation, as long as the formula 00102) for predictive control adopted in this embodiment is used, eventually,
This means that the current actual shape of the rolled material, which would have been obtained directly under the work roll, is obtained in real time, regardless of the time loss to obtain the measured value, and the control gain can be increased. This results in shape control with extremely excellent convergence performance without causing any hunting.

以上、本発明に係る一実施例につき説明したが、本発明
はこれに限られるものではない。
Although one embodiment of the present invention has been described above, the present invention is not limited to this.

例えば、前記00)式の代わりに、予測形状fi’(k
)を次の00式及び0′7)式のように定式化してもよ
い。
For example, instead of the above equation 00), the predicted shape fi'(k
) may be formulated as the following equations 00 and 0'7).

+βi・ΔV        ・・・06)ただし、八
■は制御周期間で生じた圧延速度の変化量、βiはi番
目の形状センサ要素での前記ΔVによる形状への影響係
数である。
+βi·ΔV...06) However, 8) is the amount of change in rolling speed that occurred during the control cycle, and βi is the coefficient of influence on the shape by the ΔV at the i-th shape sensor element.

+γi・ΔP        ・・・07)ただし、Δ
Pは制御周期間で生じた板厚変化、圧延速度の変化によ
る荷重変化量、γiはi番目の形状センサ要素での前記
ΔPによる形状への影響係数である。
+γi・ΔP ・・・07) However, Δ
P is the amount of load change due to changes in plate thickness and rolling speed that occur during the control cycle, and γi is the influence coefficient on the shape of the i-th shape sensor element due to ΔP.

このように予測形状fi’(k)を定式化することによ
り、圧延速度及び板厚変化、圧延速度の変化による荷重
の変化に伴う形状の乱れを測定前に予測形状として把握
することができ、圧延速度変化及び荷重変化による板形
状の乱れが未然に防止される。
By formulating the predicted shape fi'(k) in this way, it is possible to grasp the shape disturbance due to changes in rolling speed and plate thickness, and changes in load due to changes in rolling speed as a predicted shape before measurement. Disturbances in the plate shape due to changes in rolling speed and load are prevented.

また、上記実施例では、(2)式に示すように、ε1(
k)を現時点の誤差形状と現時点よりも1時点前の誤差
形状の差との重み付き合計値として与えたが、下式03
)に示すように、現在並びに過去の誤差形状の重み付き
合計値で置き換えてもよい。
Furthermore, in the above embodiment, as shown in equation (2), ε1(
k) was given as the weighted sum of the difference between the current error shape and the error shape one point before the current time, but the following equation 03
), it may be replaced with a weighted sum of the current and past error shapes.

e 1(k) = Ko ・ei(k)+K 、−ei
(k−1)+ K2 ・ei(k−2)十・・・・・・
 (i−1〜n) ・・・08)この場合には、重み係
数を適当に設定することにより、いわゆるPID11制
御を行うことができ、よりクリアな偏差信号εi (k
)を得ることができる反面、形状検出のための計算時間
はより長くなることになるので、前記(5)弐若しくは
00)”式におけるMの値もこれに応じてより大きくと
ることが好ましい。
e1(k) = Ko ・ei(k)+K, -ei
(k-1) + K2 ・ei(k-2) ten...
(i-1 to n) ...08) In this case, by appropriately setting the weighting coefficient, so-called PID11 control can be performed, and a clearer deviation signal εi (k
) can be obtained, however, the calculation time for shape detection becomes longer, so it is preferable to set the value of M in the above-mentioned formula (5)2 or 00) to a larger value accordingly.

なお、上記実施例では、20段圧延機に本発明の方法を
適用した場合について説明したが、本発明の方法はこれ
に限定されるものではない。
In addition, although the said Example demonstrated the case where the method of this invention was applied to a 20-high rolling mill, the method of this invention is not limited to this.

(発明の効果) 以上説明したように、請求項(1)記載の発明によれば
、板形状検出器からの現時点における検出結果と各アク
チュエータの過去の制御量とから現時点における圧延材
の予測形状を算出し、その予測形状に基いて総合評価関
数の値を最小にする各アクチュエータの操作量を演算し
、この操作量に基いて各アクチュエータを作動させ、圧
延材の形状を逐次制御するので、形状検出値を得るまで
の時間が制御周期を超えるほど長い場合においても、い
わゆるハンチングが生ずることなく、しかも圧延材の形
状収束性が極めて高い形状制御を行うことができる。
(Effects of the Invention) As explained above, according to the invention set forth in claim (1), the predicted shape of the rolled material at the present time is based on the current detection result from the plate shape detector and the past control amount of each actuator. is calculated, and based on the predicted shape, the operation amount of each actuator that minimizes the value of the comprehensive evaluation function is calculated, and each actuator is operated based on this operation amount to sequentially control the shape of the rolled material. Even when the time required to obtain a detected shape value is so long as to exceed the control cycle, it is possible to control the shape of the rolled material with extremely high shape convergence without causing so-called hunting.

また、請求項(2)記載の発明によれば、前記した圧延
材の予測形状を構成する際に、制御周期間で生じた圧延
速度の変化量又は板厚変化、圧延速度の変化による荷重
変化量をも考慮するので、圧延速度若しくは荷重変化に
伴う板形状の乱れを未然に防止することができる。
Further, according to the invention as set forth in claim (2), when forming the predicted shape of the rolled material described above, the amount of change in rolling speed or the change in plate thickness that occurs during the control cycle, and the change in load due to the change in rolling speed. Since the amount is also taken into account, disturbances in the plate shape due to changes in rolling speed or load can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図は本発明の一実施例としての多段圧延
機による圧延材形状制御方法を示すもので、第1図は本
発明の方法が適用される装置を示す全体構成図、第2図
は本発明の方法が適用される多段圧延機の正面図、第3
図および第4図はそれぞれ本実施例の予測制御を行った
場合と行わなかった場合の実験結果を表すグラフ、第5
図は最も簡単にモデル化した場合の圧延材の構成図、第
6図はハンチングの様子を示すグラフである。 1・・・圧延材、2・・・ワークロール、3・・・第1
中間ロール、4・・・第2中間ロール、5・・・バック
アップロール、6・・・板形状検出器、7,8・・・板
厚計、9・・・板厚制御装置、10・・・板形状制御装
置、11・・・ロール圧下位置移動手段(板厚制御用ア
クチュエータ)、12・・・バックアップロール押し込
み手段(板形状制御用アクチュエータ)、13・・・テ
ーバロール移動手段(板形状制御用アクチュエータ)。 ん (LS 0メ ψし く5
1 to 6 show a method for controlling the shape of a rolled material using a multi-high rolling mill as an embodiment of the present invention. Figure 2 is a front view of a multi-high rolling mill to which the method of the present invention is applied;
5 and 4 are graphs showing the experimental results when the predictive control of this embodiment was performed and when it was not performed, respectively.
The figure shows the configuration of the rolled material in the simplest model, and FIG. 6 is a graph showing the state of hunting. 1... Rolled material, 2... Work roll, 3... First
Intermediate roll, 4... Second intermediate roll, 5... Backup roll, 6... Plate shape detector, 7, 8... Plate thickness gauge, 9... Plate thickness control device, 10...・Plate shape control device, 11... Roll reduction position moving means (plate thickness control actuator), 12... Backup roll pushing means (plate shape control actuator), 13... Taber roll moving means (plate shape control actuator). Hmm (LS 0 me ψ 5

Claims (2)

【特許請求の範囲】[Claims] (1)多段圧延機の出側に設置した板形状検出器により
検出された圧延材の板形状と予め設定された目標板形状
との差、および、各アクチュエータの操作量変更に対す
る圧延材の板厚変化量と予め設定された前記各アクチュ
エータの操作量変更時の目標板厚変化量との差を用いて
、圧延材の出側板形状および板厚を評価する総合評価関
数が予め定義・設定され、 圧延材の板形状制御中には、前記板形状検出器により圧
延材の板形状を常時検出し、 前記板形状検出器からの現時点における検出結果と各ア
クチュエータの過去の制御量とから現時点における圧延
材の予測形状を算出し、その圧延材の予測形状を現時点
における板形状の検出値として採用して前記総合評価関
数の値を最小にする各アクチュエータの操作量を演算し
、 この演算された操作量に基いて各アクチュエータを作動
させ、圧延材の形状を逐次制御することを特徴とする多
段圧延機における圧延材の形状制御方法。
(1) The difference between the plate shape of the rolled material detected by the plate shape detector installed on the exit side of the multi-high rolling mill and the preset target plate shape, and the change in the operation amount of each actuator. A comprehensive evaluation function is defined and set in advance to evaluate the outlet side plate shape and plate thickness of the rolled material using the difference between the thickness change amount and the target plate thickness change amount when changing the operation amount of each actuator set in advance. , During plate shape control of the rolled material, the plate shape of the rolled material is constantly detected by the plate shape detector, and the current detection result from the plate shape detector and the past control amount of each actuator is used to determine the current value of the rolled material. The predicted shape of the rolled material is calculated, and the predicted shape of the rolled material is used as the detected value of the current plate shape to calculate the operation amount of each actuator that minimizes the value of the comprehensive evaluation function. 1. A method for controlling the shape of a rolled material in a multi-high rolling mill, comprising operating each actuator based on an operation amount to sequentially control the shape of the rolled material.
(2)多段圧延機の出側に設置した板形状検出器により
検出された圧延材の板形状と予め設定された目標板形状
との差、および、各アクチュエータの操作量変更に対す
る圧延材の板厚変化量と予め設定された前記各アクチュ
エータの操作量変更時の目標板厚変化量との差を用いて
、圧延材の出側板形状および板厚を評価する総合評価関
数が予め定義・設定され、 圧延材の板形状制御中には、前記板形状検出器により圧
延材の板形状を常時検出し、 前記板形状検出器からの現時点における検出結果と各ア
クチュエータの過去の制御量、および、制御周期間で生
じた圧延速度の変化量又は制御周期間で生じた板厚変化
、圧延速度の変化による荷重変化量とから現時点におけ
る圧延材の予測形状を算出し、 その圧延材の予測形状を現時点における板形状の検出値
として採用して前記総合評価関数の値を最小にする各ア
クチュエータの操作量を演算し、 この演算された操作量に基いて各アクチュエータを作動
させ、圧延材の形状を逐次制御することを特徴とする多
段圧延機における圧延材の形状制御方法。
(2) The difference between the plate shape of the rolled material detected by the plate shape detector installed on the exit side of the multi-high rolling mill and the preset target plate shape, and the change in the operation amount of each actuator. A comprehensive evaluation function is defined and set in advance to evaluate the outlet side plate shape and plate thickness of the rolled material using the difference between the thickness change amount and the target plate thickness change amount when changing the operation amount of each actuator set in advance. , During plate shape control of the rolled material, the plate shape of the rolled material is constantly detected by the plate shape detector, and the current detection result from the plate shape detector, the past control amount of each actuator, and the control The predicted shape of the rolled material at the present moment is calculated from the amount of change in rolling speed that occurred during the rolling period, the change in plate thickness that occurred during the control cycle period, and the amount of load change due to the change in rolling speed. The operation amount of each actuator that minimizes the value of the comprehensive evaluation function is calculated by employing it as the detected value of the plate shape in A method for controlling the shape of a rolled material in a multi-high rolling mill.
JP2229636A 1990-08-30 1990-08-30 Shape control method of rolled material in multi-high rolling mill Expired - Fee Related JPH07102380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2229636A JPH07102380B2 (en) 1990-08-30 1990-08-30 Shape control method of rolled material in multi-high rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2229636A JPH07102380B2 (en) 1990-08-30 1990-08-30 Shape control method of rolled material in multi-high rolling mill

Publications (2)

Publication Number Publication Date
JPH04111910A true JPH04111910A (en) 1992-04-13
JPH07102380B2 JPH07102380B2 (en) 1995-11-08

Family

ID=16895303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2229636A Expired - Fee Related JPH07102380B2 (en) 1990-08-30 1990-08-30 Shape control method of rolled material in multi-high rolling mill

Country Status (1)

Country Link
JP (1) JPH07102380B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680784A (en) * 1994-03-11 1997-10-28 Kawasaki Steel Corporation Method of controlling form of strip in rolling mill
KR100514934B1 (en) * 2000-04-28 2005-09-15 주식회사 포스코 Advanced shape control method for edge part of cold strip using Sendzimir mill with the first intermediate roll
WO2006002784A1 (en) * 2004-07-06 2006-01-12 Sms Demag Ag Method and device for measuring and adjusting the evenness and/or tension of a stainless steel strip or stainless steel film during cold rolling in a 4-roll stand, particularly in a 20-roll sendzimir roll stand
JP2007144492A (en) * 2005-11-30 2007-06-14 Hitachi Ltd Device and method for controlling shape
CN110580518A (en) * 2018-06-07 2019-12-17 株式会社日立制作所 Monitoring data generation device and monitoring data generation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013362B1 (en) 2013-11-18 2015-12-18 Mermet NEW METALLIZED TEXTILES AND METHOD FOR THE PRODUCTION THEREOF

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221814A (en) * 1985-07-17 1987-01-30 Asahi Chem Ind Co Ltd Poly(p-phenylene terephthalamide) fiber and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221814A (en) * 1985-07-17 1987-01-30 Asahi Chem Ind Co Ltd Poly(p-phenylene terephthalamide) fiber and production thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680784A (en) * 1994-03-11 1997-10-28 Kawasaki Steel Corporation Method of controlling form of strip in rolling mill
KR100514934B1 (en) * 2000-04-28 2005-09-15 주식회사 포스코 Advanced shape control method for edge part of cold strip using Sendzimir mill with the first intermediate roll
WO2006002784A1 (en) * 2004-07-06 2006-01-12 Sms Demag Ag Method and device for measuring and adjusting the evenness and/or tension of a stainless steel strip or stainless steel film during cold rolling in a 4-roll stand, particularly in a 20-roll sendzimir roll stand
US7797974B2 (en) 2004-07-06 2010-09-21 Sms Siemag Aktiengesellschaft Method and device for measuring and adjusting the evenness and/or tension of a stainless steel strip or stainless steel film during cold rolling in a 4-roll stand, particularly in a 20-roll sendzimir roll stand
KR101138715B1 (en) * 2004-07-06 2012-04-24 에스엠에스 지마크 악티엔게젤샤프트 Method and device for measuring and adjusting the evenness and/or tension of a stainless steel strip or stainless steel film during cold rolling in a 4-roll stand, particularly in a 20-roll sendzimir roll stand
JP2007144492A (en) * 2005-11-30 2007-06-14 Hitachi Ltd Device and method for controlling shape
JP4516515B2 (en) * 2005-11-30 2010-08-04 株式会社日立製作所 Shape control apparatus and shape control method
CN110580518A (en) * 2018-06-07 2019-12-17 株式会社日立制作所 Monitoring data generation device and monitoring data generation method
CN110580518B (en) * 2018-06-07 2023-04-18 株式会社日立制作所 Monitoring data generation device and monitoring data generation method

Also Published As

Publication number Publication date
JPH07102380B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
JPH10192929A (en) Method and device for control of rolling mill
US5010756A (en) Method of and apparatus for controlling shape of rolled material on multi-high rolling mill
JPH04111910A (en) Method for controlling shape of rolled stock in multistage rolling mill
JP3384330B2 (en) Thickness control method in reverse rolling mill
KR100398765B1 (en) Method of controlling board thickness, calculating passing schedule, and board thickness controller for continuous rolling machine
JPH038843B2 (en)
KR0148612B1 (en) Reverse rolling control system of pair cross rolling mill
JP4208509B2 (en) Model learning device for rolling process
JP3067879B2 (en) Shape control method in strip rolling
JP3283431B2 (en) Head thickness control method for hot finishing tandem rolling mill
JP3016117B2 (en) Manufacturing method of tapered steel plate
KR100929015B1 (en) Prediction of rolling load by calibrating plasticity factor of rolled material
JPH03155403A (en) Method for controlling shape of rolled material by multiple rolling mill
KR100660215B1 (en) Apparatus for controlling speed of roll in continuous rolling mill
JP4078765B2 (en) Roll width control method and apparatus for rolled material in continuous hot rolling mill, and recording medium
JP2000190012A (en) Plate shape controlling method and equipment in cold rolling
JP2002346616A (en) Method for controlling sheet thickness
JPH05269516A (en) Method for controlling shape in rolling of thick plate
JP2950182B2 (en) Manufacturing method of tapered steel plate
JPH08332506A (en) Method for controlling thickness of taper plate
JP2651741B2 (en) Edge drop control method in strip rolling
JPH0857512A (en) Manufacture of tapered steel sheet
JP4140316B2 (en) Metal plate manufacturing method
JP2960011B2 (en) Method and apparatus for controlling thickness during acceleration and deceleration in rolling
JPH06304635A (en) Method for controlling plate thickness at bitten end part in plate rolling

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees