JPH0413413A - Method for controlling strip thickness at passing time on hot continuous rolling mill - Google Patents

Method for controlling strip thickness at passing time on hot continuous rolling mill

Info

Publication number
JPH0413413A
JPH0413413A JP2117149A JP11714990A JPH0413413A JP H0413413 A JPH0413413 A JP H0413413A JP 2117149 A JP2117149 A JP 2117149A JP 11714990 A JP11714990 A JP 11714990A JP H0413413 A JPH0413413 A JP H0413413A
Authority
JP
Japan
Prior art keywords
rolling
stand
deviation
rolled
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2117149A
Other languages
Japanese (ja)
Inventor
Tomohito Koseki
智史 小関
Hiroshi Yoshida
博 吉田
Yukio Yarita
鑓田 征雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2117149A priority Critical patent/JPH0413413A/en
Publication of JPH0413413A publication Critical patent/JPH0413413A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To allow the stable strip thickness control by using together the deviation of surface temperature with the temperature measured value between the stands and the temperature deviation recognized with the deviation of rolling load and the deviation of rolling reduction position, and searching for the temperature deviation of the material to be rolled. CONSTITUTION:At least, two sets of the thickness meter 9A, 9B and, at least, one set of the temperature meter 17 are set between the stands, the rolling load of the prescribed stand and the sheet thickness of the material to be rolled 1 is detected at the time when the tip end 8A of the material to be rolled passes through the stand. The temporary rolling temperature deviation of the following stand is predicted with the rolling load and the sheet thickness. And the surface temperature of the material to be rolled is detected at the time the tip end 8A passes through the temperature meter 17, the rolling temperature deviation of the material to be rolled 1 is predicted at the following stand into which the tip end 8A of the material to be rolled is not yet bitten with the temporary rolling temperature deviation and the surface temperature of the material to be rolled. The position of rolling reduction of the following stand is corrected with this predicted value of the rolling temperature deviation and the detected value of sheet thickness deviation. Therefore, the sheet thickness satisfying the target from the tip end of hot strip can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、複数のスタンドを有する熱間連続圧延機に被
圧延材を通板する際、該圧延材の板厚を制御する熱間連
続圧延機における通板時の板厚制御方法の改良に関する
The present invention relates to an improvement in a method for controlling the thickness of a rolled material during passing in a hot continuous rolling mill, which controls the thickness of a rolled material when the material is passed through a hot continuous rolling mill having a plurality of stands. .

【従来の技術】[Conventional technology]

熱間連続圧延機、例えは熱間連続仕上圧延機の通板時に
おいて、ホットストリップの先端から目標通りの厚みを
得るなめには、予め各スタンドの圧下位置くロール間隙
)を適正な位置に設定(セットアツプ)する必要がある
。 従来、各スタンドの圧下位置設定は、過去の圧延データ
からの類推、作業者の経験等がら行われていたが、最近
では圧延理論式(圧延荷重式、変形抵抗式、ゲージメー
タ式、被圧延材温度式等)を駆使して計X機により行わ
れることが多くなってきている。この計算機による各ス
タンドの圧下設定は、計算機に放射温度計等により検出
される圧延機入口側の被圧延材の表面温度データを入力
し、このデータを計算機に予め設定された理論式に基づ
いて処理を行い圧下設定値を算出し、この圧下設定値に
基づいて各スタンドの圧下位置設定を行うというもので
ある。 しかしながら、理論計算により各スタンドの圧下設定を
行ったとしても、実際にそれらが最適値となっていると
は言い雛く、良好な板厚がコイルの先端から得られると
は限らなかった。それは、セットアツプ計算に用いる理
論式自体に精度上の問題が存在するため、及び、計算の
入力条件として必要な、放射温度計等により検出される
仕上圧延機入側の被圧延材の表面温度に検出誤差が存在
するためである。このうち、前者の理論式については、
圧延実績データの集積により改善され得るか、後者の仕
上圧延機入側の被圧延材表面温度に関しては、高精度に
測定することは現状では困難である。即ち、表面温度測
定は、被圧延材の表面性状、あるいは水乗り等の測定環
境の問題により、測定値と実際値が食い違うことが多々
あるだけでなく、セットアツプ計算に必要であるのは板
厚方向の平均温度であり、これは実測表面温度から推定
する以外に方法がなく、板厚サイズ等により誤差を生じ
る可能性がある。 以上の点から、良好な板厚をホットストリップの先端か
ら得るためには、通板中に各スタンドの圧下位置を適正
な値に修正する必要がある。この対策としては、ゲージ
メータAGC(Automat+cG auge  C
ontro l )を通板時から採用することが考えら
れるが、フィードバック制御であるため制御の応答性が
問題になること、ゲージメータ式で必要な実ロール開度
か圧延によるロールの熱膨張及び摩耗等で変化するなめ
正確な板厚か算出されないこと等により、コイルの先端
から良好な板厚を得ることは困難である。 又、この修正制御として、特開昭59−144510で
は、スタンド間に厚み計を設置して、検出した被圧延材
の板厚偏差に基づいて圧下蓋又は、圧延荷重を修正制御
する方法を提案している。しかしながら、被圧延材の温
度偏差は圧延時の荷重変動に大きな影響を及ぼすにもか
かわらず、精度良く予測する方法を考慮しておらず、前
述の通り被圧延材の温度測定として種々の問題点のある
放射温度計等による表面温度測定によって行っているた
め、良好な板厚を得ることは困難であった。 又、その他の方法として、前段スタンドの圧延荷重のみ
を、あるいはスタンド開厚み計による板厚と当該厚み計
の上流側の圧延荷重の両者を検出して変形抵抗偏差を算
出し、この変形抵抗偏差が後段スタンドにおいても同一
、あるいは変形抵抗偏差の変化率が各スタンドで同一と
仮定して、これらの値に基づいて後段スタンドの圧下位
置を短時間内に修正する方法(特公昭51−2061、
特開昭63−220915)が提案されている。 しかしながら、変形抵抗は、被圧延材温度、圧下率、圧
延速度、化学成分等の複雑な関数であり、前段スタンド
で検出した変形抵抗から後段スタンドの変形抵抗を予測
することは困難である。 一方、発明者等は、上記の問題点を解決するものとして
、既に、特開昭60−247408において、検出した
圧延荷重偏差及び圧下位置偏差から次スタンドでの被圧
延材温度偏差及び入側板厚偏差を予測して、被圧延材が
噛み込まれる前に圧下修正を行う方法を開示している。 この方法によれば、圧下スクリューの回転及び油圧シリ
ンダの動きから検出した圧下位置が、実際のロール開度
(上下ワークロール間の間隙)と一致する場合には、コ
イルの先端から目標の板厚を得ることができるという利
点を有する。
In order to obtain the desired thickness from the tip of the hot strip during strip passing in a hot continuous rolling mill, for example a hot continuous finishing mill, it is necessary to set the roll gap (placed between the rolls of each stand) at an appropriate position in advance. It is necessary to set it up. Traditionally, the rolling position setting of each stand was done by analogy with past rolling data, operator experience, etc., but recently rolling theory formulas (rolling load formula, deformation resistance formula, gauge meter formula, rolled Increasingly, this is carried out using a total of X machines, making full use of the material temperature formula, etc. To set the rolling reduction of each stand using this calculator, input the surface temperature data of the material to be rolled at the entrance of the rolling mill detected by a radiation thermometer etc. into the calculator, and use this data based on a theoretical formula preset in the calculator. The process is carried out to calculate the set value of the roll reduction, and the position of each stand is set based on this set value of the roll reduction. However, even if the reduction settings for each stand were determined by theoretical calculations, it was difficult to say that they were actually the optimum values, and a good plate thickness could not always be obtained from the tip of the coil. This is because there is an accuracy problem with the theoretical formula used for the setup calculation, and also because the surface temperature of the rolled material at the entrance of the finishing rolling mill, which is detected by a radiation thermometer etc., is required as an input condition for the calculation. This is because there is a detection error in . Of these, for the former theoretical formula,
Although it may be possible to improve this by accumulating rolling performance data, it is currently difficult to measure the surface temperature of the rolled material on the entry side of the finishing rolling machine with high precision. In other words, when measuring surface temperature, not only are the measured values and actual values often discrepant due to the surface properties of the rolled material or problems in the measurement environment such as riding on water, but the set-up calculations require This is the average temperature in the thickness direction, and there is no other way to estimate it than from the actually measured surface temperature, and there is a possibility that errors may occur depending on the plate thickness size, etc. From the above points, in order to obtain a good plate thickness from the tip of the hot strip, it is necessary to correct the rolling position of each stand to an appropriate value during sheet threading. As a countermeasure for this, gauge meter AGC (Automat+cG auge C
It is conceivable to adopt it from the time of sheet threading, but since it is a feedback control, the responsiveness of the control will be a problem, and the actual roll opening required by the gauge meter type, the thermal expansion and wear of the rolls due to rolling. It is difficult to obtain a good thickness from the tip of the coil due to the fact that the exact thickness cannot be calculated due to changes in the thickness of the coil. Furthermore, as a method of corrective control, JP-A-59-144510 proposes a method of installing a thickness gauge between the stands and correcting and controlling the rolling cover or rolling load based on the detected thickness deviation of the material to be rolled. are doing. However, although the temperature deviation of the rolled material has a large effect on the load fluctuation during rolling, no method has been considered to accurately predict it, and as mentioned above, there are various problems when measuring the temperature of the rolled material. Since this is done by measuring the surface temperature using a radiation thermometer or the like, it is difficult to obtain a good plate thickness. In addition, as another method, the deformation resistance deviation is calculated by detecting only the rolling load of the front stage stand, or both the plate thickness by the stand open thickness gauge and the rolling load on the upstream side of the thickness gauge, and calculating the deformation resistance deviation. is the same for the rear stand, or the rate of change of deformation resistance deviation is the same for each stand, and a method of correcting the lowering position of the rear stand within a short time based on these values (Japanese Patent Publication No. 51-2061,
JP-A-63-220915) has been proposed. However, the deformation resistance is a complex function of the temperature of the rolled material, rolling reduction, rolling speed, chemical composition, etc., and it is difficult to predict the deformation resistance of the rear stand from the deformation resistance detected at the front stand. On the other hand, the inventors have already proposed in Japanese Patent Application Laid-Open No. 60-247408 as a way to solve the above-mentioned problems. A method is disclosed in which the deviation is predicted and the reduction is corrected before the material to be rolled is bitten. According to this method, if the rolling position detected from the rotation of the rolling screw and the movement of the hydraulic cylinder matches the actual roll opening (gap between the upper and lower work rolls), the target plate thickness can be achieved from the tip of the coil. It has the advantage of being able to obtain

【発明が達成しようとする課題】 しかしながら、スタンド間に配置した温度計で予測され
た被圧延材表面温度から該圧延材温度を求める方法では
、前述の通り測定環境、板厚サイズ、計算式誤差等によ
り誤差を生じる可能性がある。 又、特開昭60−247408の方法では、圧延時の荷
重変動に大きな影響を及ぼす被圧延材温度は、圧延ロー
ルの圧下位置偏差と圧延荷重偏差の測定値から算出して
いるが、この計算式には誤差が含まれている。又、圧延
本数が増えるに連れてロールの熱膨張及び摩耗が発生し
検出圧下位置がロール開度と一致しなくなると、正しい
圧下位置偏差や圧延荷重偏差を検出することができない
。 これらのため、この方法による被圧延材温度算出は不正
確になってしまう。 それで、これらのように従来、被圧延材温度を正確に得
ることができなかったため、板厚制御が不安定になると
いう問題点があった。 本発明は、前記従来の問題点を解決するべくなされたも
ので、荷重変動への影響の大きい被圧延材の温度偏差を
測定環境や板厚サイズ、圧延ロールの熱膨張や摩耗等の
影響を受けることなく正確に求めて、精度良く安定な圧
下修正を行うことができ、ホットストリップの先端から
目標の板厚を確実に得ることができる熱間連続圧延機に
おける通板時の板厚制御方法を提供することを目的とす
る。
[Problems to be achieved by the invention] However, in the method of determining the temperature of the rolled material from the surface temperature of the rolled material predicted by a thermometer placed between the stands, as described above, the measurement environment, plate thickness size, calculation formula error There is a possibility that errors may occur due to such factors. In addition, in the method of JP-A-60-247408, the temperature of the rolled material, which has a large effect on load fluctuations during rolling, is calculated from the measured values of the rolling position deviation and rolling load deviation of the rolling rolls. The formula contains errors. Further, as the number of rolling rolls increases, thermal expansion and wear of the rolls occur and the detected rolling position no longer matches the roll opening degree, making it impossible to detect correct rolling position deviation and rolling load deviation. For these reasons, calculation of the temperature of the rolled material using this method becomes inaccurate. Therefore, in the past, it was not possible to accurately obtain the temperature of the material to be rolled, so there was a problem that the control of the plate thickness became unstable. The present invention was made to solve the above-mentioned conventional problems, and it is possible to measure the temperature deviation of a rolled material, which has a large influence on load fluctuations, by measuring the influence of the measurement environment, plate thickness size, thermal expansion and wear of the rolling rolls, etc. A method for controlling plate thickness during threading in a hot continuous rolling mill, which allows accurate and stable reduction correction to be performed without causing any damage, and reliably obtains the target plate thickness from the tip of the hot strip. The purpose is to provide

【課題を達成するための手段】[Means to achieve the task]

本発明は、複数のスタンドを有する熱間連続圧延機に被
圧延材を通板する際、該圧延材の板厚を制御する熱間連
続圧延機における通板時の板厚制御方法において、スタ
ンド間に少なくとも2台の厚み計、及び少なくとも1台
の温度計を設け、被圧延材の先端が所定のスタンドを通
過した時点で、当該スタンドの圧延荷重、及び該圧延材
の板厚を検出し、前記圧延荷重、及び板厚により後行ス
タンドの仮圧延温度偏差を予測し、先端か当該温度計を
通過した時点で被圧延材表面温度を検出し、前記仮圧延
温度偏差と被圧延材表面温度から被圧延材先端か未だ噛
み込まれていない後行スタンドでの被圧延材の圧延温度
偏差を予測し、この圧延温度偏差予測値及び板厚偏差検
出値より後行スタンドの圧下位置を修正することにより
、前記課題を達成したものである。
The present invention provides a method for controlling the thickness of a rolled material during passing through a hot continuous rolling mill having a plurality of stands, in which the thickness of the rolled material is controlled when the material is passed through a hot continuous rolling mill having a plurality of stands. At least two thickness gauges and at least one thermometer are installed between them, and when the tip of the rolled material passes through a predetermined stand, the rolling load of the stand and the thickness of the rolled material are detected. , predict the pre-rolling temperature deviation of the trailing stand based on the rolling load and plate thickness, detect the surface temperature of the rolled material when the tip passes the thermometer, and calculate the pre-rolling temperature deviation and the surface of the rolled material. The rolling temperature deviation of the rolled material at the trailing stand where the tip of the rolled material has not yet been bitten is predicted from the temperature, and the rolling position of the trailing stand is corrected based on the predicted rolling temperature deviation value and the detected plate thickness deviation value. By doing so, the above-mentioned problem has been achieved.

【作用】[Effect]

本発明は、熱間速続圧延における板厚変動の主たる原因
が温度偏差と入側板厚偏差であることに着目してなされ
たものである。そして−板厚偏差を検出するために、ス
タンド間に少なくとも2台の厚み計を設け、又温度偏差
をより正確に確認するために、スタンド間に少なくとも
1台の温度計を設け、この温度測定値による表面温度偏
差と、圧延荷重偏差と圧下位置偏差から認識した温度偏
差とを併用して被圧延材の温度偏差を求めている。 このようにして、正しい被圧延材温度偏差を求めること
により、安定した板厚制御を行うことができる。
The present invention was made by focusing on the fact that the main causes of plate thickness variation in hot continuous rolling are temperature deviation and entrance side plate thickness deviation. and - at least two thickness gauges are installed between the stands to detect plate thickness deviations, and at least one thermometer is installed between the stands to check the temperature deviations more accurately, and the temperature measurement The temperature deviation of the rolled material is determined by using the surface temperature deviation based on the value and the temperature deviation recognized from the rolling load deviation and rolling position deviation. In this way, by determining the correct temperature deviation of the rolled material, stable plate thickness control can be performed.

【実施例】【Example】

以下、図を用いて本発明の実施例を詳細に説明する。 第2図は、本実施例が適用される熱間連続圧延機であり
、圧延スタンドの段数が1f段で構成されている。 被圧延材8は第2図において左方から送り出されるか、
被圧延材先端8Aは厚み計9のやや右方の位置にある。 各圧延スタンドはワークロール10とバックアップロー
ル12によって構成され、該圧延スタンドにおいての圧
延荷重偏差ΔPはロードセル14によって検出され、圧
下位置偏差ΔSは圧下位置制御装置16によって検出さ
れ、この圧下位置制御装置16は計算機22から入力さ
れる圧下位置修正量ΔS′によって指令される位置に圧
延スタンドの圧下位置を修正する。計算機22にはロー
ドセル14により検出される圧延荷重偏差ΔPと圧下位
置制御装置16によって検出される圧下位置偏差ΔSと
厚み計9A、9Bによって検出されるそれぞれの板厚Δ
h i−I、Δhiと温度計17によって検出される被
圧延材温度算出ΔT]が計算機22に入力さ力1、計算
機22は、この入力されたデータに基づいて第1図のフ
ローチャートに示されるような処理を内部で行い、この
処理結果に基づいて各圧延スタンドに対して圧下位置修
正量ΔS°°を出力する。 計′X機22の内部で行われる処理は第1図のフローチ
ャートに示される通りである。 以下、実施例の作用を説明する。 第2図において、左方から送り込まれる被圧延材8の先
#A8Aは第1−1スタンド、第1スタンド、厚み計9
の位置を順に通過していく、これらの圧延スタンドを通
過する時点でそれぞれの圧延スタンドに配置されたロー
ドセル14と圧下位置制御装置16により圧延荷重偏差
ΔP i−1、ΔP圧下位置信差ΔS i−1、ΔS1
が検出される。又、この間、厚み計9A、9B、温度計
17の配置されている各位置を被圧延材先端8Aが通過
する各時点で、それぞれ厚み偏差測定値Δhi−1、Δ
hi、被圧延材表面温度偏差ΔT1か検出される。これ
ら検出及び測定の処理は第1図のフローチャートにおい
ては40.42.44の各ステップに相当する。 前記圧延荷重偏差ΔPiと厚み偏差予測値Δhi−1、
ΔEliとから次式により、被圧延材先端8Aが第1ス
タンドのロール10に噛み込まれた時点での被圧延材8
の仮圧延温度閑差ΔT′Iを計算する。 ΔT′i=(ΔP (a P/aH)i xAh 1−( (21P / a h  )  ;  xΔtli)/
 (aP/c)T)i        −(1)ココテ
、(aP/aH)i、(c)P/ah)i、(c)P/
aT)iは第1スタンドの圧延荷重Pに及ぼす入側板厚
H1、出側板厚h1、圧延温度Tjの影響係数である。 続いて、この第1スタンドにおける被圧延材8の板圧延
温度偏差ΔT′1により、被圧延材先端8Aが第1+1
スタンドに噛み込まれた時点での被圧延材8の板圧延温
度偏差ΔT ′i+1を次式で求める。 ΔT′i+l= (c)T;、+/aTi  )XΔT
′・・・・・・・・・ (2) ここで、< a T ;++ / c) T i )は
第1+1スタンド圧延温度偏差T illに及ぼす第1
スタンド圧延温度偏差T1の影響係数である。 更に、被圧延材先端8Aか第1スタンド、第+1スタン
ド間に配置された温度計17を通過した時点で、この温
度計17により検出を行った該被圧延材表面温度偏差Δ
T i 、illから次式により第i+1スタンドでの
該被圧延材の板圧延温度偏差ΔTI+ 、や1を求める
。 ΔT ” ill −(cl T ill / b T
 i 、ill )×ΔT j 、 ill   ・・
・・・・・・・(3)こコテ、(a T r−+ / 
a T i 、 i−+ ) ハ、第i+1スタンドの
被圧延材圧延温度に及ぼす第1、1+1スタンド間の被
圧延材表面温度の影響係数である。 続いて、本実施例では、圧下位置修正値を計算するため
に用いる被圧延材圧延温度偏差ΔT、や1を求めるにあ
たり、前記被圧延材の板圧延温度偏差ΔT′iや1(第
1スタンドの圧延荷重偏差ΔPi等から算出したもの)
と被圧延材の板圧延温度偏差ΔT ” ill (温度
計17の被圧延材表面温度測定値から算出したもの)を
それぞれ加味して求める。 これは、前述の通り圧延スタンドの圧延荷重から算出す
る被圧延材の温度偏差には計算式等の誤差があり、又、
前述の通り放射温度計等により検出される被圧延材の表
面温度測定値には検出誤差が存在するので、これらの誤
差を相殺するためである。この被圧延材圧延温度偏差Δ
T inは、測定環境及び板厚等に依存する予め定めら
れた係数をα(測定環境が悪いほど又板厚か厚いほどこ
のαは大きくなる)とし、次式によって求めることがで
きる。 Δ T、會1 : α i◆1 × Δ T ′  i
◆1十(1−αi+I ) ×ΔT゛1や10≦αiや
1≦1  ・・・・・・・・・(4)この第1+1スタ
ンドでの被圧延材圧延温度偏差ΔT illから、更に
、次式により第1+2スタンドでの被圧延材圧延温度偏
差ΔT i−2を求める。 ΔT、+2=  < ;a T;、z/a Tiヤ+)
XΔTiやビ・・ (5)こコテ、(a T i−2/
 C) T ill ) ハ第1 + 2 スタッドの
被圧延材圧延温度に及ぼす第i+1スタンドの被圧延材
圧延温度の影響係数である。 このようにして被圧延材光#A8Aか第1+1スタンド
及び第 1+2スタンドに噛み込まれたときのそれぞれ
の被圧延材の圧延温度偏差ΔT ill、ΔT1ヤ2を
予測計算することかできるが、この予測計算を行う処理
は第1図のフローチャートにおいての各スタンド温度偏
差計算ステップ48に相当する。 続いて、計算機22は、厚み偏差測定値Δhiと被圧延
材8の圧延温度偏差へT=や富とΔT illと次の2
つの式により第1+1スタンドと第1+2スタンドにお
けるそれぞれの圧下位置修正量ΔS゛。 iや1、ΔS′°1や2を求める。 ΔS ” ill =(G ill / M ill 
)X ((a P / a H) ill X A h
 ;”、  (a P / ;3 T ) ill X
ΔT r++ 1ΔS ++ 、や2 =   (G 
iや2 / M ;や2)x  (a P / c) 
T )  r−2XΔT illここで、Gはゲイン定
数であり、Mはミル剛性定数である。 このようにして計算機22は第1+1スタンドと第1+
2スタンドにおけるそれぞれの圧下位置修正量Δ3 +
+ 、+、、Δ3 ++ 、2を算出することかできる
が、この算出処理は、第1図のフローチャートにおける
各スタンド圧下位置修正量計算ステップ50に相当する
。 最終的に、計算機22は、第1+1スタンドと第1+2
スタンドの圧下位置を修正することによる板厚制御を行
うなめに、これらのスタンドにおけるそれぞれの圧板位
置修正量ΔSI+ 、+、、ΔS IIi+2をそれぞ
れ該当するスタンドに配置された圧下位置制御装置16
に出力する。そして、これらスタンドに配置された圧下
位置制御装置16は、被圧延材光@8Aか噛み込まれる
よりも前にこの圧下位置修正量ΔS ++をもとにして
圧延ロールの圧下位置の修正を行い、正しい板厚を得る
ことかできるように制御を行う。 本実施例では前記の通り少なくとも1台の厚み計及び少
なくとも1台の温度計を配置し、このようにして、第 
1+1スタンドと第 1+2スタンドの圧下位置修正を
行うことにより、ホットストリップの先端から目標通り
の板厚を得ることかできるが、これにより、測定環境や
板厚サイズによる影響を抑えて正確な被圧延材温度偏差
を測定することかでき、圧延本数が進むにつれてロール
の熱膨張及び摩耗が発生し、検出圧下位置がロール開度
と一致しなくなる場合においても正しい板厚制御を行う
ことができる。 なお、下記第1表に、7スタンド熱間連続圧延機におい
て、第5スタンドと第6スタンド間に厚み計と温度計を
配置し、目標最終出側板厚2.311及び5.0mm 
(幅i 200+sn)のホットストリップに対して、
本発明法と厚み計により検出される板厚偏差だけに基づ
いて制御を行った比較法と無制御の従来法をそれぞれ実
施したときの先端板厚精度(最終出側板厚偏差の標準偏
差)を示す。 但し、本発明法の(4)式のαの値は目標板厚2.3i
I厚で0゜4とし、目標板厚5.0iI厚で0.6とし
た。 第  1  表 第1表から明らかなように、本発明法よれば、ホ・yト
ストリップの先端から良好な板厚を得ることかできると
いう優れた結果か得られた。 なお、上記実施例では、第1−1スタンドと第スタンド
間と第1スタンドと第1+1スタンド間にそれぞれ厚み
計9A、9Bを配置し、板厚偏差Δh1−1、Δhiの
検出を行ったか、このΔh i−1とΔhiは第 i−
1スタンドの圧下位置S i−Iと第スタンドの圧下位
置S1を検出し、ゲージメータ式より求めることもでき
る。このとき当然ながら厚み計は必要としない。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 2 shows a hot continuous rolling mill to which this embodiment is applied, and the number of stages of rolling stands is 1f. The rolled material 8 is fed out from the left side in FIG.
The tip 8A of the material to be rolled is located slightly to the right of the thickness gauge 9. Each rolling stand is composed of a work roll 10 and a backup roll 12, and a rolling load deviation ΔP in the rolling stand is detected by a load cell 14, and a rolling position deviation ΔS is detected by a rolling position control device 16. 16 corrects the rolling position of the rolling stand to the position commanded by the rolling position correction amount ΔS' inputted from the computer 22. The calculator 22 contains the rolling load deviation ΔP detected by the load cell 14, the rolling position deviation ΔS detected by the rolling position control device 16, and the respective plate thicknesses Δ detected by the thickness gauges 9A and 9B.
h i-I, Δhi and the temperature calculation ΔT of the rolled material detected by the thermometer 17] is input into the calculator 22, and the calculator 22 calculates the temperature as shown in the flowchart of FIG. 1 based on this input data. Such processing is performed internally, and based on the processing results, the rolling position correction amount ΔS°° is output to each rolling stand. The processing carried out inside the machine 22 is as shown in the flowchart of FIG. The effects of the embodiment will be explained below. In Fig. 2, the tip #A8A of the rolled material 8 fed from the left is the 1-1 stand, the 1st stand, and the thickness gauge 9.
At the time of passing through these rolling stands, the rolling load deviation ΔP i-1 and ΔP rolling position difference ΔS i- are determined by the load cell 14 and rolling position control device 16 arranged in each rolling stand. 1, ΔS1
is detected. Also, during this time, at each point in time when the tip end 8A of the rolled material passes through each position where the thickness gauges 9A, 9B and the thermometer 17 are arranged, the thickness deviation measurement values Δhi-1 and Δ are obtained, respectively.
hi, the surface temperature deviation ΔT1 of the rolled material is detected. These detection and measurement processes correspond to steps 40, 42, and 44 in the flowchart of FIG. The rolling load deviation ΔPi and the predicted thickness deviation value Δhi-1,
From ΔEli, by the following formula, the rolled material 8 at the time when the tip 8A of the rolled material is bitten by the roll 10 of the first stand
Calculate the preliminary rolling temperature difference ΔT'I. ΔT'i=(ΔP (a P/aH) i xAh 1-((21P/ah); xΔtli)/
(aP/c)T)i - (1) Kokote, (aP/aH)i, (c)P/ah)i, (c)P/
aT)i is an influence coefficient of the inlet side plate thickness H1, the outlet side plate thickness h1, and the rolling temperature Tj on the rolling load P of the first stand. Subsequently, due to the plate rolling temperature deviation ΔT'1 of the material to be rolled 8 in this first stand, the tip end 8A of the material to be rolled is 1+1.
The plate rolling temperature deviation ΔT ′i+1 of the material to be rolled 8 at the time when it is bitten by the stand is determined by the following formula. ΔT′i+l= (c)T;, +/aTi )XΔT
′・・・・・・・・・ (2) Here, < a T ;++ / c) T i ) is the first effect on the 1st + 1st stand rolling temperature deviation T ill
This is an influence coefficient of the stand rolling temperature deviation T1. Further, when the tip 8A of the rolled material passes the thermometer 17 placed between the first stand and the +1st stand, the surface temperature deviation Δ of the rolled material detected by the thermometer 17 is detected.
From T i and ill, the plate rolling temperature deviation ΔTI+ and 1 of the material to be rolled at the i+1st stand is determined by the following formula. ΔT ” ill −(cl T ill / b T
i, ill)×ΔT j, ill...
・・・・・・・・・(3) Here, (a T r-+ /
a T i , i-+ ) C. This is the influence coefficient of the surface temperature of the rolled material between the 1st and 1+1st stands on the rolling temperature of the rolled material of the i+1st stand. Subsequently, in this embodiment, in determining the rolling temperature deviation ΔT, 1 of the rolled material used to calculate the rolling position correction value, the plate rolling temperature deviation ΔT'i, 1 (first stand) of the rolled material is calculated. Calculated from the rolling load deviation ΔPi, etc.)
and the plate rolling temperature deviation ΔT'' ill of the material to be rolled (calculated from the surface temperature measurement of the material to be rolled by the thermometer 17). As mentioned above, this is calculated from the rolling load of the rolling stand. There are errors in calculation formulas, etc. in the temperature deviation of the rolled material, and
As mentioned above, there are detection errors in the measured value of the surface temperature of the rolled material detected by a radiation thermometer or the like, so this is to cancel out these errors. This rolled material rolling temperature deviation Δ
T in can be determined by the following equation, where α is a predetermined coefficient that depends on the measurement environment, plate thickness, etc. (the worse the measurement environment or the thicker the plate, the larger this α becomes). Δ T, meeting 1: α i◆1 × Δ T ′ i
◆10(1-αi+I)×ΔT゛1, 10≦αi, 1≦1 (4) From the rolling temperature deviation ΔT ill of the rolled material at the 1st + 1st stand, further, The rolling temperature deviation ΔT i-2 of the material to be rolled at the 1st + 2nd stand is determined by the following formula. ΔT, +2= <;aT;, z/a Ti +)
XΔTi and Bi... (5) Here, (a Ti-2/
C) T ill ) C is the influence coefficient of the rolling temperature of the rolled material of the i+1st stand on the rolling temperature of the rolled material of the 1st + 2nd stud. In this way, it is possible to predict and calculate the rolling temperature deviations ΔT ill and ΔT1 Y2 of each rolled material when the rolled material light #A8A is bitten by the 1st + 1st stand and the 1st + 2nd stand. The process of performing the prediction calculation corresponds to the step 48 of calculating each stand temperature deviation in the flowchart of FIG. Subsequently, the calculator 22 converts the measured thickness deviation value Δhi and the rolling temperature deviation of the rolled material 8 into T=, wealth, ΔTill, and the following 2.
The respective reduction position correction amounts ΔS' in the 1st+1st stand and the 1st+2nd stand are determined by two formulas. Find i and 1, ΔS'°1 and 2. ΔS ” ill = (G ill / M ill
)X ((a P / a H) ill X A h
;”, (a P / ;3 T) ill X
ΔT r++ 1ΔS ++, or 2 = (G
i and 2/M; and 2) x (a P/c)
T ) r-2XΔT ill where G is the gain constant and M is the Mill stiffness constant. In this way, the calculator 22 can
Respective reduction position correction amount Δ3 + in 2 stands
+ , +, , Δ3 ++ , 2 can be calculated, and this calculation process corresponds to step 50 of calculating the correction amount of each stand lowering position in the flowchart of FIG. Finally, the calculator 22 calculates the 1st + 1st stand and the 1st + 2nd stand.
In order to control the plate thickness by correcting the rolling positions of the stands, the respective pressure plate position correction amounts ΔSI+, +, ΔS IIi+2 in these stands are controlled by rolling position control devices 16 disposed in the respective stands.
Output to. Then, the rolling position control device 16 disposed in these stands corrects the rolling position of the rolling rolls based on this rolling position correction amount ΔS ++ before the rolled material light @8A is bitten. , control is performed to obtain the correct plate thickness. In this embodiment, as described above, at least one thickness gauge and at least one thermometer are arranged, and in this way, the
By correcting the rolling position of the 1+1 stand and the 1+2 stand, it is possible to obtain the target thickness from the tip of the hot strip. It is possible to measure the temperature deviation of the material, and as the number of rolls increases, thermal expansion and wear of the rolls occur, and even when the detected rolling position does not match the roll opening degree, correct thickness control can be performed. In addition, in Table 1 below, in a 7-stand continuous hot rolling mill, a thickness gauge and a thermometer are placed between the 5th stand and the 6th stand, and the target final exit plate thickness is 2.311 and 5.0 mm.
For a hot strip of (width i 200+sn),
The tip plate thickness accuracy (standard deviation of final exit side plate thickness deviation) when implementing the method of the present invention, a comparative method in which control is performed only based on the plate thickness deviation detected by a thickness gauge, and a conventional method without control, respectively. show. However, the value of α in equation (4) of the present invention method is based on the target plate thickness of 2.3i.
The I thickness was set at 0°4, and the target plate thickness was set at 5.0iI thickness at 0.6. Table 1 As is clear from Table 1, according to the method of the present invention, excellent results were obtained in that a good plate thickness could be obtained from the tip of the photo strip. In addition, in the above embodiment, the thickness gauges 9A and 9B were arranged between the 1-1st stand and the 1st stand, and between the 1st stand and the 1st+1st stand, respectively, to detect the plate thickness deviations Δh1-1 and Δhi. These Δh i-1 and Δhi are i-th
It is also possible to detect the rolled-down position S i-I of the first stand and the rolled-down position S1 of the 1st stand and obtain it using a gauge meter method. Of course, a thickness gauge is not required at this time.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、測定環境や板厚サ
イズや計算式誤差、圧延ロールの熱膨張や摩耗等による
影響を抑えて正確な被圧延材温度偏差を測定することか
できる。従って、圧延ロールの圧下修正を確実に安定し
て行うことができ、通板時においてホットストリップの
先端から目標通りの板厚を得ることができるという優れ
た効果を得ることができる。
As explained above, according to the present invention, it is possible to accurately measure the temperature deviation of a rolled material while suppressing the influence of the measurement environment, plate thickness size, calculation formula error, thermal expansion and wear of the rolling rolls, and the like. Therefore, it is possible to reliably and stably correct the reduction of the rolling rolls, and it is possible to obtain the excellent effect that the target thickness can be obtained from the tip of the hot strip during sheet passing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る熱間連続圧延機における通板時
の板厚制御方法の実施例の制御フローを示す流ノ’L図
、 第2図は、本発明が適用された、熱間連続圧延機の板厚
制御方法の構成を示すブロック線図である。 22・・・計算機−ΔP・・・圧延荷重備差、ΔS・・
・圧下位置偏差、 ΔS°゛・・・圧下位置修正量、Δ
T1・・・被圧延材表面温度偏差測定値、Δh i−1
、Δhi・・・厚み偏差測定値。
FIG. 1 is a flow diagram showing a control flow of an embodiment of the method for controlling plate thickness during rolling in a hot continuous rolling mill according to the present invention, and FIG. FIG. 2 is a block diagram showing the configuration of a method for controlling plate thickness of an intermittent continuous rolling mill. 22... Calculator - ΔP... Rolling load difference, ΔS...
・Driving position deviation, ΔS°゛・・・Driving position correction amount, Δ
T1...Measured value of surface temperature deviation of rolled material, Δh i-1
, Δhi... Thickness deviation measurement value.

Claims (1)

【特許請求の範囲】[Claims] (1)複数のスタンドを有する熱間連続圧延機に被圧延
材を通板する際、該圧延材の板厚を制御する熱間連続圧
延機における通板時の板厚制御方法において、 スタンド間に少なくとも2台の厚み計、及び少なくとも
1台の温度計を設け、 被圧延材の先端が所定のスタンドを通過した時点で、当
該スタンドの圧延荷重、及び該圧延材の板厚を検出し、 前記圧延荷重、及び板厚により後行スタンドの仮圧延温
度偏差を予測し、 先端が当該温度計を通過した時点で被圧延材表面温度を
検出し、 前記仮圧延温度偏差と被圧延材表面温度から被圧延材先
端が未だ噛み込まれていない後行スタンドでの被圧延材
の圧延温度偏差を予測し、 この圧延温度偏差予測値及び板厚偏差検出値より後行ス
タンドの圧下位置を修正することを特徴とする熱間連続
圧延機における通板時の板厚制御方法。
(1) In a sheet thickness control method during sheet passing in a continuous hot rolling mill, which controls the thickness of the rolled material when passing the sheet through a hot continuous rolling mill having multiple stands, At least two thickness gauges and at least one thermometer are installed in the machine, and when the tip of the rolled material passes through a predetermined stand, the rolling load of the stand and the thickness of the rolled material are detected, Predict the preliminary rolling temperature deviation of the following stand based on the rolling load and plate thickness, detect the surface temperature of the rolled material at the time when the tip passes the thermometer, and calculate the preliminary rolling temperature deviation and the surface temperature of the rolled material. From this, predict the rolling temperature deviation of the material to be rolled at the trailing stand where the tip of the material to be rolled has not yet been bitten, and correct the rolling position of the trailing stand based on the predicted rolling temperature deviation value and the detected plate thickness deviation value. A method for controlling plate thickness during threading in a continuous hot rolling mill, characterized by:
JP2117149A 1990-05-07 1990-05-07 Method for controlling strip thickness at passing time on hot continuous rolling mill Pending JPH0413413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2117149A JPH0413413A (en) 1990-05-07 1990-05-07 Method for controlling strip thickness at passing time on hot continuous rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2117149A JPH0413413A (en) 1990-05-07 1990-05-07 Method for controlling strip thickness at passing time on hot continuous rolling mill

Publications (1)

Publication Number Publication Date
JPH0413413A true JPH0413413A (en) 1992-01-17

Family

ID=14704677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2117149A Pending JPH0413413A (en) 1990-05-07 1990-05-07 Method for controlling strip thickness at passing time on hot continuous rolling mill

Country Status (1)

Country Link
JP (1) JPH0413413A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313415A (en) * 1991-04-11 1992-11-05 Nippon Steel Corp Head part plate thickness control method for finish rolling mill
GB2347482A (en) * 1999-03-01 2000-09-06 Ford Motor Co Throttle
CN103128107A (en) * 2013-03-14 2013-06-05 北京科技大学 On-line computation method of hot continuous rolling rough rolling short stroke curve parameters
JP2021181095A (en) * 2020-05-18 2021-11-25 Jfeスチール株式会社 Rolling load prediction method, rolling method, hot-rolled steel sheet manufacturing method, and rolling load prediction model generation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313415A (en) * 1991-04-11 1992-11-05 Nippon Steel Corp Head part plate thickness control method for finish rolling mill
GB2347482A (en) * 1999-03-01 2000-09-06 Ford Motor Co Throttle
US6158417A (en) * 1999-03-01 2000-12-12 Visteon Global Technologies, Inc. Throttle body accomodation of either an idle air control valve or a motorized throttle control
GB2347482B (en) * 1999-03-01 2003-08-06 Ford Motor Co A Two Part Throttle Valve with By-Pass Passage
CN103128107A (en) * 2013-03-14 2013-06-05 北京科技大学 On-line computation method of hot continuous rolling rough rolling short stroke curve parameters
JP2021181095A (en) * 2020-05-18 2021-11-25 Jfeスチール株式会社 Rolling load prediction method, rolling method, hot-rolled steel sheet manufacturing method, and rolling load prediction model generation method

Similar Documents

Publication Publication Date Title
JPS595364B2 (en) Tension control method
JPH0413413A (en) Method for controlling strip thickness at passing time on hot continuous rolling mill
KR0148612B1 (en) Reverse rolling control system of pair cross rolling mill
JPH0413411A (en) Method for controlling strip thickness when strip is passed through in hot continuous mill
JP2803573B2 (en) Manufacturing method of tapered steel plate
JP6781411B2 (en) Metal plate thickness control method and equipment, and metal plate manufacturing method and equipment
JPS6129806B2 (en)
JP2002336906A (en) Method and apparatus for controlling rolling mill
KR100929015B1 (en) Prediction of rolling load by calibrating plasticity factor of rolled material
JPS6224809A (en) Method for controlling sheet width in hot rolling
JPS6111124B2 (en)
JP2002346616A (en) Method for controlling sheet thickness
JPH03151109A (en) Method for controlling plate thickness in hot continuous rolling mill when plate is passing through
JP3466523B2 (en) Thickness control method
JPH0413414A (en) Method for controlling strip thickness at passing time on hot continuous rolling mill
JPH05111712A (en) Method for controlling sheet thickness/crown in continuous mill
JP2009113100A (en) Plate thickness controller of rolling mill, and plate thickness control method of rolling mill
KR950009985B1 (en) Thickness control method for cold rolling steel plate
JP2950182B2 (en) Manufacturing method of tapered steel plate
JPH02268915A (en) Method of controlling thickness of steel plate passing through hot continuous finish rolling mill
JPS6225444B2 (en)
JP2661497B2 (en) Strip crown control device and strip crown control method during hot rolling
JPH0475714A (en) Method for controlling top end sheet thickness of hot continuous rolling mill
JPS6225447B2 (en)
JPH07185630A (en) Control method for hot rolling machine