JP2002346616A - Method for controlling sheet thickness - Google Patents

Method for controlling sheet thickness

Info

Publication number
JP2002346616A
JP2002346616A JP2001148014A JP2001148014A JP2002346616A JP 2002346616 A JP2002346616 A JP 2002346616A JP 2001148014 A JP2001148014 A JP 2001148014A JP 2001148014 A JP2001148014 A JP 2001148014A JP 2002346616 A JP2002346616 A JP 2002346616A
Authority
JP
Japan
Prior art keywords
rolling
thickness
pass
distribution
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001148014A
Other languages
Japanese (ja)
Inventor
Miyako Nishino
都 西野
Yasushi Maeda
恭志 前田
Akira Kitamura
章 北村
Sadao Morimoto
禎夫 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001148014A priority Critical patent/JP2002346616A/en
Publication of JP2002346616A publication Critical patent/JP2002346616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that no good feedforward control of sheet thickness can be done in a conventional sheet thickness control method wherein the thickness of a sheet to be rolled is controlled by feedforward of the correction amount of a reduction position predicted for the rolling of the following pass because high predicted accuracy of a sheet temperature is not obtainable and/or deviation in tracking has a great effect and/or for other reason. SOLUTION: According to the invented method, the sheet temperature distribution in the longitudinal direction for the following pass is predicted from the entering sheet thickness, leaving sheet thickness and sheet temperature distribution in the longitudinal direction at the time of the rolling of the preceding pass. The rolling load distribution in the longitudinal direction of the sheet at the time of the rolling of the following pass is predicted based on the sheet temperature distribution in the longitudinal direction of the sheet for the following pass and the leaving sheet thickness distribution in the longitudinal direction of the sheet. Then the correction amount of the reduction position for the rolling of the following pass is predicted, whereby good feedforward control is done. This feedforward control method is also applicable to the rolling of a tapered sheet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,板厚制御方法に係
り,詳しくは,次パスの圧延に対して予測した圧下位置
補正量をフィードフォワードして被圧延材の板厚を制御
する板厚制御方法に関し,特にテーパ状の板を圧延する
に適した板圧制御方法するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a thickness of a material to be rolled, and more particularly, to a method for controlling the thickness of a material to be rolled by feeding forward a reduction position correction amount predicted for rolling in the next pass. The present invention relates to a control method which is particularly suitable for rolling a tapered plate.

【0002】[0002]

【従来の技術】厚板圧延などの板圧延工程では,製品の
品質に大きな影響を与える,板材の長手方向の板厚変動
を低減するために,様々な種類の自動板厚制御(AG
C)が用いられてきた。前記AGCは,BISRA−A
GCや絶対値AGCに代表されるフィードバック制御
(FB−AGC)とフィードフォワード制御(FF−A
GC)とに大別される。前記FB−AGCのうち,前記
BISRA−AGCは,ロックオン値からの荷重変動に
比例ゲインを乗じてロールギャップを調整するFB制御
であり,前記絶対値AGCは,実測荷重より出側板厚の
絶対値を予測し,目標板厚と予測板厚の差からI又はP
I制御器によってロールギャップを調整するものであ
る。過去,前記したFB−AGCが基本的に用いられて
きたが,FB−AGCでは,ロールギャップを調整する
油圧系などの応答遅れにより,温度外乱を補償しきれな
かったり,圧延中に変態が起こるなどして荷重に急激な
変化があっても,その変化に追従できないなどの問題が
あり,近年ではその問題を解決するために前記FF−A
GCが採用されたり,前記FF−AGCと前記FB−A
GCとが併用されることが多くなった。前記FF−AG
Cは,入側板厚分布より補正するギャップ分布を実際の
圧延前に予め求めておき,トラッキング装置によって指
定のタイミングでギャップ分布に応じてギャップを調整
するものであり,前記FF−AGCにより,高周波板厚
変動を制御する場合には,高いトラッキング精度が必要
となる。例えば特開平6−304635号公報(以下,
参照公報1という)や,特開平9−253723号公報
(以下,参照公報2という)に記載の技術は,FB−A
GCとFF−AGCとを組み合わせたものである。前記
参照公報1に記載の技術は,前々パスと前パスの板端部
の荷重とロールギャップから前パスの板端部の塑性係数
を求め,該求めた塑性係数から次パス噛み込み時の荷重
変動を予測し,さらにこの予測した荷重変動からAGC
の応答遅れを予測して,設定ギャップ及び定常部ギャッ
プに補正を加えるものである。前記参照公報2に記載の
技術は,予め求められた温度分布,及び板厚分布から荷
重分布を予測し,絶対値AGCの遅れを考慮してギャッ
プ補正量を算出するものである。
2. Description of the Related Art In a sheet rolling process such as a thick plate rolling, various types of automatic thickness control (AG) are used to reduce the thickness variation in the longitudinal direction of a sheet material, which greatly affects the quality of a product.
C) has been used. The AGC is BISRA-A
Feedback control (FB-AGC) represented by GC and absolute value AGC and feedforward control (FF-A
GC). Among the FB-AGCs, the BISRA-AGC is an FB control that adjusts a roll gap by multiplying a load variation from a lock-on value by a proportional gain, and the absolute value AGC is an absolute value of an output side plate thickness from an actually measured load. Value, and I or P is calculated from the difference between the target thickness and the predicted thickness.
The roll gap is adjusted by the I controller. In the past, the above-mentioned FB-AGC has been basically used. However, in the FB-AGC, due to a response delay of a hydraulic system or the like for adjusting a roll gap, temperature disturbance cannot be compensated or transformation occurs during rolling. For example, even if there is a sudden change in the load, there is a problem that the change cannot be followed. In recent years, the FF-A
GC is adopted or the FF-AGC and the FB-A
It is often used in combination with GC. The FF-AG
C is for obtaining a gap distribution to be corrected from the entry-side sheet thickness distribution in advance before actual rolling, and adjusting the gap at a designated timing by a tracking device according to the gap distribution. When controlling the thickness variation, high tracking accuracy is required. For example, Japanese Patent Application Laid-Open No. 6-304635 (hereinafter referred to as
The technology described in Japanese Patent Application Laid-Open No. 9-253723 (hereinafter referred to as Reference 2) is disclosed in FB-A.
This is a combination of GC and FF-AGC. The technique described in the above-mentioned Reference Publication 1 obtains a plastic coefficient of a plate end of a previous pass from a load and a roll gap of a plate end of a two-pass before and a previous pass, and obtains a plastic coefficient at the time of the next pass biting from the obtained plastic coefficient. The load fluctuation is predicted, and AGC is performed based on the predicted load fluctuation.
The response delay is predicted, and the set gap and the steady-state gap are corrected. The technique disclosed in Reference 2 predicts a load distribution from a temperature distribution and a sheet thickness distribution obtained in advance, and calculates a gap correction amount in consideration of a delay in the absolute value AGC.

【0003】[0003]

【発明が解決しようとする課題】前記参照公報1に記載
の技術では,全補償量をフィードフォワードで補償する
ためトラッキングがずれると板厚への影響が大きく,さ
らに塑性係数を介するため制御圧延時に変態を考慮でき
ないという問題がある。また,前記参照公報2に記載の
技術では,温度分布を精度良く予測する必要があるが,
前記参照公報2には,温度分布の同定については具体的
な開示がない。温度モデルにより計算を行ったり,温度
計で実測することのみが記載されているが,いずれの場
合でも精度の良い温度分布を得るのは容易ではない。更
に,従来の技術はいずれも板厚一定のモデルを考えてい
るに過ぎず,任意のテーパ状板厚に対応しうるものでは
なかった。本発明は,このような従来の技術における課
題を解決するために,板厚制御方法を改良し,次パスの
圧延に対して予測した圧下位置補正量をフィードフォワ
ードして被圧延材の板厚を制御するに際し,前記次パス
の前パスの圧延時の入側板厚,出側板厚,板温度の板長
手方向分布を定め,前記前パスについて定めた板温度の
板長手方向分布について,前記前パスと前記次パスの間
のパス間時間による空冷分を補正して,前記次パスに対
する板温度の長手方向分布を予測し,前記次パスに対す
る板温度の板長手方向分布,前記前パスに対する出側板
厚の板長手方向分布に基づいて,前記次パスの圧延時の
圧延荷重の板長手方向分布を予測し,前記予測した次パ
スの圧延に対する圧延荷重の板長手方向分布に基づい
て,前記次パスの圧延に対する前記圧下位置修正量を予
測することにより,板温度の板長手方向分布を精度良く
予測しながら圧延中の変態にも対応し,またトラッキン
グのずれや荷重変動予測の誤差に対する許容範囲が大き
い板厚制御方法を提供すると共に,任意形状のテーパ状
板における板厚制御にも適した板厚制御方法を提供する
ことを目的とするものである。
In the technique disclosed in the above-mentioned reference 1, the entire compensation amount is compensated by feedforward, so that if the tracking shifts, the influence on the sheet thickness is large. There is a problem that metamorphosis cannot be considered. Further, in the technique described in Reference Publication 2, it is necessary to accurately predict the temperature distribution.
Reference 2 does not specifically disclose the identification of the temperature distribution. Although only calculation using a temperature model or actual measurement using a thermometer is described, it is not easy to obtain an accurate temperature distribution in any case. Further, all of the conventional techniques only consider a model having a constant thickness, and cannot deal with an arbitrary tapered thickness. In order to solve such problems in the conventional technology, the present invention improves the thickness control method, feed-forwards the reduction position correction amount predicted for the rolling in the next pass, and increases the thickness of the material to be rolled. In controlling the sheet thickness, the thickness distribution of the inlet side, the thickness of the outlet side, and the sheet temperature at the time of rolling in the previous pass of the next pass are determined. The longitudinal distribution of the sheet temperature for the next pass is predicted by compensating for the air-cooling component due to the inter-pass time between the pass and the next pass, and the sheet longitudinal distribution of the sheet temperature for the next pass and the output for the previous pass. Based on the distribution of the side plate thickness in the longitudinal direction of the plate, the distribution of the rolling load at the time of rolling in the next pass is predicted in the longitudinal direction of the plate. Against pass rolling By predicting the amount of correction of the recording position, it is possible to accurately predict the plate temperature distribution in the plate longitudinal direction, respond to transformation during rolling, and have a large tolerance for errors in tracking deviations and load fluctuation prediction errors. It is an object of the present invention to provide a control method and a control method suitable for controlling the thickness of a tapered plate having an arbitrary shape.

【0004】[0004]

【課題を解決するための手段】前記目的を達成するため
に,請求項1に係る発明は,次パスの圧延に対して予測
した圧下位置補正量をフィードフォワードして被圧延材
の板厚を制御する板厚制御方法において,前記次パスの
前パスの圧延時の入側板厚,出側板厚,板温度の板長手
方向分布を定め,前記前パスについて定めた板温度の板
長手方向分布について,前記前パスと前記次パスの間の
パス間時間による空冷分を補正して,前記次パスに対す
る板温度の長手方向分布を予測し,前記次パスに対する
板温度の板長手方向分布,前記前パスに対する出側板厚
の板長手方向分布,及び次パスに対する出側板厚目標値
に基づいて,前記次パスの圧延時の圧延荷重の板長手方
向分布を予測し,前記予測した次パスの圧延に対する圧
延荷重の板長手方向分布に基づいて,前記次パスの圧延
に対する前記圧下位置修正量を予測すると共に,前記次
パスの圧延時の圧延荷重の板長手方向分布の予測時に用
いる次パスに対する出側板厚目標値としてテーパ状の板
厚目標値を用い且つ,上記テーパ状の板厚目標値を使用
した絶対値AGCを併用することを特徴とする板厚制御
方法特許して構成されている。また請求項2に記載の発
明は,前記次パスの前々パスの圧延及び前パスの圧延そ
れぞれにおける圧延荷重とロールギャップを実測し,該
実測した圧延荷重とロールギャップとに基づいて,前記
前パスの圧延時の入側板厚,出側板厚,板温度の板長手
方向分布を定めてなる請求項1に記載の板厚制御方法で
ある。前記請求項1に記載の板厚制御方法では,次パス
の圧延に対して予測した圧下位置補正量をフィードフォ
ワードして被圧延材の板厚を制御するに際し,前記次パ
スの前パスの圧延時の入側板厚,出側板厚,板温度の板
長手方向分布が定められる。次に,前記前パスについて
定めた板温度の板長手方向分布について,前記前パスと
前記次パスの間のパス間時間による空冷分が補正され,
前記次パスに対する板温度の長手方向分布が予測され
る。そして,前記次パスに対する板温度の板長手方向分
布,前記前パスに対する出側板厚の板長手方向分布及
び,及び次パスに対するテーパ状の出側板厚目標値に基
づいて,前記次パスの圧延時の圧延荷重の板長手方向分
布が予測され,前記予測した次パスの圧延に対する圧延
荷重の板長手方向分布に基づいて,前記次パスの圧延に
対する前記圧下位置修正量が予測される。このように前
記請求項1に記載の板厚制御方法では,圧延直前のプロ
セスデータを用いて前記次パスに対する板温度の長手方
向分布を予測することによって,温度予測精度を高くす
ることができる。また,制御圧延時に温度を介して変形
抵抗を予測することが可能となり,変態塑性に対応する
ことができる。しかも,全補償量をフィードフォワード
で補償する必要はなく,トラッキングのずれや荷重変動
予測の誤差に対する大きな許容範囲を確保することがで
きる。また上記のように次パスの圧延時の圧延荷重の板
長手方向分布を予測するに当たって,次パスに対するテ
ーパ状の出側板厚目標値が参照されるので,圧延板厚を
任意テーパ状に成形することが可能となる。さらに請求
項1では,上記テーパ状目標板厚を目標値とするファー
ドバック回路が併用されるので,これにより,フィード
フォワード制御だけでは消去することの困難なモデルの
ずれ(テーパ板形状等による目標板厚の変動)に伴う誤
差の積算を修正することができる。前記請求項2に記載
の板厚制御方法では,前記次パスの前々パスの圧延及び
前パスの圧延それぞれにおける圧延荷重とロールギャッ
プの実測データに基づいて,前記前パスの圧延時の入側
板厚,出側板厚,板温度の板長手方向分布が定められる
ので,FF−AGCのために,圧延機に近接されるγ線
板厚計を用いる必要がない。
In order to achieve the above object, the invention according to claim 1 is to feed forward a reduction amount correction amount predicted for rolling in the next pass to reduce the thickness of a material to be rolled. In the thickness control method for controlling, a distribution in the longitudinal direction of the thickness of the inlet side, a thickness of the exit side, and the temperature of the plate at the time of rolling in the preceding pass of the next pass is determined. The air-cooling component due to the inter-pass time between the previous pass and the next pass is corrected to predict the plate temperature longitudinal distribution for the next pass, and the plate temperature distribution for the next pass in the plate longitudinal direction. The longitudinal distribution of the rolling load during the rolling of the next pass is predicted based on the longitudinal distribution of the thickness of the exit side for the pass and the target value of the exit thickness for the next pass. Rolling load plate longitudinal direction Based on the distribution, the amount of correction of the rolling position for the rolling of the next pass is predicted, and the taper shape is set as a target value of the outlet side thickness for the next pass used in predicting the distribution of the rolling load at the time of rolling in the next pass. The thickness control method is characterized in that the thickness target value is used together with the absolute value AGC using the tapered target value. According to a second aspect of the present invention, the rolling load and the roll gap in each of the rolling before the next pass and the rolling in the preceding pass are actually measured, and based on the actually measured rolling load and the roll gap, the preceding load is determined. 2. The sheet thickness control method according to claim 1, wherein a distribution in the sheet longitudinal direction of an incoming side sheet thickness, an outgoing side sheet thickness, and a sheet temperature during rolling of the pass is determined. In the thickness control method according to the first aspect, when the thickness of the material to be rolled is controlled by feeding forward the reduction position correction amount predicted for the rolling in the next pass, the rolling in the previous pass of the next pass is performed. The distribution in the longitudinal direction of the sheet thickness at the entrance, the sheet thickness at the exit, and the sheet temperature at the time are determined. Next, for the longitudinal distribution of the plate temperature determined for the previous pass, the air-cooling component due to the inter-pass time between the previous pass and the next pass is corrected,
The longitudinal distribution of the plate temperature for the next pass is predicted. Then, based on the distribution of the sheet temperature in the longitudinal direction of the next pass, the distribution of the exit side thickness in the longitudinal direction of the preceding pass, and the target value of the exit side thickness in a tapered shape for the next pass, And the rolling position correction amount for the next pass rolling is predicted based on the predicted rolling longitudinal load distribution for the next pass rolling. As described above, in the sheet thickness control method according to the first aspect, the temperature prediction accuracy can be improved by predicting the longitudinal distribution of the sheet temperature for the next pass using the process data immediately before rolling. In addition, it becomes possible to predict deformation resistance via temperature during controlled rolling, and it is possible to cope with transformation plasticity. In addition, it is not necessary to compensate for the entire compensation amount by feedforward, and a large permissible range for tracking deviation and load fluctuation prediction error can be secured. Also, as described above, in predicting the distribution of the rolling load in the longitudinal direction of the rolling at the time of rolling in the next pass, the target value of the tapered exit side thickness for the next pass is referred to, so that the rolled plate thickness is formed into an arbitrary tapered shape. It becomes possible. Further, in the first aspect, a feedback circuit that uses the tapered target plate thickness as a target value is also used, so that a model shift that is difficult to delete only by feedforward control (a target value due to a taper plate shape or the like) is obtained. It is possible to correct the integration of the error accompanying the change in the sheet thickness). In the sheet thickness control method according to the second aspect, based on actual measurement data of a rolling load and a roll gap in each of the rolling before the next pass and the rolling in the previous pass of the next pass, the input side plate at the time of rolling in the preceding pass. Since the thickness, delivery side thickness, and plate temperature distribution in the plate length direction are determined, it is not necessary to use a gamma-ray thickness gauge close to the rolling mill for FF-AGC.

【0005】[0005]

【発明の実施の形態】以下,添付図面を参照して,本発
明の実施の形態につき説明し,本発明の理解に供する。
尚,以下の実施の形態は,本発明の具体的な一例であっ
て,本発明の技術的範囲を限定する性格のものではな
い。ここに,図1は本発明の実施の形態に係る板厚制御
方法を説明するためのフローチャート,図2は本発明の
実施の形態に係る板厚制御方法を実施するのに好適なF
F−AGCを説明するための構成図である。本発明の実
施の形態に係る板厚制御方法は,例えば次パスの圧延に
対して予測した圧下位置補正量をフィードフォワードし
て被圧延材の板厚を制御する可逆式圧延機の板厚制御方
法であって,その特徴とするところは,図1に示す如
く,前記次パスの前々パスの圧延と前パスの圧延それぞ
れにおける圧延荷重とロールギャップを実測し(S
1),前記次パスの前パスの圧延時の入側板厚,出側板
厚,板温度の板長手方向分布を定め(S2),前記前パ
スについて定めた板温度の板長手方向分布について,前
記前パスと前記次パスの間のパス間時間による空冷分を
補正して,前記次パスに対する板温度の長手方向分布を
予測し(S3),前記次パスに対する板温度の板長手方
向分布,前記前パスに対する出側板厚の板長手方向分布
に基づいて,前記次パスの圧延時の圧延荷重の板長手方
向分布を予測し(S4),前記予測した次パスの圧延に
対する圧延荷重の板長手方向分布に基づいて,前記次パ
スの圧延に対する前記圧下位置修正量を予測する(S
5)ところである。また,本発明の実施の形態に係る板
厚制御方法を実施するのに好適なフィードフォワード制
御装置(FF−AGC)1は,図2に示す如く,例えば
絶対値AGC2が圧下装置3に対して設定する圧下位置
について,本発明の実施の形態に係る板厚制御方法によ
り定めた圧下位置修正量をフィードフォワードするもの
である。そして後記するように,当該フィードフォワー
ド制御装置(FF−AGC)に対して与える目標板厚と
して,テーパ状の板厚目標値を採用する点が本発明の特
徴の一つである。かかる目標板厚値は任意に選べるの
で,任意形状のテーパ板の圧延が可能となる。前記絶対
値AGC2は,例えば板(被圧延材に相当)4の仕上げ
圧延を行う可逆式の仕上圧延機5を対象とするものであ
り,上下ワークロール5a,5b間のロールギャップを
調整したり,ロール速度を設定するのに用いられる。前
記絶対値AGC2の構成は周知であるのでその詳細な説
明を省略するが,本発明における別の特徴点は,上記絶
対値AGC2に与える目標板厚としてテーパ状の板厚目
標値を採用する点である。これによりフィードフォワー
ド制御のみでは解消し切れないテーパ状モデル(目標
値)を採用することによるずれが解消される。前記仕上
圧延機5の上ワークロール5aを支承するバックアップ
ロール51aの上方には,ロードセル6,位置計7が設
けられており,それぞれから圧延荷重P,及びロールギ
ャップS(圧下位置に対応)が,前記FF−AGC1へ
供給される。
Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention.
The following embodiment is a specific example of the present invention and does not limit the technical scope of the present invention. Here, FIG. 1 is a flowchart for explaining a sheet thickness control method according to an embodiment of the present invention, and FIG. 2 is an F-number suitable for implementing the sheet thickness control method according to the embodiment of the present invention.
FIG. 3 is a configuration diagram for explaining F-AGC. A thickness control method according to an embodiment of the present invention includes, for example, a thickness control of a reversible rolling mill that controls a thickness of a material to be rolled by feeding forward a reduction position correction amount predicted for the next pass rolling. The method is characterized in that, as shown in FIG. 1, the rolling load and the roll gap in each of the rolling before the next pass and the rolling in the previous pass are actually measured (S
1), the distribution of the sheet thickness in the longitudinal direction of the sheet at the entrance side, the thickness of the exit side, and the sheet temperature at the time of rolling of the previous pass of the next pass is determined (S2). The longitudinal distribution of the plate temperature for the next pass is predicted by correcting the air-cooling component due to the inter-pass time between the previous pass and the next pass (S3). Based on the distribution of the thickness of the delivery side sheet thickness in the longitudinal direction of the preceding pass, the distribution of the rolling load in the rolling of the next pass is predicted in the longitudinal direction of the plate (S4). Based on the distribution, the amount of correction of the rolling position for the rolling of the next pass is predicted (S
5) By the way. Further, as shown in FIG. 2, a feed-forward control device (FF-AGC) 1 suitable for carrying out the sheet thickness control method according to the embodiment of the present invention has, for example, an absolute value AGC 2 For the set rolling position, the rolling position correction amount determined by the sheet thickness control method according to the embodiment of the present invention is fed forward. As will be described later, one of the features of the present invention is that a tapered target value of the thickness is adopted as the target thickness given to the feedforward control device (FF-AGC). Since such a target plate thickness value can be arbitrarily selected, a taper plate having an arbitrary shape can be rolled. The absolute value AGC2 is intended for, for example, a reversible finishing mill 5 that performs finish rolling of a plate (corresponding to a material to be rolled) 4, and adjusts a roll gap between upper and lower work rolls 5a and 5b. , Used to set the roll speed. Since the configuration of the absolute value AGC2 is well known, a detailed description thereof will be omitted. However, another feature of the present invention is that a tapered target value for the target thickness to be given to the absolute value AGC2 is adopted. It is. As a result, the deviation caused by adopting the tapered model (target value) which cannot be eliminated only by the feedforward control is eliminated. Above the backup roll 51a supporting the upper work roll 5a of the finishing mill 5, a load cell 6 and a position meter 7 are provided, from each of which a rolling load P and a roll gap S (corresponding to a rolling position) are provided. , FF-AGC1.

【0006】以下,上記板厚制御装置の動作,即ち本発
明の実施の形態に係る板厚制御方法の詳細について説明
する。前記FF−AGC1は,圧下位置修正量ΔS
(i)を予測しようとする次パスiの前々パス(i−
2)及び前パス(i−1)の実績データと,その他計算
や設定から得たデータを用いて,前記圧下位置修正量Δ
S(i)の計算を行う。前記圧下位置修正量ΔS(i)
を予測しようとする次パスiに先立って行われた2パス
の圧延のうち,前々パス(i−2)の圧延において,ロ
ードセル6,及び位置計7により,圧延荷重P,及びロ
ールギャップSの板長手方向分布がそれぞれ採取され
る。前々パス(i−2)の圧延において採取された圧延
荷重P(i−2),及びロールギャップS(i−2)の
長手方向分布から,例えば次式(1)に従って,前々パ
ス(i−2)の圧延における出側板厚h(i−2)の板
長手方向分布が求められる。 h=S+P/M (1) ここで,Mはミル定数である。また,次の前パス(i−
1)の圧延においても,ロードセル6,及び位置計7に
より,圧延荷重P(i−1),及びロールギャップS
(i−1)の板長手方向分布がそれぞれ採取される。前
々パス(i−2)の場合と同様,前パス(i−1)の圧
延において採取された圧延荷重P,及びロールギャップ
Sの板長手方向分布から,上式(1)に従って,前パス
(i−1)の圧延における出側板厚h(i−1)の板長
手方向分布が求められる。前記2パスの圧延では,いず
れのパス(i−2),(i−1)でも,出側板厚hの板
長手方向分布が採取されているが,前々パス(i−2)
の圧延において採取された出側板厚h(i−2)は,前
パス(i−1)における入側板厚H(i−1)として用
いられるものである。そして,前記圧延荷重P(i−
1),入側板厚H(i−1),出側板厚データh(i−
1)の他,設定板幅B,ロール半径から,例えば次式
(2)で表されるような圧延荷重式を用いて,前パス
(i−1)に対する変形抵抗Kf(i−1)の板長手方
向分布が,解析的あるいは数値的に算出される。 P=B・Qp・ld・Kf (2) ここで,Qpは圧下力関数(板厚,ロール半径,荷重,
板幅の関数),ldは接触弧長(荷重,ロール半径,板
厚の関数)である。次に,前パス(i−1)に対する変
形抵抗Kf(i−1)に基づいて,前パス(i−1)に
対する板温度T(i−1)の板長手方向分布が,解析的
あるいは数値的に算出される。変形抵抗Kfと板温度T
との関係は,例えば次式(3)により表される。 Kf=exp(c1+c2/T)・εC3・hC4 (3) ここで,εは歪み(板厚,板幅の関数),c1〜c4は
鋼種毎に層別された係数である。尚,上式(2)及び
(3)で表されるような圧延荷重Pと板温度Tとの関係
は,板4と同じ材料の被圧延材に対して実際の圧延前に
行われた試験的な圧延によって予め求められる。このよ
うにして前々パス(i−2)の圧延,前パス(i−1)
の圧延それぞれにおける圧延荷重P(i−2),P(i
−1),ロールギャップS(i−2),S(i−1)の
実測が行われ(S1),前パス(i−1)の圧延におけ
る入側板厚H(i−1),出側板厚h(i−1),板温
度T(i−1)が算出される(S2)。
Hereinafter, the operation of the above thickness control apparatus, that is, the details of the thickness control method according to the embodiment of the present invention will be described. The above-mentioned FF-AGC1 is a reduction amount ΔS
The path before the next path i for which (i) is to be predicted (i−
2) Using the actual data of the previous pass (i-1) and the data obtained from other calculations and settings, the reduction position correction amount Δ
The calculation of S (i) is performed. The rolling position correction amount ΔS (i)
Of the two passes performed prior to the next pass i to predict the rolling load P and the roll gap S by the load cell 6 and the position meter 7 in the rolling of the pass before (i-2). Are collected in the plate longitudinal direction. From the rolling load P (i-2) and the longitudinal distribution of the roll gap S (i-2) collected in the rolling before the previous pass (i-2), for example, according to the following equation (1), In the rolling in i-2), the distribution in the plate longitudinal direction of the exit side plate thickness h (i-2) is obtained. h = S + P / M (1) where M is a Mill constant. Also, the next previous pass (i-
Also in the rolling of 1), the load cell P and the position meter 7 determine the rolling load P (i-1) and the roll gap S.
The distribution in the plate longitudinal direction of (i-1) is collected. In the same manner as in the case of the pass before (i-2), from the rolling load P and the roll gap S distribution in the plate longitudinal direction obtained in the rolling of the pass before (i-1), according to the above equation (1), In the rolling of (i-1), the distribution of the exit side thickness h (i-1) in the plate longitudinal direction is obtained. In the two-pass rolling, in each of the passes (i-2) and (i-1), the distribution in the plate longitudinal direction of the exit side plate thickness h is collected.
The outgoing side plate thickness h (i-2) collected in the rolling of No. 1 is used as the incoming side plate thickness H (i-1) in the previous pass (i-1). Then, the rolling load P (i−
1), the thickness H (i-1) of the inlet side, and the thickness data h (i-
In addition to 1), the deformation resistance Kf (i-1) with respect to the previous pass (i-1) is determined from the set plate width B and the roll radius using, for example, a rolling load equation represented by the following equation (2). The distribution in the plate longitudinal direction is calculated analytically or numerically. P = B · Qp · ld · Kf (2) where Qp is the rolling force function (sheet thickness, roll radius, load,
Ld is a contact arc length (a function of load, roll radius, and plate thickness). Next, based on the deformation resistance Kf (i-1) for the previous pass (i-1), the distribution in the plate longitudinal direction of the plate temperature T (i-1) for the previous pass (i-1) is analytically or numerically calculated. Is calculated. Deformation resistance Kf and plate temperature T
Is expressed, for example, by the following equation (3). Kf = exp (c1 + c2 / T) · ε C3 · h C4 (3) where, epsilon is strain (plate thickness, a function of plate width), (c1.about.c4) is a coefficient which is stratified for each steel grade. Incidentally, the relationship between the rolling load P and the plate temperature T as expressed by the above equations (2) and (3) is based on the test performed on the rolled material of the same material as the plate 4 before the actual rolling. Is determined in advance by dynamic rolling. In this way, the rolling of the pass before (i-2) and the rolling of the previous pass (i-1)
Rolling loads P (i-2), P (i
-1), actual measurements of the roll gaps S (i-2) and S (i-1) are performed (S1), and the incoming side thickness H (i-1) and the outgoing side plate in the rolling of the previous pass (i-1). The thickness h (i-1) and the plate temperature T (i-1) are calculated (S2).

【0007】次に,前パス(i−1)に対する前記板温
度T(i−1)のデータから,予測しようとする次パス
iに対する板温度T(i)の長手方向分布が予測される
(S3)。例えば,一般的な放射伝熱や対流伝熱の式を
利用して,前パス(i−1)と当該パスiとの間のパス
間時間から空冷による温度低下を補正すればよい。前記
板温度Tのデータは,前パス(i−1)の圧延における
ロールバイト直下の板幅厚方向の平均温度に相当するも
のであり,その算出には既述の通り,圧延直前のプロセ
スデータが使用されるため,次パスiに対する板温度T
(i)について高い予測精度を得ることができる。ま
た,出側板厚hや入側板厚Hは,圧延荷重P,及びロー
ルギャップSから算出されるので,板温度T(i)の予
測の際,仕上圧延機4に近接してγ線板厚計を設ける必
要はない。次に,前記予測された板温度T(i)の板長
手方向分布,次パスiに対する入側板厚H(i)の板長
手方向分布(前パス(i−1)の出側板厚h(i−1)
の板長手方向分布),次パスiに対する出側板厚目標
値,設定板幅,ロール半径から,次パスiの圧延におけ
る圧延荷重P(i)の板長手方向分布が予測される(S
4)。この時,上記次パスiに対する出側板厚目標値と
して目標とするテーパ状の板の板厚目標値を用いる。前
記次パスiの圧延における圧延荷重Pの板長手方向分布
の予測は,前記実施形態に示したと同様,例えば上式
(3)に従って変形抵抗Kfを求め,該求めた変形抵抗
Kfから上式(2)に従って行えばよい。更に,次パス
iに対して予測した圧延荷重P(i)と圧延荷重P
(i)の平均値Pave との差,ΔP(i)から,次式
(4)に従って,次パスiに対して長手方向各点におけ
る圧下位置修正量ΔS(i)が計算される(S5)。 ΔS(i)=haim(i)−g・ΔP(i)/M (4) ここで,gは制御ゲイン,haim(i)はテーパ状目
標板厚,Mはミル定数である。このようにして求められ
た次パスiに対する圧下位置修正量ΔSiは,板長手方
向の各点を圧延速度等によってトラッキングして定めた
所定のタイミングで,圧下位置のフィードフォワード修
正量として次パスiにおいて使用される。これにより任
意のテーパ状目標板厚を得る事ができる。以降のパスに
おいても,同様に圧下位置修正量ΔSが順次予測され,
当該板4に対する全てのパスが終了するまで,圧下装置
3に対してフィードフォワード制御が行われる。本発明
の実施の形態に係る板厚制御方法では,前記圧下位置修
正量ΔS(i)を圧延荷重の差ΔP(i)から求める
際,調整要素である制御ゲインgが介され,この圧下位
置修正量ΔS(i)がフィードフォワードされるため,
トラッキングのずれや荷重変動予測の誤差に対する大き
な許容範囲を確保することができる。上記テーパ状板厚
の目標値は,図2に示すように,絶対値AGC等のフィ
ードバック制御装置に与えられ,絶対値AGCによるフ
ィードバック制御が併用されることが望ましい。これ
は,フィードフォワード制御だけではテーパ板形状等に
よる目標板厚の変動に起因するモデルのずれに伴う誤差
の積算をフィードバック制御を併用することにより修正
することができるからである。ここで,図3に本発明の
実施の形態に係る板厚制御方法によるフィードフォワー
ド制御を行った場合と行わなかった場合とを比較した例
を示す。尚,図3における縦軸は板厚を,横軸は板長手
方向位置(又は時間)を示す。図3(a)は,本発明の
実施の形態に係る板厚制御方法によるフィードフォワー
ド制御を行わなかった場合の例を示すものであるが,急
激な温度変動によって板厚が2回大きく変動してしまっ
ている。一方,図3(b)は,同じ温度変動が加わった
場合について,本発明の実施の形態に係る板厚制御方法
によるフィードフォワード制御を行った場合の例を示す
ものであるが,図3(a)の例と較べて,板厚の変動は
大きく抑えられている。このように本発明の実施の形態
に係る板厚制御方法では,圧延直前のプロセスデータを
用いて前記次パスに対する板温度の長手方向分布を予測
することによって,温度予測精度を高くすることができ
る。また,制御圧延時に温度を介して変形抵抗を予測す
ることが可能となり,変態塑性に対応することができ
る。しかも,全補償量をフィードフォワードで補償する
必要はなく,トラッキングのずれや荷重変動予測の誤差
に対する大きな許容範囲を確保することができる。ま
た,前記次パスの前々パスの圧延及び前パスの圧延それ
ぞれにおける圧延荷重とロールギャップの実測データに
基づいて,前記前パスの圧延時の入側板厚,出側板厚,
板温度の板長手方向分布が定められるので,FF−AG
Cのために,圧延機に近接されるγ線板厚計を用いる必
要がない。尚,前記実施の形態では,本発明に係る板厚
制御方法を,絶対値AGCによるフィードバック制御と
併用したが,他のFB−AGCと組み合わせるようにし
てもよいし,単独で使用するようにしてもよい。また,
板厚計が既に用意されいているのであれば,前記実施の
形態のように前記前パスの圧延時の入側板厚,出側板厚
を算出せず,その板厚計により実測しても構わない。
Next, the longitudinal distribution of the plate temperature T (i) for the next pass i to be predicted is predicted from the data of the plate temperature T (i-1) for the previous pass (i-1) ( S3). For example, the temperature drop due to air cooling may be corrected from the inter-pass time between the previous pass (i-1) and the pass i using a general equation of radiative heat transfer or convective heat transfer. The data of the sheet temperature T corresponds to the average temperature in the sheet width direction immediately below the roll bite in the rolling of the previous pass (i-1), and the calculation is performed as described above. Is used, the plate temperature T for the next pass i
High prediction accuracy can be obtained for (i). Further, since the exit side plate thickness h and the entrance side plate thickness H are calculated from the rolling load P and the roll gap S, when predicting the plate temperature T (i), the γ-ray plate thickness is close to the finishing mill 4. There is no need to provide a meter. Next, the distribution of the predicted plate temperature T (i) in the plate longitudinal direction, the distribution of the incoming plate thickness H (i) for the next pass i in the plate longitudinal direction (the exit plate thickness h (i) of the previous pass (i-1)). -1)
The distribution in the longitudinal direction of the rolling load P (i) in the rolling of the next pass i is predicted from the target longitudinal thickness value for the next pass i, the set sheet width, and the roll radius (S).
4). At this time, the target thickness target value of the tapered plate is used as the exit thickness target value for the next pass i. The prediction of the distribution of the rolling load P in the plate longitudinal direction in the rolling of the next pass i is performed by, for example, obtaining the deformation resistance Kf according to the above equation (3), and calculating the above equation ( What is necessary is just to follow 2). Further, the rolling load P (i) and the rolling load P predicted for the next pass i
From the difference from the average value Pave of (i), ΔP (i), the rolling position correction amount ΔS (i) at each point in the longitudinal direction for the next pass i is calculated according to the following equation (4) (S5). . ΔS (i) = haim (i) −g · ΔP (i) / M (4) where g is a control gain, haim (i) is a tapered target plate thickness, and M is a mill constant. The rolling position correction amount ΔSi with respect to the next pass i thus obtained is determined as a feedforward correction amount of the rolling position at a predetermined timing determined by tracking each point in the longitudinal direction of the sheet by a rolling speed or the like. Used in Thereby, an arbitrary tapered target plate thickness can be obtained. In the subsequent passes, similarly, the rolling position correction amount ΔS is sequentially predicted, and
Until all the passes to the plate 4 have been completed, the feedforward control is performed on the screw-down device 3. In the sheet thickness control method according to the embodiment of the present invention, when the reduction position correction amount ΔS (i) is obtained from the rolling load difference ΔP (i), a control gain g serving as an adjusting element is used. Since the correction amount ΔS (i) is fed forward,
It is possible to secure a large allowable range for tracking deviation and load fluctuation prediction error. As shown in FIG. 2, the target value of the tapered plate thickness is given to a feedback control device such as an absolute value AGC, and it is desirable that feedback control based on the absolute value AGC is also used. This is because the feedforward control alone can correct the integration of the error due to the model deviation due to the variation of the target plate thickness due to the tapered plate shape or the like by using the feedback control together. Here, FIG. 3 shows an example in which the case where feedforward control is performed by the plate thickness control method according to the embodiment of the present invention is compared with the case where feedforward control is not performed. In FIG. 3, the vertical axis represents the plate thickness, and the horizontal axis represents the position (or time) in the plate longitudinal direction. FIG. 3 (a) shows an example in which the feedforward control by the sheet thickness control method according to the embodiment of the present invention is not performed. I have. On the other hand, FIG. 3B shows an example in the case where feedforward control is performed by the sheet thickness control method according to the embodiment of the present invention when the same temperature fluctuation is applied. Compared with the example of a), the variation of the plate thickness is greatly suppressed. As described above, in the sheet thickness control method according to the embodiment of the present invention, the temperature prediction accuracy can be improved by predicting the longitudinal distribution of the sheet temperature for the next pass using the process data immediately before rolling. . In addition, it becomes possible to predict deformation resistance via temperature during controlled rolling, and it is possible to cope with transformation plasticity. In addition, it is not necessary to compensate for the entire compensation amount by feedforward, and a large permissible range with respect to tracking deviation and load fluctuation prediction error can be secured. In addition, based on the measured data of the rolling load and the roll gap in the two-pass rolling before the next pass and the rolling in the preceding pass, the inlet thickness, the outlet thickness,
Since the plate temperature distribution in the plate longitudinal direction is determined, FF-AG
For C, there is no need to use a gamma-ray thickness gauge close to the rolling mill. In the above embodiment, the sheet thickness control method according to the present invention is used together with the feedback control based on the absolute value AGC, but may be combined with another FB-AGC or may be used alone. Is also good. Also,
If a thickness gauge is already prepared, the entry side thickness and the exit side thickness at the time of rolling in the preceding pass are not calculated as in the above-described embodiment, but the actual thickness may be measured by the thickness gauge. .

【0008】[0008]

【発明の効果】以上説明した通り,本発明の板厚制御方
法では,圧延直前のプロセスデータを用いて前記次パス
に対する板温度の長手方向分布を予測することによっ
て,温度予測精度を高くすることができる。また,制御
圧延時に温度を介して変形抵抗を予測することが可能と
なり,変態塑性に対応することができる。しかも,全補
償量をフィードフォワードで補償する必要はなく,トラ
ッキングのずれや荷重変動予測の誤差に対する大きな許
容範囲を確保することができる。また,前記次パスの前
々パスの圧延及び前パスの圧延それぞれにおける圧延荷
重とロールギャップの実測データに基づいて,前記前パ
スの圧延時の入側板厚,出側板厚,板温度の板長手方向
分布を定める場合には,FF−AGCのために,圧延機
に近接されるγ線板厚計を用いる必要がない。図4は絶
対値AGCのみの場合と,本発明の場合の効果の違いを
示すもので,図4(a)に示す,絶対値AGCのみの場
合と比べて,(b)に示す本発明の場合には,目標板厚
(細線)にシミュレーション値(太線)が偏差なく追従
していることが分かる。更に前記次パスの圧延時の圧延
荷重の板長手方向分布の予測時に用いる次パスに対する
出側板厚目標値としてテーパ状の板厚目標値を用いる。
これによりいかなるテーパ形状の板についても本発明を
適用することができる。本発明はまた,上記テーパ状の
板厚目標値を使用した絶対値AGCを併用して構成す
る。これにより,フィードフォワード制御だけでは消去
することの困難なモデルのずれ(テーパ板形状等による
目標板厚の変動)に伴う誤差の積算を修正することがで
きる。
As described above, in the sheet thickness control method of the present invention, the accuracy of temperature prediction is improved by predicting the longitudinal distribution of the sheet temperature for the next pass using the process data immediately before rolling. Can be. In addition, it becomes possible to predict deformation resistance via temperature during controlled rolling, and it is possible to cope with transformation plasticity. In addition, it is not necessary to compensate for the entire compensation amount by feedforward, and a large permissible range for tracking deviation and load fluctuation prediction error can be secured. In addition, based on the measured data of the rolling load and the roll gap in each of the two-pass rolling before the next pass and the rolling in the preceding pass, the sheet thickness of the incoming side sheet thickness, the outgoing side sheet thickness and the sheet temperature at the time of the rolling of the preceding pass are determined. In the case where the directional distribution is determined, it is not necessary to use a gamma-ray thickness gauge close to a rolling mill for FF-AGC. FIG. 4 shows the difference in effect between the case of only the absolute value AGC and the case of the present invention. Compared to the case of only the absolute value AGC shown in FIG. In this case, it can be seen that the simulation value (thick line) follows the target plate thickness (thin line) without deviation. Further, a tapered target thickness value is used as a delivery-side target thickness value for the next pass, which is used in predicting the rolling direction distribution of the rolling load during the rolling of the next pass.
Thus, the present invention can be applied to any tapered plate. The present invention is also configured using the absolute value AGC using the tapered target value of the thickness. As a result, it is possible to correct the accumulation of errors due to model deviation (change in target plate thickness due to tapered plate shape or the like) that is difficult to delete only by feedforward control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係る板厚制御方法を説
明するためのフローチャート。
FIG. 1 is a flowchart for explaining a sheet thickness control method according to an embodiment of the present invention.

【図2】 本発明の実施の形態に係る板厚制御方法を実
施するのに好適なFF−AGCを説明するための構成
図。
FIG. 2 is a configuration diagram for explaining an FF-AGC suitable for performing the thickness control method according to the embodiment of the present invention.

【図3】 本発明の実施の形態に係る板厚制御方法を適
用しない場合と適用した場合の板厚の制御精度を比較し
た例を示す図。
FIG. 3 is a diagram showing an example in which sheet thickness control accuracy is compared between a case where the sheet thickness control method according to the embodiment of the present invention is not applied and a case where the method is applied.

【図4】 本発明における制御方法を用いない場合と,
用いた場合の違いを示すグラフ。
FIG. 4 shows a case where the control method according to the present invention is not used;
The graph which shows the difference at the time of using.

【符号の説明】[Explanation of symbols]

1…FF−AGC 2…FB−AGC 3…圧下装置 4…板 5…仕上圧延機 6…ロードセル 7…位置計 DESCRIPTION OF SYMBOLS 1 ... FF-AGC 2 ... FB-AGC 3 ... Reduction device 4 ... Plate 5 ... Finishing rolling machine 6 ... Load cell 7 ... Position meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 章 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 森本 禎夫 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 Fターム(参考) 4E024 AA07 BB07 CC01 CC02 EE02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Akira Kitamura 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Research Institute, Kobe Steel Ltd. (72) Inventor Sadao Morimoto Kanazawacho, Kakogawa City, Hyogo Prefecture No. 1 Kobe Steel, Ltd. Kakogawa Works F-term (reference) 4E024 AA07 BB07 CC01 CC02 EE02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 次パスの圧延に対して予測した圧下位置
補正量をフィードフォワードして被圧延材の板厚を制御
する板厚制御方法において,前記次パスの前パスの圧延
時の入側板厚,出側板厚,板温度の板長手方向分布を定
め,前記前パスについて定めた板温度の板長手方向分布
について,前記前パスと前記次パスの間のパス間時間に
よる空冷分を補正して,前記次パスに対する板温度の長
手方向分布を予測し,前記次パスに対する板温度の板長
手方向分布,前記前パスに対する出側板厚の板長手方向
分布,及び次パスに対する出側板厚目標値に基づいて,
前記次パスの圧延時の圧延荷重の板長手方向分布を予測
し,前記予測した次パスの圧延に対する圧延荷重の板長
手方向分布に基づいて,前記次パスの圧延に対する前記
圧下位置修正量を予測すると共に,更に前記次パスの圧
延時の圧延荷重の板長手方向分布の予測時に用いる次パ
スに対する出側板厚目標値としてテーパ状の板厚目標値
を用い且つ,上記テーパ状の板厚目標値を使用した絶対
値AGCを併用することを特徴とする板厚制御方法。
In a thickness control method for controlling a thickness of a material to be rolled by feeding forward a rolling position correction amount predicted for a rolling in a next pass, an input side plate at the time of rolling in a preceding pass of the next pass. The distribution in the plate longitudinal direction of thickness, delivery side plate thickness, and plate temperature is determined, and the air cooling component due to the inter-pass time between the previous pass and the next pass is corrected for the distribution of plate temperature in the plate longitudinal direction determined for the previous pass. Predicting the longitudinal distribution of the plate temperature for the next pass, the longitudinal distribution of the plate temperature for the next pass, the longitudinal distribution of the exit thickness for the previous pass, and the target exit thickness for the next pass. On the basis of the,
The rolling direction distribution of the rolling load at the time of rolling in the next pass is predicted, and the rolling position correction amount for the rolling in the next pass is predicted based on the predicted rolling direction distribution of the rolling load for the rolling in the next pass. In addition, a tapered target thickness value is used as a delivery-side target thickness value for the next pass, which is used for predicting a rolling direction distribution of a rolling load in the rolling of the next pass, and the tapered target thickness value is used. A sheet thickness control method characterized by using an absolute value AGC using a combination.
【請求項2】 前記次パスの前々パスの圧延及び前パス
の圧延それぞれにおける圧延荷重とロールギャップを実
測し,該実測した圧延荷重とロールギャップとに基づい
て,前記前パスの圧延時の入側板厚,出側板厚,板温度
の板長手方向分布を定めてなる請求項1に記載の板厚制
御方法。
2. A rolling load and a roll gap in each of the rolling before the next pass of the next pass and a rolling in the preceding pass are measured, and based on the actually measured rolling load and the roll gap, the rolling load and the roll gap during the rolling in the preceding pass are measured. 2. The thickness control method according to claim 1, wherein the distribution of the thickness of the inlet side, the thickness of the outlet side, and the temperature of the sheet in the longitudinal direction are determined.
JP2001148014A 2001-05-17 2001-05-17 Method for controlling sheet thickness Pending JP2002346616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001148014A JP2002346616A (en) 2001-05-17 2001-05-17 Method for controlling sheet thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001148014A JP2002346616A (en) 2001-05-17 2001-05-17 Method for controlling sheet thickness

Publications (1)

Publication Number Publication Date
JP2002346616A true JP2002346616A (en) 2002-12-03

Family

ID=18993406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001148014A Pending JP2002346616A (en) 2001-05-17 2001-05-17 Method for controlling sheet thickness

Country Status (1)

Country Link
JP (1) JP2002346616A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305617A (en) * 2005-05-02 2006-11-09 Nippon Steel Corp Method for rolling steel plate having differential thickness
JP2008246513A (en) * 2007-03-29 2008-10-16 Nisshin Steel Co Ltd Method of manufacturing one-side tapered steel sheet of which the thickness varies into tapered shape in rolling direction
CN104001729A (en) * 2014-04-02 2014-08-27 首钢京唐钢铁联合有限责任公司 Device and method for establishing slab tracking of pinch roll of sizing press
CN112097594A (en) * 2019-06-17 2020-12-18 南京倍立达欧陆装饰艺术工程有限公司 Method for determining thickness of wet plate through secondary measurement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305617A (en) * 2005-05-02 2006-11-09 Nippon Steel Corp Method for rolling steel plate having differential thickness
JP4568164B2 (en) * 2005-05-02 2010-10-27 新日本製鐵株式会社 Rolling straightening method for differential thickness steel plate
JP2008246513A (en) * 2007-03-29 2008-10-16 Nisshin Steel Co Ltd Method of manufacturing one-side tapered steel sheet of which the thickness varies into tapered shape in rolling direction
CN104001729A (en) * 2014-04-02 2014-08-27 首钢京唐钢铁联合有限责任公司 Device and method for establishing slab tracking of pinch roll of sizing press
CN104001729B (en) * 2014-04-02 2016-05-25 首钢京唐钢铁联合有限责任公司 A kind of apparatus for establishing and method of constant width machine pinch roll slab tracking
CN112097594A (en) * 2019-06-17 2020-12-18 南京倍立达欧陆装饰艺术工程有限公司 Method for determining thickness of wet plate through secondary measurement

Similar Documents

Publication Publication Date Title
JPS6121729B2 (en)
JP2002153909A (en) Method and device for measuring and/or controlling flatness and flatness control system
JP2002346616A (en) Method for controlling sheet thickness
JP5293405B2 (en) Roll gap setup method in reverse rolling
KR101536461B1 (en) Apparatus for controlling slab width and method for the same
JP3466523B2 (en) Thickness control method
JP6781411B2 (en) Metal plate thickness control method and equipment, and metal plate manufacturing method and equipment
JP3521081B2 (en) Strip width control method in hot finishing mill
JP2803573B2 (en) Manufacturing method of tapered steel plate
JPH0413411A (en) Method for controlling strip thickness when strip is passed through in hot continuous mill
JPH0413413A (en) Method for controlling strip thickness at passing time on hot continuous rolling mill
JP3301476B2 (en) Absolute value automatic thickness control system for plate rolling
JP3767832B2 (en) Thickness control method in hot rolling
JP5631233B2 (en) Thickness control method of rolling mill
JP3350294B2 (en) Control method and control device for tandem mill
JP3237559B2 (en) Thickness control method of hot continuous rolling mill
JPS6330081B2 (en)
JP3451919B2 (en) Control method of tension between stands in continuous hot rolling mill
JPH08187504A (en) Manufacture of tapered steel sheet
JPH0763747B2 (en) Thickness control method during strip running in hot continuous rolling mill
WO2022226460A1 (en) Roll steering control systems and methods for tandem mills
JPH06304635A (en) Method for controlling plate thickness at bitten end part in plate rolling
JP2950182B2 (en) Manufacturing method of tapered steel plate
JP2023061225A (en) Method and device for controlling steel sheet tension and looper angle during hot rolling
JP2004130332A (en) Method for controlling width in hot finishing mill