JPH03155403A - Method for controlling shape of rolled material by multiple rolling mill - Google Patents

Method for controlling shape of rolled material by multiple rolling mill

Info

Publication number
JPH03155403A
JPH03155403A JP1300860A JP30086089A JPH03155403A JP H03155403 A JPH03155403 A JP H03155403A JP 1300860 A JP1300860 A JP 1300860A JP 30086089 A JP30086089 A JP 30086089A JP H03155403 A JPH03155403 A JP H03155403A
Authority
JP
Japan
Prior art keywords
plate shape
shape
plate
rolled material
operation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1300860A
Other languages
Japanese (ja)
Other versions
JPH084824B2 (en
Inventor
Kazuo Nose
能勢 和夫
Toshimitsu Takahashi
俊充 高橋
Yasushi Maeda
恭志 前田
Hajime Tsubono
坪野 肇
Hiroyuki Yamamoto
博行 山本
Shiro Koike
史朗 小池
Masakazu Shimomura
下村 雅一
Soichi Kitagawa
北川 聡一
Yasumasa Fujisaki
藤崎 泰正
Tetsuya Wakebe
分部 哲也
Hiroyuki Katayama
裕之 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1300860A priority Critical patent/JPH084824B2/en
Publication of JPH03155403A publication Critical patent/JPH03155403A/en
Publication of JPH084824B2 publication Critical patent/JPH084824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To securely control a high-precision shape by evaluating a plate shape and a plate thickness on the outlet side regarding a specified synthetic evaluation function, requiring a manipulated variable of each actuator to minimize this synthetic evaluation function value and controlling each actuator simultaneously based on this manipulated variable. CONSTITUTION:The shape and thickness of the plate on the outlet side are evaluated synthetically by the synthetic evaluation function, the manipulated variable of each actuator 11 - 13 minimizing the value of this synthetic evaluation function is always required, each actuator 11 - 13 is controlled simultaneously based on the manipulated variable obtained to control the plate shape of the rolled material 1, therefore, the shape of the rolled material need not be identified and, besides, when the actuator 12 for controlling the plate shape is manipulated, the change of the rolling down position of the roll which is made by estimating the change of the plate thickness is prevented from causing a vicious circle such as generation of another change of shape and drastically precision shape can be controlled securely.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1例えば12段あるいは20段圧延機等による
薄板圧延において自動板厚制御および自動板形状制御を
行なうための多段圧延機による圧廷材形状制御方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a rolling method using a multi-high rolling mill for automatic plate thickness control and automatic plate shape control in thin plate rolling using, for example, a 12-high or 20-high rolling mill. This invention relates to a material shape control method.

[従来の技術] 近年、銅合金等の薄板圧延においては、製品の板厚精度
に対する要求を満たすために、多段圧延機において自動
板厚制御が行なわれるだけでなく、その板形状について
も高い精度が要求されるようになり、自動形状制御方法
が開発されている。
[Prior art] In recent years, in rolling thin plates of copper alloys, etc., in order to meet the demand for product thickness accuracy, not only automatic plate thickness control is performed in multi-high rolling mills, but also high precision is applied to the plate shape. As a result, automatic shape control methods have been developed.

例えば、板厚をロール圧下位置で、また、形状をバック
アップロールの押し込み量やテーパロールのシフト量で
制御する圧延機においては、従来、板形状検出器からの
信号に基づき板幅方向における板形状(圧延材の圧延方
向の伸び)を4次式で近似し、その各項の係数を対象成
分と非対象成分とに分けて形状同定し、板形状制御用ア
クチュエータを操作することにより板形状制御が行なわ
れるばか(特開昭54−151066号公報、特開昭5
5−19401号公報、特開昭55−42144号公報
)、該板形状制御用アクチュエータ操作量の変更による
板厚変化を予測して、所定の計算式によりロール圧下位
置を修正することにより板厚変化を防止するようにする
ことも行なわれている(特開昭60−3908号公報、
特開昭60−3909号公報)。
For example, in a rolling mill where the thickness of a plate is controlled by the roll reduction position, and the shape is controlled by the push amount of a backup roll or the shift amount of a tapered roll, conventionally, the plate shape in the width direction is controlled based on a signal from a plate shape detector. (elongation of rolled material in the rolling direction) is approximated by a quartic equation, the coefficients of each term are divided into target components and non-target components, shape identification is performed, and plate shape control is performed by operating the plate shape control actuator. (Unexamined Japanese Patent Publication No. 54-151066,
5-19401, Japanese Patent Application Laid-Open No. 55-42144), the plate thickness is calculated by predicting the plate thickness change caused by changing the actuator operation amount for plate shape control and correcting the roll rolling position using a predetermined calculation formula. Efforts have also been made to prevent changes (Japanese Unexamined Patent Publication No. 60-3908,
JP-A-60-3909).

[発明が解決しようとする課題] しかしながら、多段圧延機では、ワークロールが小径で
あるため、板形状としては、耳波、中伸びをはじめとし
て複雑な複合伸びが生じる。従って、多段圧延機におい
て、圧延材の形状同定を前述のような4次式で近似して
行ない制御するのでは、十分良好な形状制御を行なえな
い。
[Problems to be Solved by the Invention] However, in a multi-high rolling mill, since the work rolls have a small diameter, complex composite elongations such as ear wave and medium elongation occur in the plate shape. Therefore, in a multi-high rolling mill, if the shape of the rolled material is approximated and controlled using the above-mentioned quartic equation, sufficiently good shape control cannot be achieved.

また、板形状制御用アクチュエータを操作した場合に、
板厚変化を予測してロール圧下位置を変更しても、ロー
ル圧下位置変化に伴い形状もまた変化するという悪循環
を生じてしまい精度の高い制御を行なえないという課題
もある。
Also, when operating the plate shape control actuator,
Even if the roll rolling position is changed in anticipation of changes in the plate thickness, a vicious cycle occurs in which the shape also changes as the roll rolling position changes, resulting in a problem that highly accurate control cannot be performed.

さらに、圧延初期等の形状不良状態のはなはだしいとき
には、形状制御装置から出力される形状制御用アクチュ
エータへの信号レベルが大きくなり、応答特性による制
約から目標信号に追従できないアクチュエータもでてく
る。この結果、形状の改善速度が遅くなるという課題も
ある。
Furthermore, when the shape is severely defective, such as at the beginning of rolling, the signal level output from the shape control device to the shape control actuator increases, and some actuators may not be able to follow the target signal due to constraints due to response characteristics. As a result, there is also the problem that the speed of shape improvement becomes slow.

本発明は、上述のような課題の解決をはかろうとするも
ので、精度の高い形状制御を確実に且つ応答性よく行な
えるようにした多段圧延機による圧廷材形状制御方法を
提供することを目的とする。
The present invention aims to solve the above-mentioned problems, and it is an object of the present invention to provide a method for controlling the shape of a rolled material using a multi-high rolling mill, which allows highly accurate shape control to be performed reliably and with good responsiveness. With the goal.

[課題を解決するための手段] 上記目的を達成するために、請求項1記載の本発明の多
段圧延機による圧廷材形状制御方法は。
[Means for Solving the Problems] In order to achieve the above object, there is provided a method for controlling the shape of a rolled material using a multi-high rolling mill according to the present invention.

圧延材の圧延方向の伸びを出側板形状として検出する板
形状検出器と、上記圧延材の板形状を制御する板形状制
御用アクチュエータと、上記圧延材の板厚を制御する板
厚制御用アクチュエータとをそなえるとともに、上記板
形状検出器による検出結果に基づき上記板形状制御用ア
クチュエータを制御する板形状制御装置と、上記板厚制
御用アクチュエータを制御する板厚制御装置とをそなえ
、これらの制御装置により、上記板形状制御用アクチュ
エータの操作量変更によって生じる板厚変化を考慮し上
記板厚制御装置からの操作量を補正しながら、上記圧延
材の板形状および板厚を制御するものであって。
A plate shape detector that detects the elongation of the rolled material in the rolling direction as the exit plate shape; a plate shape control actuator that controls the plate shape of the rolled material; and a plate thickness control actuator that controls the thickness of the rolled material. and a plate shape control device that controls the plate shape control actuator based on the detection result by the plate shape detector, and a plate thickness control device that controls the plate thickness control actuator, and controls these. The device controls the plate shape and plate thickness of the rolled material while correcting the operation amount from the plate thickness control device in consideration of changes in plate thickness caused by changes in the operation amount of the plate shape control actuator. hand.

■〔上記板形状検出器からの多段圧延機出側の板形状と
、予め設定された目標板形状との差〕、および、〔上記
各アクチュエータの操作量変更に対する板厚変化量と、
予め設定された上記の各アクチュエータの操作量変更時
の目標板厚変化量との差〕を用いて、上記圧延材の出側
板形状および板厚を評価する総合評価関数を予め定義・
設定し、■上記圧延材の板形状制御中には、上記板形状
検出器により上記圧延材の板形状を常時検出し、■上記
板形状検出器からの検出結果に基づいて、上記総合評価
関数の値を最小にする上記の各アクチュエータの操作量
を演算し、 ■上記板形状制御用アクチュエータを、上記板形状制御
装置により演算された操作量に基づいて制御し、上記板
厚制御用アクチュエータを、上記板厚制御装置からの操
作量と上記板形状制御装置からの操作量とを加算したも
のに基づいて制御することを特徴としている。
■ [difference between the plate shape on the exit side of the multi-high rolling mill from the plate shape detector and a preset target plate shape], and [the amount of plate thickness change in response to the change in the operation amount of each of the actuators,
A comprehensive evaluation function for evaluating the outlet side plate shape and plate thickness of the rolled material is defined in advance using the difference between the preset target plate thickness change amount and the change in operation amount of each of the above actuators.
■During the plate shape control of the rolled material, the plate shape of the rolled material is constantly detected by the plate shape detector, and ■Based on the detection results from the plate shape detector, the above comprehensive evaluation function is determined. 1. Calculate the operation amount of each of the above actuators that minimizes the value of . ② Control the above-mentioned plate shape control actuator based on the operation amount calculated by the above-mentioned plate shape control device, and control the above-mentioned plate thickness control actuator. , the control is performed based on the sum of the operation amount from the plate thickness control device and the operation amount from the plate shape control device.

また、請求項3記載の本発明の多段圧延機にょる圧廷材
形状制御方法は、前記請求項1の項目■において、上記
板形状検出器からの検出結果と、上記の各アクチュエー
タの現在位置および移動速度上限から決まる上記の各ア
クチュエータの移動限界とに基づいて、上記総合評価関
数の値を最小にする上記の板形状制御用アクチュエータ
および板厚制御用アクチュエータの操作量を演算するこ
とを特徴としている。
Further, in the method for controlling the shape of a rolling material in a multi-high rolling mill of the present invention according to claim 3, in item and the movement limit of each of the above actuators determined from the upper limit of movement speed, to calculate the operation amount of the plate shape control actuator and the plate thickness control actuator that minimizes the value of the comprehensive evaluation function. It is said that

さらに、請求項2,4の本発明の多段圧延機による圧廷
材形状制御方法は、それぞれ前記請求項1.3の項目■
において、〔上記板形状検出器により検出された多段圧
延機出側の板形状と予め設定された目標板形状との差〕
が、誤差形状に関し、現時点の誤差形状と現時点よりも
1時点前の誤差形状の差の重み付き合計値として求めら
れることを特徴としている。
Furthermore, the method for controlling the shape of rolled material using a multi-stage rolling mill according to claims 2 and 4 of the present invention includes item (1) of claim 1 and 3, respectively.
[difference between the plate shape on the exit side of the multi-high rolling mill detected by the plate shape detector and a preset target plate shape]
is characterized in that the error shape is determined as a weighted sum of the differences between the current error shape and the error shape one point before the current time.

[作   用] 上述した請求項1の多段圧延機による圧廷材形状制御方
法では、板形状検出器により板幅方向の出側板形状が検
出され、この出側板形状と板厚とが、総合評価関数を用
いて総合的に評価される。
[Function] In the method for controlling the shape of rolled material using a multi-stage rolling mill according to claim 1 described above, the shape of the outlet side plate in the width direction of the plate is detected by the plate shape detector, and the shape of the outlet side plate and the plate thickness are used for the overall evaluation. Comprehensive evaluation using functions.

つまり、この総合評価関数の値が最小となる板形状制御
用アクチュエータおよび板厚制御用アクチュエータの操
作量を常時求め、得られた操作量に基づいて、各アクチ
ュエータが、圧延材の板形状を制御するために同時に制
御される。従って、従来のように圧延材の形状同定をす
る必要がなくなるほか、板形状制御用アクチュエータを
操作した場合に板厚変化を予測して行なったロール圧下
位置変更が、さらなる形状変化を招くといった悪循環も
発生しない。
In other words, the operation amount of the plate shape control actuator and plate thickness control actuator that minimizes the value of this comprehensive evaluation function is constantly determined, and based on the obtained operation amount, each actuator controls the plate shape of the rolled material. controlled at the same time. Therefore, it is no longer necessary to identify the shape of the rolled material as in the past, and when the plate shape control actuator is operated, changes in roll rolling position made in anticipation of a change in plate thickness will lead to further changes in shape, a vicious cycle. does not occur either.

また、請求項3の多段圧延機による圧廷材形状制御方法
では、アクチュエータの操作量演算に際して、各アクチ
ュエータの現在位置および移動速度上限から決まる各ア
クチュエータの移動限界をも考慮にいれているので、応
答特性による制約から目標信号に追従できないアクチュ
エータがでてくるのを防止できる。
Furthermore, in the method for controlling the shape of rolled material using a multi-high rolling mill according to claim 3, when calculating the operation amount of the actuators, the movement limit of each actuator determined from the current position and the upper limit of the movement speed of each actuator is also taken into consideration. It is possible to prevent actuators from being unable to follow the target signal due to constraints due to response characteristics.

さらに、上述した請求項1,3の方法において、多段圧
延機出側の板形状と目標板形状との差は、誤差形状に関
し、現時点の誤差形状と現時点よりも1時点前の誤差形
状の差の重み付き合計値として求められる(請求項2,
4)。
Furthermore, in the methods of claims 1 and 3 described above, the difference between the plate shape on the exit side of the multi-high rolling mill and the target plate shape is the difference between the current error shape and the error shape one point before the current time with respect to the error shape. (Claim 2,
4).

[発明の実施例] 以下、図面により本発明の一実施例としての多段圧延機
による圧廷材形状制御方法について説明すると、第1図
は本発明の方法を適用される装置を示す全体構成図、第
2図は本発明の方法を適用される多段圧延機の正面図で
ある6本実施例では、20段圧延機に本発明の方法を適
用した場合を示す。
[Embodiments of the Invention] Hereinafter, a method for controlling the shape of a rolling material using a multi-stage rolling mill as an embodiment of the present invention will be explained with reference to the drawings. Fig. 1 is an overall configuration diagram showing an apparatus to which the method of the present invention is applied. , FIG. 2 is a front view of a multi-high rolling mill to which the method of the present invention is applied.6 This embodiment shows a case where the method of the present invention is applied to a 20-high rolling mill.

第1,2図において、1は薄板である圧延材、2は圧延
材1に当接する上下一対のワークロール、3はワークロ
ール2の背後に設置されたテーパロールである第1中間
ロール、4は第1中間ロール3の背後に設置された第2
中間ロール、5は第2中間ロール4のさらに背後に設置
されたバックアップロールで、これらのロール2〜5に
より20段圧延機が構成されている。
In FIGS. 1 and 2, 1 is a rolled material that is a thin plate, 2 is a pair of upper and lower work rolls that contact the rolled material 1, 3 is a first intermediate roll that is a tapered roll installed behind the work roll 2, and 4 is the second intermediate roll installed behind the first intermediate roll 3.
The intermediate roll 5 is a backup roll installed further behind the second intermediate roll 4, and these rolls 2 to 5 constitute a 20-high rolling mill.

また、6は20段圧延機から若干前れた下流側の位置に
配置され圧延材1の圧延方向の伸び(板形状)を検出す
る板形状検出器で、板幅方向に沿って複数(本実施例で
はn個)の形状センサ要素を配列して構成されている。
Further, numeral 6 denotes a plate shape detector located at a downstream position slightly ahead of the 20-high rolling mill to detect the elongation (plate shape) of the rolled material 1 in the rolling direction. In the embodiment, it is configured by arranging n shape sensor elements.

7,8はそれぞれ20段圧延機の上流側および下流側の
適当な位置に配置され圧延材1の入側板厚および出側板
厚を検出する板厚計、9は板厚計7,8による検出結果
に基づき適宜数のロール圧下位置移動手段(板厚制御用
アクチュエータ)11へ操作量を制御信号eとして出力
し制御する板厚制御装置、10は板形状検出器6による
検出結果に基づき適宜数のバックアップロール押し込み
手段12およびテーバロール移動手段13(いずれも板
形状制御用アクチュエータ)へ操作量を出力して制御す
る板形状制御装置である。
7 and 8 are plate thickness gauges that are placed at appropriate positions on the upstream and downstream sides of the 20-high rolling mill, respectively, to detect the inlet thickness and outlet thickness of the rolled material 1; 9 is the detection by the plate thickness gauges 7 and 8; A plate thickness control device outputs the operation amount as a control signal e to an appropriate number of roll reduction position moving means (actuators for plate thickness control) 11 based on the results and controls the plate thickness control device; This is a plate shape control device that outputs an operation amount to the backup roll pushing means 12 and Taber roll moving means 13 (both actuators for plate shape control) to control them.

このような構成の装置により、本実施例では、本発明の
方法による圧延材1の板形状制御が次のように行なわれ
る。
In this embodiment, with the apparatus having such a configuration, control of the plate shape of the rolled material 1 by the method of the present invention is performed as follows.

まず、板厚制御装置9は、板厚計7,8からの検出信号
a、bと予め設定された目標出側板厚信号Cとに基づい
て、通常のフィードフォワード型板厚制御およびフィー
ドバック型板厚制御により操作量を演算して制御信号e
を出力する。この制御信号eは、後述する板形状制御装
置10により演算された操作量である制御信号dを加算
されることで、バックアップロール押し込み手段12お
よびテーバロール移動手段13の操作量を変更すること
によって生じる板厚変化を考慮した補正がなされること
になる。このような補正の後、その制御信号が、ロール
圧下位置移動手段11へ出力され、指示された操作量だ
け20段圧延機におけるロール圧下位置が操作され、圧
延材lの板厚が制御される。
First, the plate thickness control device 9 performs normal feedforward type plate thickness control and feedback type plate thickness control based on detection signals a and b from the plate thickness gauges 7 and 8 and a preset target exit side plate thickness signal C. The operation amount is calculated by thickness control and the control signal e
Output. This control signal e is generated by changing the operation amount of the backup roll pushing means 12 and the Taber roll moving means 13 by adding the control signal d which is the operation amount calculated by the plate shape control device 10 described later. Corrections will be made taking into account changes in plate thickness. After such correction, the control signal is output to the roll reduction position moving means 11, the roll reduction position in the 20-high rolling mill is operated by the instructed operation amount, and the thickness of the rolled material l is controlled. .

一方、板形状制御装置10は、板形状検出器6からの検
出信号fならびに予め設定された目標板形状信号gに基
づいて、バックアップロール押し込み手段12の操作量
(即ち、バックアップロール5の押し込み増分量)ΔX
工〜Δx4と、テーバロール移動手段13の操作量(即
ち、上下一対のテーバロール3,3の移動量)Δxs、
ΔX、と、ロール圧下位置移動手段11の操作量(即ち
、板厚制御装置9からの制御信号eに加算される補正分
)ΔX ? lΔX、とを演算し、それぞれ制御信号り
、i、dとして出力する。そして、バックアップロール
押し込み手段12およびテーパロール移動手段13によ
り、それぞれ制御信号り、iに応じて指示された操作量
だけバックアップロール5およびテーパロール3,3の
位置が操作され、圧延材1の板形状が制御される。
On the other hand, the plate shape control device 10 controls the amount of operation of the backup roll pushing means 12 (i.e., increases the amount of pushing of the backup roll 5) based on the detection signal f from the plate shape detector 6 and the preset target plate shape signal g. Quantity) ΔX
Δx4, the operation amount of the Taber roll moving means 13 (that is, the amount of movement of the pair of upper and lower Taber rolls 3, 3) Δxs,
? lΔX, and are output as control signals i, d, respectively. Then, the backup roll pushing means 12 and the tapered roll moving means 13 respectively operate the positions of the backup roll 5 and the tapered rolls 3, 3 by the amount of operation instructed according to the control signal i, and Shape is controlled.

ところで1本発明の特徴的な部分は、板形状制御袋W1
10にて行なわれる操作量Δx2〜ΔX、の演算手段に
ある。以下に、その演算手段について詳細に説明する。
By the way, one characteristic part of the present invention is the plate shape control bag W1.
10 is a calculating means for operating amounts Δx2 to ΔX. The calculation means will be explained in detail below.

即ち、板形状制御装置10には、下式(4)にて、圧延
材1の出側板形状および板厚を評価する総合評価関数J
が予め定義・設定されている。
That is, the plate shape control device 10 has a comprehensive evaluation function J that evaluates the outlet side plate shape and plate thickness of the rolled material 1 using the following equation (4).
are defined and set in advance.

この総合評価関数Jは、板形状検出器6からの出側板形
状と予め設定された目標板形状との差。
This comprehensive evaluation function J is the difference between the output side plate shape from the plate shape detector 6 and a preset target plate shape.

および、各アクチュエータ11〜13の操作量変更に対
する板厚変化量と予め設定された各アクチュエータ11
〜13の操作量変更時の目標板厚変化量との差を用いて
定義されている。
and the plate thickness change amount for each actuator 11 to 13 in response to a change in the operation amount and the preset value for each actuator 11.
It is defined using the difference from the target plate thickness change amount when changing the operation amount of .about.13.

ここで、出側板形状と目標板形状との差は、下式(1)
による誤差形状a1(k)、 e 1(k)= f 1’(k) −f 1°(k) 
 (i= 1−n) −(1)に関し、下式(2)に示
す通り、現時点の誤差形状e 1(k)と、現時点より
も1時点前の誤差形状の差a1(k) −at(k−1
)との重み付き合計値として求められる。
Here, the difference between the exit side plate shape and the target plate shape is calculated using the following formula (1).
Error shape a1(k), e 1(k) = f 1'(k) − f 1°(k)
Regarding (i= 1-n) - (1), as shown in the equation (2) below, the difference between the current error shape e 1 (k) and the error shape one point before the current time a1 (k) - at (k-1
) is calculated as the weighted sum of

i t(k)= Kx・e t(k)+ Kp・[e 
t(k) −e x(k−1))(m=1〜n)   
  ・・・(2)また、各アクチュエータ11〜13の
操作量変更に対する板厚変化量と予め設定された各アク
チュエータ11〜13の操作量変更時の目標板厚変化量
との差は、下式(3)により求められる。
it(k)=Kx・e t(k)+Kp・[e
t(k) −e x(k-1)) (m=1~n)
(2) Also, the difference between the amount of plate thickness change in response to a change in the operation amount of each actuator 11 to 13 and the preset target plate thickness change amount when changing the operation amount of each actuator 11 to 13 is calculated by the following formula. It is determined by (3).

i m+t(k)= f s+t@(k) −f s+
t”(k)   ・・・(3)そして、総合評価関数J
は下式(4)式の通りになる。
i m+t(k)=f s+t@(k) −f s+
t''(k)...(3) And the comprehensive evaluation function J
is as shown in equation (4) below.

ただし、flo(k)(i = 1〜n )は板形状検
出器6を構成するi番目の形状センサ要素による時点に
での測定板伸び値、flo(k)(i=1〜n)は上記
i番目の形状センサ要素に対する時点kにおける目標板
伸び値、f 、、L’ (k)は各アクチュエータ11
〜13の操作量変更に対する板厚変化量。
However, flo (k) (i = 1 to n) is the plate elongation value measured at the time by the i-th shape sensor element constituting the plate shape detector 6, and flo (k) (i = 1 to n) is The target plate elongation value f , , L' (k) at time k for the i-th shape sensor element is
Amount of change in plate thickness with respect to change in operation amount of ~13.

f att”(k)は各アクチュエータ11〜13の操
作量変更時の目標板厚変化量、wl(i=1”n+1)
は偏差ε1(k)に対する重み係数、KIpKPは、そ
れぞれ、現時点の誤差形状al(k)、および、現時点
よりも1時点前の誤差形状の差e z(k)−a t(
k−1)に対する重み係数である。
f att” (k) is the target plate thickness change amount when changing the operation amount of each actuator 11 to 13, wl (i=1”n+1)
is the weighting coefficient for the deviation ε1(k), and KIpKP is the difference between the current error shape al(k) and the error shape one point before the current time e z(k)−a t(
k-1).

このような評価関数Jを導入するとともに、各アクチュ
エータ11〜13の操作量変更に伴う圧延材1の板形状
および板厚の影響係数式を、下式(5)のように作成す
る。
In addition to introducing such an evaluation function J, an influence coefficient equation of the plate shape and plate thickness of the rolled material 1 due to changes in the operation amount of each actuator 11 to 13 is created as shown in equation (5) below.

ただし、Δxj(k) (j = 1〜m;本実施例で
はm=8)はここで求めるべき各アクチュエータ11〜
13の操作量の変更量、Δf 1(k’) (i = 
1〜n)は各アクチュエータ11〜13の操作量をΔx
j(k) (j : 1〜m)だけ変更した場合に当該
部分がi番目の形状センサ要素にて検出された形状変化
量、Δfn@は各アクチュエータ11〜13の操作量を
Δxj(j=1〜m)だけ変更した場合に当該部分が板
厚計8にて検出された板厚変化量、αj1(j=1〜m
、i=1〜n+1)はΔxj(k)のΔfx(k’)へ
の影響係数である。
However, Δxj(k) (j = 1 to m; in this example, m = 8) is calculated based on each actuator 11 to
13, the amount of change in the manipulated variable, Δf 1(k') (i =
1 to n) represent the operation amount of each actuator 11 to 13 by Δx
The shape change amount, Δfn@, is the amount of shape change detected by the i-th shape sensor element when the part is changed by j(k) (j: 1 to m), and Δfn@ is the amount of shape change detected by the i-th shape sensor element when the corresponding part is changed by Δxj(j= 1 to m), the plate thickness change amount detected by the plate thickness gauge 8 in the relevant part, αj1 (j = 1 to m
, i=1 to n+1) is an influence coefficient of Δxj(k) on Δfx(k').

そして、(2)〜(4)式に、 flo(k) −f l”(k) =Δft(k)(i
=1〜n◆1) ・・・(6) を代入し、板厚、板形状の総合評価関数Jが時々刻々最
小となるように、板形状制御中に板形状検出器6により
時々刻々検出される圧延材1の板形状検出値f1°(k
L fi’(k−1)(i=l〜n)に基づいて、次の
アルゴリズムにより、各操作量変更量Δxj(k)(j
 = 1〜m)を算出し、各アクチュエータ11〜13
を操作する。
Then, in equations (2) to (4), flo(k) −f l”(k) =Δft(k)(i
=1~n◆1) ...(6) is substituted, and the board shape detector 6 detects the board shape every moment during the board shape control so that the overall evaluation function J of the board thickness and board shape becomes the minimum every moment. The plate shape detection value f1° (k
Based on L fi'(k-1) (i=l~n), each manipulated variable change amount Δxj(k)(j
= 1 to m), and each actuator 11 to 13
operate.

今、偏差信号ti(k)(i=1〜n+1)を、i t
(k)=Kr  ei(k)+Kp(ex(k)−ex
(k−1))elck> = f 1″(k) −f 
t”(k)el(k−1)=f1°(k−1)−ft”
(k−1)    −(7)(i=1〜n) ε。ヤ□(k)=0 とし、各アクチュエータ11〜13をΔx j(k)だ
け動かすと、総合評価関数Jは、 が得られる。つまり。
Now, the deviation signal ti(k) (i=1 to n+1) is expressed as it
(k)=Kr ei(k)+Kp(ex(k)−ex
(k-1)) elck> = f 1″(k) −f
t"(k)el(k-1)=f1°(k-1)-ft"
(k-1) −(7) (i=1~n) ε. When Y(k)=0 and each actuator 11 to 13 is moved by Δx j(k), the following is obtained as the comprehensive evaluation function J. In other words.

Δx(k)=(ATW’A)−’ATV”E(k)・・
・(11) i瀾1 j鱈1 と表わされる。この総合評価関数Jを最小化するために
は、 でなければならない、即ち、(III) 、 (9)式
より、(ただし、s−1〜m)となる、そして、この(
10)式をΔx J(k)について解くことにより、板
厚、板形状についての総合評価関数Jを最小化するため
の各アクチュエータ11〜13の操作量の変更量が得ら
れる。ただし、上式中、It T #+は行列の転置を
示す。
Δx(k)=(ATW'A)-'ATV"E(k)...
・(11) It is expressed as i 1 j 1. In order to minimize this comprehensive evaluation function J, it must be, that is, (III) From equation (9), (s-1 to m), and this (
By solving Equation 10) for Δx J(k), the amount of change in the operation amount of each actuator 11 to 13 for minimizing the comprehensive evaluation function J regarding the plate thickness and plate shape can be obtained. However, in the above formula, It T #+ indicates the transposition of the matrix.

ところで、上述したアルゴリズムによれば、圧延初期等
の形状不良状態のはなはだしいときには。
By the way, according to the above-mentioned algorithm, when the shape is extremely defective, such as at the initial stage of rolling.

制御目標信号レベルが過大となり、応答特性による制約
から目標信号に追従できないアクチュエータ11〜13
もでてくる。従って、本実施例では、次のステップ■〜
■を板形状制御装置10にて実施することで、目標信号
に追従できないアクチュエータ11〜13の発生を防止
している。
Actuators 11 to 13 whose control target signal level becomes excessive and cannot follow the target signal due to constraints due to response characteristics.
It also comes out. Therefore, in this example, the following steps
By implementing step (2) in the plate shape control device 10, the occurrence of the actuators 11 to 13 not being able to follow the target signal is prevented.

■圧延条件(圧延速度、圧延荷重)により予め定義した
関数に基づき、各アクチュエータ11〜13の移動可能
速度を計算する。
(2) Calculate the movable speed of each actuator 11 to 13 based on a function defined in advance according to rolling conditions (rolling speed, rolling load).

■各7クチユエータ現在位置から、位置限界より制約さ
れる移動可能限界値を計算する。
- Calculate the movable limit value, which is constrained by the position limit, from the current position of each of the seven cutter units.

■移動可能速度から求まる各アクチュエータ11〜13
の1制御周期当たりの移動可能限界値を計算する。
■Each actuator 11 to 13 determined from the movable speed
The movable limit value per control period is calculated.

■ステップ■、■で求めた移動可能限界値の小さい方を
最終的な移動可能限界値として設定する。
■Set the smaller of the movable limit values obtained in steps (■) and (2) as the final movable limit value.

(Φ板形状検出器6からの検出形状と目標形状との誤差
形状に基づき、総合評価関数Jを最小にする各アクチュ
エータ11〜13の移動量目標値を前述のごとく計算す
る。
(Based on the error shape between the detected shape from the Φ plate shape detector 6 and the target shape, the movement amount target value of each actuator 11 to 13 that minimizes the comprehensive evaluation function J is calculated as described above.

■前ステップ■で計算した目標値がステップ■で求めた
移動可能限界値を超えているアクチュエータが存在する
場合には、当該アクチュエータの移動量目標値を移動可
能限界値に置き換えるとともに、当該アクチュエータが
移動可能限界値まで移動したときの形状変化量を計算し
、現時点の誤差形状から差し引き、当該アクチュエータ
を使用可能アクチュエータから除外シテ、再度ステップ
■の総合評価関数Jを最小化する残りのアクチュエータ
の移動目標値を求め、移動限界のチエツクを行なう。こ
れを、移動限界の制約にかかるアクチュエータが無くな
るか、または、すべてのアクチュエータ11〜13が使
用可能アクチュエータで無くなるまで繰り返す。
■If there is an actuator for which the target value calculated in the previous step ■ exceeds the movable limit value determined in step Calculate the amount of shape change when moving to the movable limit value, subtract it from the current error shape, exclude the actuator from the usable actuators, and move the remaining actuators to minimize the overall evaluation function J in step ① again. Find the target value and check the movement limit. This process is repeated until there are no more actuators subject to the movement limit restrictions or until all actuators 11 to 13 are no longer usable actuators.

■制御ゲインを乗算して最終的な各アクチュエータ11
〜13の移動目標値を計算する6本実施例では、このよ
うにして得られた各アクチュエータ11〜13の操作量
をΔxj(k)(j =1〜8)に基づいて、前述した
ロール圧下位置移動手段11.バックアップロール押し
込み手段12、テーパロール移動手段13による圧延材
1の板形状の制御が行なわれるのである。
■Multiply the control gain to obtain the final value for each actuator 11
In this embodiment, the operation amount of each actuator 11 to 13 obtained in this way is calculated based on Δxj(k) (j = 1 to 8), and the roll reduction described above is calculated. Position moving means 11. The plate shape of the rolled material 1 is controlled by the backup roll pushing means 12 and the tapered roll moving means 13.

次に、本発明の方法を実際の圧延材の形状制御に適用し
て得られた実験結果を第3,4図に示す。
Next, FIGS. 3 and 4 show experimental results obtained by applying the method of the present invention to shape control of actual rolled materials.

ここでは、銅合金で板1[630mm、板厚205μm
の圧延材条件で実験を行なった。第3図には本方法によ
る制御をoffシた場合とonした場合の板厚偏差を示
し、第4図(a)、(b)には、それぞれ本方法による
制御をoffシた場合の圧延材の圧延方向の伸びと、o
nLだ場合圧延材の圧延方向の伸びとを示している。第
4図(a)、(b)において、縦軸の単位であるII−
unitは、長さ1mの圧延材の圧延方向の伸びが基準
値よりも104mだけ長いことを示している。
Here, plate 1 [630 mm, plate thickness 205 μm] is made of copper alloy.
The experiment was conducted under the conditions of rolled material. Figure 3 shows the plate thickness deviation when the control by this method is turned off and when it is turned on, and Figures 4 (a) and (b) respectively show the rolling thickness deviation when the control by this method is turned off. The elongation of the material in the rolling direction and o
When nL indicates the elongation of the rolled material in the rolling direction. In FIGS. 4(a) and (b), the unit of the vertical axis is II-
unit indicates that the elongation in the rolling direction of a rolled material with a length of 1 m is 104 m longer than the reference value.

第4図(a)、(b)に示すように1本発明による形状
制御on、 offの切替タイミング前後で板形状は大
幅に改善されていると同時に、第3図に示すように、形
状制御on、 offの切替タイミング前後で板厚精度
はほとんど変化していない(悪化していない)ことが分
かる。
As shown in FIGS. 4(a) and 4(b), the plate shape is significantly improved before and after the switching timing of shape control on and off according to the present invention, and at the same time, as shown in FIG. It can be seen that the plate thickness accuracy hardly changes (does not deteriorate) before and after the on/off switching timing.

このように、本実施例の圧廷材形状制御方法によれば、
出側板形状と板厚とが、総合評価関数Jを用いて総合的
に評価され、この総合評価関数Jの値が最小となる各ア
クチュエータ11〜13の操作量が常時求められ、得ら
れた操作量に基づいて、各7クチユエータ11〜13が
、圧延材1の板形状を制御するために同時に制御される
ので、従来のように圧延材の形状同定をする必要がなく
なるほか、板形状制御用アクチュエータを操作した場合
に板厚変化を予測して行なったロール圧下位置変更が、
さらなる形状変化を招くといった悪循環も発生しなくな
り、極めて精度の高い形状制御を確実に行なえるのであ
る。
As described above, according to the pressing material shape control method of this embodiment,
The exit side plate shape and plate thickness are comprehensively evaluated using a comprehensive evaluation function J, and the amount of operation of each actuator 11 to 13 that minimizes the value of this comprehensive evaluation function J is constantly determined, and the obtained operation is Since each of the seven cutting units 11 to 13 is controlled simultaneously to control the plate shape of the rolled material 1 based on the amount, there is no need to identify the shape of the rolled material as in the past, and there is no need to identify the shape of the rolled material as in the past. The roll reduction position is changed by predicting the change in plate thickness when the actuator is operated.
This eliminates the occurrence of a vicious cycle that leads to further shape changes, making it possible to reliably perform highly accurate shape control.

また、本実施例によれば、前述したステップ■〜■を実
施し、アクチュエータ11〜13の操作量演算に際して
、各アクチュエータ11〜13の現在位置および移動速
度上限から決まる各アクチュエータ11〜13の移動限
界を考慮にいれることで、特に圧延初期等の形状不良状
態のはなはだしいときなどに、板形状制御装置1oがら
各アクチュエータ11〜13への信号レベルが大きくな
り、応答特性による制約から目標信号に追従できないア
クチュエータがでてくるのを防止でき、板形状制御の応
答性を改善することができる。
Further, according to the present embodiment, when the above-mentioned steps ■ to ■ are executed and the operation amount of the actuators 11 to 13 is calculated, the movement of each actuator 11 to 13 determined from the current position and the upper limit of the movement speed of each actuator 11 to 13 is performed. By taking the limits into account, the signal level sent from the plate shape control device 1o to each actuator 11 to 13 increases, especially when the shape is extremely defective such as at the beginning of rolling, and it follows the target signal due to constraints due to response characteristics. It is possible to prevent the occurrence of actuators that cannot be used, and it is possible to improve the responsiveness of plate shape control.

なお、上記実施例では、20段圧延機に本発明の方法を
適用した場合について説明したが、本発明の方法はこれ
に限定されるものではない。
In addition, although the said Example demonstrated the case where the method of this invention was applied to a 20-high rolling mill, the method of this invention is not limited to this.

また、上記実施例では、(2)式に示すように。Further, in the above embodiment, as shown in equation (2).

Et(k)を現時点の誤差形状と現時点よりも1時点前
の誤差形状の差との重み付き合計値として与えたが、下
式(13)に示すように、現在並びに過去の誤差形状の
重み付き合計値で置き換えてもよい。
Et(k) was given as the weighted sum of the difference between the current error shape and the error shape one point before the current time, but as shown in the equation (13) below, the weight of the current and past error shapes is May be replaced with the total value.

t 1(k)=: Kl、・e 1(k)+に1・e 
1(k−1)十に、・e 1(k−2)+・・・・・・
  (i=1〜n)  ・・・(13)C発明の効果] 以上詳述したように、本発明の多段圧延機による圧廷材
形状制御方法によれば、出側板形状と板厚とを所定の総
合評価関数により評価し、この総合評価関数の値を最小
にする各アクチュエータの操作量を求め、得られた操作
量に基づき各アクチュエータを同時に制御するので、極
めて精度の高い形状制御を確実に行なえる効果がある。
t 1(k)=: Kl,・e 1(k)+to 1・e
1(k-1) ten, ・e 1(k-2)+...
(i = 1 to n) ... (13) Effect of invention C] As detailed above, according to the method for controlling the shape of rolled material using a multi-high rolling mill of the present invention, the shape and thickness of the outlet side board can be controlled. Evaluation is performed using a predetermined comprehensive evaluation function, the amount of operation for each actuator that minimizes the value of this overall evaluation function is determined, and each actuator is simultaneously controlled based on the obtained amount of operation, ensuring highly accurate shape control. There is an effect that can be done.

また、各アクチュエータの操作量演算に際して、各アク
チュエータの現在位置および移動速度上限から決まる移
動限界を考慮にいれることで、応答特性による制約から
目標信号に追従できないアクチュエータがでてくるのを
防止でき、板形状制御の応答性を改善できる効果もある
In addition, by taking into consideration the movement limit determined from the current position and upper limit of movement speed of each actuator when calculating the operation amount of each actuator, it is possible to prevent some actuators from being unable to follow the target signal due to constraints due to response characteristics. It also has the effect of improving the responsiveness of plate shape control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は本発明の一実施例としての多段圧延機によ
る圧廷材形状制御方法を示すもので、第1図は本発明の
方法を適用される装置を示す全体構成図、第2図は本発
明の方法を適用される多段圧延機の正面図、第3図およ
び第4図(a)、(b)は上記実施例の作用を説明する
ためのグラフである。 図において、1−圧延材、2−ワークロール。 3−第1中間ロール、4−第2中間ロール、5−バック
アップロール、6−板形状検出器、7,8−板厚計、9
−板厚制御装置、10−板形状制御装置、11−ロール
圧下位置移動手段(板厚制御用アクチュエータ)、12
−バックアップロール押し込み手段(板形状制御用アク
チュエータ)、13−テーパロール移動手段(板形状制
御用アクチュエータ)。
1 to 4 show a method for controlling the shape of rolled material using a multi-stage rolling mill as an embodiment of the present invention. The figure is a front view of a multi-high rolling mill to which the method of the present invention is applied, and FIGS. 3 and 4 (a) and (b) are graphs for explaining the operation of the above embodiment. In the figure, 1-rolled material, 2-work roll. 3-first intermediate roll, 4-second intermediate roll, 5-backup roll, 6-plate shape detector, 7, 8-plate thickness gauge, 9
- Plate thickness control device, 10- Plate shape control device, 11- Roll reduction position moving means (plate thickness control actuator), 12
- Backup roll pushing means (actuator for plate shape control), 13 - Taper roll moving means (actuator for plate shape control).

Claims (4)

【特許請求の範囲】[Claims] (1)多段圧延機出側における圧延材の圧延方向の伸び
を板形状として検出する板形状検出器と、上記圧延材の
板形状を制御する板形状制御用アクチュエータと、上記
圧延材の板厚を制御する板厚制御用アクチュエータとを
そなえるとともに、上記板形状検出器による検出結果に
基づき上記板形状制御用アクチュエータへ操作量を出力
して制御する板形状制御装置と、上記板厚制御用アクチ
ュエータへ操作量を出力して制御する板厚制御装置とを
そなえ、これらの板形状制御装置および板厚制御装置に
より、上記板形状制御用アクチュエータの操作量を変更
することによって生じる板厚変化を考慮して上記板厚制
御装置からの操作量を補正しながら、上記圧延材の板形
状および板厚を制御する多段圧延機による圧延材形状制
御方法であって、 上記板形状検出器により検出された多段圧延機出側の板
形状と予め設定された目標板形状との差、および、上記
の各アクチュエータの操作量変更に対する板厚変化量と
予め設定された上記の各アクチュエータの操作量変更時
の目標板厚変化量との差を用いて、上記圧延材の出側板
形状および板厚を評価する総合評価関数が予め定義・設
定され、 上記圧延材の板形状制御中には、上記板形状検出器によ
り上記圧延材の板形状を常時検出し、上記板形状検出器
からの検出結果に基づいて、上記総合評価関数の値を最
小にする上記の板形状制御用アクチュエータおよび板厚
制御用アクチュエータの操作量を演算し、 上記板形状制御用アクチュエータが、上記板形状制御装
置により演算された操作量に基づいて制御されるととも
に、上記板厚制御用アクチュエータが、上記板厚制御装
置からの操作量に上記板形状制御装置により演算された
操作量を加算して得られた操作量に基づいて制御される
ことを特徴とする多段圧延機による圧延材形状制御方法
(1) A plate shape detector that detects the elongation in the rolling direction of the rolled material on the exit side of the multi-high rolling mill as a plate shape, an actuator for controlling plate shape that controls the plate shape of the rolled material, and a plate thickness of the rolled material. a plate shape control device that outputs and controls an operation amount to the plate shape control actuator based on the detection result of the plate shape detector; and the plate thickness control actuator. The plate thickness control device is equipped with a plate thickness control device that outputs and controls the operation amount to the plate shape control device, and these plate shape control devices and plate thickness control devices take into account plate thickness changes caused by changing the operation amount of the plate shape control actuator. A method for controlling the shape of a rolled material using a multi-stage rolling mill, which controls the shape and thickness of the rolled material while correcting the operation amount from the sheet thickness control device, the method comprising: The difference between the plate shape on the exit side of the multi-high rolling mill and the preset target plate shape, the amount of plate thickness change in response to the change in the operation amount of each of the above actuators, and the change in the preset operation amount of each actuator. A comprehensive evaluation function is defined and set in advance to evaluate the outlet side plate shape and plate thickness of the rolled material using the difference from the target plate thickness change amount, and during the plate shape control of the rolled material, the plate shape detection is performed. The plate shape control actuator and the plate thickness control actuator constantly detect the plate shape of the rolled material using a detector, and minimize the value of the comprehensive evaluation function based on the detection result from the plate shape detector. The plate shape control actuator is controlled based on the operation amount calculated by the plate shape control device, and the plate thickness control actuator is controlled based on the operation amount from the plate thickness control device. A method for controlling the shape of a rolled material using a multi-high rolling mill, characterized in that the control is performed based on the manipulated variable obtained by adding the manipulated variable calculated by the plate shape control device to the above-mentioned sheet shape control device.
(2)上記板形状検出器により検出された多段圧延機出
側の板形状と予め設定された目標板形状との差が、誤差
形状に関し、現時点の誤差形状と現時点よりも1時点前
の誤差形状の差との重み付き合計値として求められるこ
とを特徴とする請求項1記載の多段圧延機による圧廷材
形状制御方法。
(2) The difference between the plate shape on the outlet side of the multi-high rolling mill detected by the plate shape detector and the preset target plate shape is the difference between the current error shape and the error one point before the current time. 2. A method for controlling the shape of a rolled material using a multi-high rolling mill according to claim 1, wherein the method is determined as a weighted sum of a difference in shape.
(3)多段圧延機出側における圧延材の圧延方向の伸び
を板形状として検出する板形状検出器と、上記圧延材の
板形状を制御する板形状制御用アクチュエータと、上記
圧延材の板厚を制御する板厚制御用アクチュエータとを
そなえるとともに、上記板形状検出器による検出結果に
基づき上記板形状制御用アクチュエータへ操作量を出力
して制御する板形状制御装置と、上記板厚制御用アクチ
ュエータへ操作量を出力して制御する板厚制御装置とを
そなえ、これらの板形状制御装置および板厚制御装置に
より、上記板形状制御用アクチュエータの操作量を変更
することによって生じる板厚変化を考慮して上記板厚制
御装置からの操作量を補正しながら、上記圧延材の板形
状および板厚を制御する多段圧延機による圧延材形状制
御方法であって、 上記板形状検出器により検出された多段圧延機出側の板
形状と予め設定された目標板形状との差、および、上記
の各アークチュエータの操作量変更に対する板厚変化量
と予め設定された上記の各アクチュエータの操作量変更
時の目標板厚変化量との差を用いて、上記圧延材の出側
板形状および板厚を評価する総合評価関数が予め定義・
設定され、 上記圧延材の板形状制御中には、上記板形状検出器によ
り上記圧延材の板形状を常時検出し、上記板形状検出器
からの検出結果と、上記の各アクチュエータの現在位置
および移動速度上限から決まる上記の各アクチュエータ
の移動限界とに基づいて、上記総合評価関数の値を最小
にする上記の板形状制御用アクチュエータおよび板厚制
御用アクチュエータの操作量を演算し、上記板形状制御
用アクチュエータが、上記板形状制御装置により演算さ
れた操作量に基づいて制御されるとともに、上記板厚制
御用アクチュエータが、上記板厚制御装置からの操作量
に上記板形状制御装置により演算された操作量を加算し
て得られた操作量に基づいて制御されることを特徴とす
る多段圧延機による圧延材形状制御方法。
(3) a plate shape detector that detects the elongation of the rolled material in the rolling direction on the outlet side of the multi-high rolling mill as a plate shape; a plate shape control actuator that controls the plate shape of the rolled material; and a plate thickness of the rolled material. a plate shape control device that outputs and controls an operation amount to the plate shape control actuator based on the detection result of the plate shape detector; and the plate thickness control actuator. The plate thickness control device is equipped with a plate thickness control device that outputs and controls the operation amount to the plate shape control device, and these plate shape control devices and plate thickness control devices take into account plate thickness changes caused by changing the operation amount of the plate shape control actuator. A method for controlling the shape of a rolled material using a multi-stage rolling mill, which controls the shape and thickness of the rolled material while correcting the operation amount from the sheet thickness control device, the method comprising: The difference between the plate shape on the exit side of the multi-high rolling mill and the preset target plate shape, the amount of plate thickness change in response to the change in the operation amount of each of the above-mentioned actuators, and the change in the preset operation amount of each of the above-mentioned actuators. A comprehensive evaluation function is defined in advance to evaluate the outlet side plate shape and plate thickness of the above-mentioned rolled material using the difference between the target plate thickness change amount and the target plate thickness change amount.
During the control of the plate shape of the rolled material, the plate shape of the rolled material is constantly detected by the plate shape detector, and the detection results from the plate shape detector and the current position and position of each of the actuators are Based on the movement limit of each actuator described above determined from the upper limit of movement speed, the operation amount of the plate shape control actuator and plate thickness control actuator that minimizes the value of the comprehensive evaluation function is calculated, and the plate shape is calculated. The control actuator is controlled based on the operation amount calculated by the plate shape control device, and the plate thickness control actuator is controlled based on the operation amount from the plate thickness control device. A method for controlling the shape of a rolled material using a multi-high rolling mill, characterized in that the control is performed based on the operation amount obtained by adding up the operation amount.
(4)上記板形状検出器により検出された多段圧延機出
側の板形状と予め設定された目標板形状との差が、誤差
形状に関し、現時点の誤差形状と現時点よりも1時点前
の誤差形状の差との重み付き合計値として求められるこ
とを特徴とする請求項3記載の多段圧延機による圧延材
形状制御方法。
(4) The difference between the plate shape on the output side of the multi-high rolling mill detected by the plate shape detector and the preset target plate shape is the difference between the current error shape and the error one point before the current time. 4. The method for controlling the shape of a rolled material using a multi-high rolling mill according to claim 3, wherein the shape is determined as a weighted sum of the shape difference.
JP1300860A 1988-11-29 1989-11-21 Rolled material shape control method by multi-stage rolling mill Expired - Lifetime JPH084824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1300860A JPH084824B2 (en) 1988-11-29 1989-11-21 Rolled material shape control method by multi-stage rolling mill

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP63-299495 1988-11-29
JP29949588 1988-11-29
JP22180389 1989-08-30
JP1-221803 1989-08-30
JP1300860A JPH084824B2 (en) 1988-11-29 1989-11-21 Rolled material shape control method by multi-stage rolling mill

Publications (2)

Publication Number Publication Date
JPH03155403A true JPH03155403A (en) 1991-07-03
JPH084824B2 JPH084824B2 (en) 1996-01-24

Family

ID=27330584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1300860A Expired - Lifetime JPH084824B2 (en) 1988-11-29 1989-11-21 Rolled material shape control method by multi-stage rolling mill

Country Status (1)

Country Link
JP (1) JPH084824B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668910B2 (en) * 2004-06-24 2011-04-13 三菱電機株式会社 Elevator power failure operation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668910B2 (en) * 2004-06-24 2011-04-13 三菱電機株式会社 Elevator power failure operation device

Also Published As

Publication number Publication date
JPH084824B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
KR101149927B1 (en) Rolling load prediction learning method for hot plate rolling
KR970033151A (en) Measuring method and control method of strip crown of continuous rolling mill
US5010756A (en) Method of and apparatus for controlling shape of rolled material on multi-high rolling mill
JPH03155403A (en) Method for controlling shape of rolled material by multiple rolling mill
JPH04111910A (en) Method for controlling shape of rolled stock in multistage rolling mill
KR20020004801A (en) Method of controlling board thickness, calculating passing schedule, and board thickness controller for continuous rolling machine
JP3309819B2 (en) Cluster rolling mill and plate shape control method using the same
JP4213433B2 (en) Edge drop control device for rolling mill
JP2002028708A (en) Method of manufacturing for steel sheet and thick plate and device for manufacturing thick plate
JPS61199507A (en) Control method of forward slip in metallic sheet rolling
JP3327236B2 (en) Cluster rolling mill and plate shape control method
JPS6124082B2 (en)
US20220088657A1 (en) Edge drop control device
JPH0734930B2 (en) Plate shape control method in rolling mill
JPH05305315A (en) Method for controlling shape of sheet in rolling mill
JPH09155420A (en) Method for learning setup model of rolling mill
JPH05269516A (en) Method for controlling shape in rolling of thick plate
KR20040056055A (en) Material Plastic Coefficient Correction and Rolling Force Prediction in Rolling Mill
JPH0484612A (en) Method for controlling width of rolled stock
JP2882932B2 (en) Strip crown control method in cross rolling mill
JPH08238509A (en) Method for controlling edge drop at time of cold rolling
JPH07256320A (en) Presetting method for rolling mill
JP3219976B2 (en) Hot rolling hysteresis compensation method
JPH06304635A (en) Method for controlling plate thickness at bitten end part in plate rolling
JPH06114423A (en) Method for controlling rolling strip in hot strip finishing mill

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 14

EXPY Cancellation because of completion of term