JP6781411B2 - Metal plate thickness control method and equipment, and metal plate manufacturing method and equipment - Google Patents

Metal plate thickness control method and equipment, and metal plate manufacturing method and equipment Download PDF

Info

Publication number
JP6781411B2
JP6781411B2 JP2018068572A JP2018068572A JP6781411B2 JP 6781411 B2 JP6781411 B2 JP 6781411B2 JP 2018068572 A JP2018068572 A JP 2018068572A JP 2018068572 A JP2018068572 A JP 2018068572A JP 6781411 B2 JP6781411 B2 JP 6781411B2
Authority
JP
Japan
Prior art keywords
plate thickness
gauge
rolling
thickness
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018068572A
Other languages
Japanese (ja)
Other versions
JP2019177400A (en
Inventor
開 小玉
開 小玉
太基 宮野
太基 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018068572A priority Critical patent/JP6781411B2/en
Publication of JP2019177400A publication Critical patent/JP2019177400A/en
Application granted granted Critical
Publication of JP6781411B2 publication Critical patent/JP6781411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

本発明は、自動板厚制御(AGC:Automatic Gage Control)を用いた金属板の板厚制御方法および装置並びに金属板の製造方法および設備に関する。 The present invention relates to a method and apparatus for controlling the thickness of a metal plate using automatic plate thickness control (AGC: Automatic Gauge Control), and a method and equipment for manufacturing the metal plate.

AGCの一つにモニタリングAGCがある。モニタリングAGCは、金属板を圧延機で圧延するにあたり、圧延機で圧延された金属板の出側板厚を板厚計で実測し、測定された出側板厚と目標板厚との偏差がゼロになるようにフィードバック制御により圧延機のロールギャップを制御する制御方式である。 One of the AGCs is the monitoring AGC. When a metal plate is rolled by a rolling mill, Monitoring AGC actually measures the outside plate thickness of the metal plate rolled by the rolling machine with a plate thickness gauge, and the deviation between the measured output side plate thickness and the target plate thickness becomes zero. This is a control method that controls the roll gap of the rolling mill by feedback control.

モニタリングAGCの制御ゲインが小さいときには、実板厚が目標板厚に収束するまでの時間が長く、制御ゲインが大きいときにはハンチングを生じて板厚精度が悪化する。また従来の方法では、圧延点から板厚計までの搬送時間(制御系のむだ時間)によって生じる、圧下点での板厚と板厚計で測定した板厚のずれにより適正な制御量が算出されず板厚精度が悪化するおそれがある。 When the control gain of the monitoring AGC is small, it takes a long time for the actual plate thickness to converge to the target plate thickness, and when the control gain is large, hunting occurs and the plate thickness accuracy deteriorates. Further, in the conventional method, an appropriate control amount is calculated by the difference between the plate thickness at the rolling point and the plate thickness measured by the plate thickness gauge, which is caused by the transport time from the rolling point to the plate thickness gauge (wasting time of the control system). However, the plate thickness accuracy may deteriorate.

モニタリングAGCの制御ゲインの向上、制御開始タイミングの早期化を図るため、スミス補償器を追加してむだ時間を補償する試みがある。図4(a)に通常のフィードバック制御系の構成を示し、図4(b)にスミス補償法のフィードバック制御系の構成を示す。スミス補償器を追加することで、むだ時間e-Lp・sを制御ループの外側に出して一次遅れ系として制御することが可能となる。 In order to improve the control gain of the monitoring AGC and accelerate the control start timing, there is an attempt to compensate for the wasted time by adding a Smith compensator. FIG. 4A shows the configuration of a normal feedback control system, and FIG. 4B shows the configuration of the feedback control system of the Smith compensation method. By adding a Smith compensator, it becomes possible to put the waste time e- Lp · s out of the control loop and control it as a first-order lag system.

例えば特許文献1には、金属板の先端が圧延機到達後から圧延機の後面側に設置された板厚計に達するまでは、ゲージメータ式で推定した板厚が目標板厚となるように圧下位置を制御し、金属板の先端が板厚計に達した後は、板厚計で検出した板厚と検出点における圧延時の目標板厚との差分で補正したゲージメータ式で推定した板厚が目標板厚となるように圧下位置を制御し、金属板の先端が板厚計に達したときの圧延点が板厚計に達した後は、板厚計で検出した板厚を用いる板厚制御方法が開示されている。 For example, in Patent Document 1, the target plate thickness is set to the plate thickness estimated by the gauge meter method from the time when the tip of the metal plate reaches the rolling mill until it reaches the plate thickness gauge installed on the rear surface side of the rolling mill. After the rolling position was controlled and the tip of the metal plate reached the plate thickness gauge, it was estimated by a gauge meter method corrected by the difference between the plate thickness detected by the plate thickness gauge and the target plate thickness at the time of rolling at the detection point. The rolling position is controlled so that the plate thickness reaches the target plate thickness, and after the rolling point when the tip of the metal plate reaches the plate thickness gauge reaches the plate thickness gauge, the plate thickness detected by the plate thickness gauge is measured. The plate thickness control method used is disclosed.

ところが、スミス補償器をモニタリングAGCに追加して実機による圧延試験を行ったところ、その試験結果を図5に示すように、モニタリングAGCによる圧延機の操作量が不安定となり、それに伴い狙い厚偏差が増大することが判明した。なお、図5(a)中縦軸はモニタリングAGCの操作量であり、横軸は板長手方向の位置である。また、図5(b)中縦軸は出側板厚の狙い厚からの偏差であり、横軸は板長手方向の位置であって図中左側が噛み込み端である。 However, when a Smith compensator was added to the monitoring AGC and a rolling test was performed with an actual machine, the amount of operation of the rolling machine by the monitoring AGC became unstable as shown in Fig. 5, and the target thickness deviation was accompanied by this. Was found to increase. The vertical axis in FIG. 5A is the operation amount of the monitoring AGC, and the horizontal axis is the position in the longitudinal direction of the plate. Further, the vertical axis in FIG. 5B is the deviation of the thickness of the protruding side plate from the target thickness, the horizontal axis is the position in the longitudinal direction of the plate, and the left side in the figure is the biting end.

特開昭61−86019号公報Japanese Unexamined Patent Publication No. 61-86019

本発明の目的は、モニタリングAGCが安定するまでの時間を短くし、板厚計および圧延機間の搬送時間(むだ時間)が長い制御系においても安定して板厚精度を向上させることにある。 An object of the present invention is to shorten the time until the monitoring AGC stabilizes and to stably improve the plate thickness accuracy even in a control system in which the transfer time (waste time) between the plate thickness gauge and the rolling mill is long. ..

本発明者らは、上記課題を解決するため、スミス補償器を実機に導入した際にモニタリングAGCが不安定になる原因について鋭意研究を行った。スミス補償法は、制御対象のむだ時間の正確な同定を前提とするが、実際の操業では、シミュレーションとは異なり板厚計の誤差、先進率の変動に起因するトラッキング誤差、ゲージメータ板厚と実際の板厚との誤差等の外乱が生じるため制御が不安定になる。本発明では、スミス補償法をモニタリングAGCに適用するのに加えて指数平滑化処理を導入したことで非常に良好な制御が得られた。 In order to solve the above problems, the present inventors have conducted diligent research on the cause of instability of the monitoring AGC when the Smith compensator is introduced into an actual machine. The Smith compensation method presupposes accurate identification of the dead time of the controlled object, but in actual operation, unlike the simulation, the error of the plate thickness gauge, the tracking error due to the fluctuation of the advanced rate, and the gauge meter plate thickness Control becomes unstable due to disturbances such as an error from the actual plate thickness. In the present invention, very good control was obtained by introducing the exponential smoothing process in addition to applying the Smith compensation method to the monitoring AGC.

具体的には、本発明の第1の態様は、金属板を圧延機で圧下する際の圧下点での板厚をゲージメータ式からゲージメータ板厚として算出し、該ゲージメータ板厚を前記圧延機の後面に設置された板厚計の測定点までトラッキングし、前記測定点において前記板厚計で測定した板厚と前記トラッキングした前記ゲージメータ板厚との偏差と、前記圧下点での前記ゲージメータ板厚と目標板厚との偏差との差分をモニタリング操作量として、前記目標板厚になるように前記圧延機における圧下位置をダイナミックに制御する金属板の板厚制御方法であって、前記測定点において前記板厚計で測定した板厚と前記トラッキングした前記ゲージメータ板厚との偏差と、前記圧下点での前記ゲージメータ板厚と目標板厚との偏差との差分である前記モニタリング操作量を指数平滑化したものを補正後のモニタリング操作量として、前記目標板厚になるように前記圧延機における圧下位置をダイナミックに制御する金属板の板厚制御方法である。 Specifically, in the first aspect of the present invention, the plate thickness at the rolling point when rolling down a metal plate with a rolling mill is calculated from the gauge meter type as the gauge meter plate thickness, and the gauge meter plate thickness is calculated as described above. Tracking to the measurement point of the plate thickness gauge installed on the rear surface of the rolling mill, the deviation between the plate thickness measured by the plate thickness gauge and the tracked gauge meter plate thickness at the measurement point, and the rolling point. A metal plate thickness control method that dynamically controls the rolling position in the rolling mill so that the difference between the gauge meter plate thickness and the deviation between the target plate thickness is used as the monitoring operation amount. , The difference between the deviation between the plate thickness measured by the plate thickness gauge at the measurement point and the tracked gauge meter plate thickness, and the deviation between the gauge meter plate thickness and the target plate thickness at the rolling point. This is a sheet thickness control method for a metal plate that dynamically controls a rolling position in the rolling mill so that the target plate thickness is obtained by using an exponentially smoothed monitoring operation amount as the corrected monitoring operation amount.

本発明の第2の態様は、本発明の第1の態様において、前記ゲージメータ板厚の算出周期と前記板厚計の測定周期とを同じに設定する金属板の板厚制御方法である。 The second aspect of the present invention is the plate thickness control method for a metal plate in which the calculation cycle of the gauge meter plate thickness and the measurement cycle of the plate thickness meter are set to be the same in the first aspect of the present invention.

本発明の第3の態様は、本発明の第1または第2の態様の金属板の板厚制御方法を用いて金属板を圧延することを特徴とする金属板の製造方法である。 A third aspect of the present invention is a method for producing a metal plate, which comprises rolling a metal plate using the method for controlling the thickness of the metal plate according to the first or second aspect of the present invention.

本発明の第4の態様は、金属板を圧延機で圧下する際の圧下点での板厚をゲージメータ式からゲージメータ板厚として算出し、該ゲージメータ板厚を前記圧延機の後面に設置された板厚計の測定点までトラッキングし、前記測定点において前記板厚計で測定した板厚と前記トラッキングした前記ゲージメータ板厚との偏差と、前記圧下点での前記ゲージメータ板厚と目標板厚との偏差との差分をモニタリング操作量として、前記目標板厚になるように前記圧延機における圧下位置をダイナミックに制御する金属板の板厚制御装置であって、前記測定点において前記板厚計で測定した板厚と前記トラッキングした前記ゲージメータ板厚との偏差と、前記圧下点での前記ゲージメータ板厚と目標板厚との偏差との差分である前記モニタリング操作量を指数平滑化により補正する指数平滑回路を備える金属板の板厚制御装置である。 In the fourth aspect of the present invention, the plate thickness at the rolling point when rolling down a metal plate with a rolling mill is calculated as the gauge meter plate thickness from the gauge meter type, and the gauge meter plate thickness is applied to the rear surface of the rolling mill. Tracking to the measurement point of the installed plate thickness gauge, the deviation between the plate thickness measured by the plate thickness gauge at the measurement point and the tracked gauge meter plate thickness, and the gauge meter plate thickness at the rolling point. A metal plate thickness control device that dynamically controls the rolling position in the rolling mill so that the target plate thickness is obtained by using the difference between the deviation between the target plate thickness and the target plate thickness as the monitoring operation amount, at the measurement point. The monitoring operation amount, which is the difference between the deviation between the plate thickness measured by the plate thickness meter and the tracked gauge meter plate thickness, and the deviation between the gauge meter plate thickness and the target plate thickness at the rolling point. It is a plate thickness control device for a metal plate provided with an exponential smoothing circuit for correction by exponential smoothing.

本発明の第5の態様は、本発明の第4の態様において、前記ゲージメータ板厚の算出周期と前記板厚計の測定周期とを同じに設定する金属板の板厚制御装置である。 A fifth aspect of the present invention is the plate thickness control device for a metal plate in which the calculation cycle of the gauge meter plate thickness and the measurement cycle of the plate thickness meter are set to be the same in the fourth aspect of the present invention.

本発明の第6の態様は、金属板を圧延する圧延機と、本発明の第4または第5の態様の金属板の板厚制御装置とを備える金属板の製造設備である。 A sixth aspect of the present invention is a metal plate manufacturing facility including a rolling mill for rolling a metal plate and a sheet thickness control device for the metal plate according to the fourth or fifth aspect of the present invention.

本発明によれば、指数平滑回路によってモニタリング操作量の急激な変化が抑制されるため、圧下点と板厚計間の距離およびモニタリングAGCの操作量のゲインの大小にかかわらず、実板厚が目標板厚に円滑にかつ早く収束する。また、指数平滑定数(ゲイン)を調整することでモニタリングAGCの応答性を調整することも可能になる。 According to the present invention, since the exponential smoothing circuit suppresses a sudden change in the monitoring operation amount, the actual plate thickness can be increased regardless of the distance between the reduction point and the plate thickness gauge and the gain of the operation amount of the monitoring AGC. It converges smoothly and quickly to the target plate thickness. It is also possible to adjust the responsiveness of the monitoring AGC by adjusting the exponential smoothing constant (gain).

本発明の一実施形態の板厚制御方法および装置を適用した金属板の製造設備の要部概略構成図である。It is a schematic block diagram of the main part of the metal plate manufacturing equipment to which the plate thickness control method and apparatus of one Embodiment of this invention are applied. 本発明の実施形態の板厚制御装置のブロック線図である。It is a block diagram of the plate thickness control device of the embodiment of this invention. (a)は、本発明の実施例による自動板厚制御を行ったときの、指数平滑回路で補正されたモニタリングAGCの操作量の変位を示すグラフであり、(b)は、そのときの狙い厚に対する板厚偏差を示すグラフである。(A) is a graph showing the displacement of the operation amount of the monitoring AGC corrected by the exponential smoothing circuit when the automatic plate thickness control according to the embodiment of the present invention is performed, and (b) is the aim at that time. It is a graph which shows the plate thickness deviation with respect to the thickness. (a)は通常のフィードバック制御系の構成を示すブロック線図であり、(b)はスミス法を導入したフィードバック制御系の構成を示すブロック線図である。(A) is a block diagram showing the configuration of a normal feedback control system, and (b) is a block diagram showing the configuration of a feedback control system introduced by the Smith Act. 従来の自動板厚制御を行った場合のモニタリングAGCの操作量の板厚方向での変位を示すグラフであり、(b)は、そのときの狙い厚に対する板厚偏差を示すグラフである。It is a graph which shows the displacement in the plate thickness direction of the operation amount of the monitoring AGC when the conventional automatic plate thickness control is performed, and (b) is the graph which shows the plate thickness deviation with respect to the target thickness at that time.

以下、モニタリングAGCを用いた本発明の金属板の板厚制御方法および装置並びに金属板の製造方法および設備の一実施形態について図面を参照しながら説明する。図1は、本実施形態の板厚制御方法および装置を適用した金属板の製造設備の要部概略構成図である。この製造設備は、鋼板等の金属板を圧延する圧延機1を備える。圧延機1は、上下のワークロール1a,1bと上下のバックアップロール1c,1dを備える。本実施形態の製造設備の例では、図の左側から鋼板等の金属板が搬送され、圧延機1によって図の左側から右側へ目標板厚となるよう圧延される。所定板厚に圧延された金属板は図の右側に設けられた図示しない後工程に搬送される。圧延機は可逆式、非可逆式のどちらでもよい。図1中、hGM(TRK)は後述するトラッキングしたゲージメータ板厚を示し、ΔhGMは測定板厚hγとトラッキングしたゲージメータ板厚hGM(TRK)との偏差と、圧下点でのゲージメータ板厚hGM(圧下点)と目標板厚hとの偏差と、の差を示し、ΔSは基準ギャップと実績ギャップの差を示す。 Hereinafter, an embodiment of a method and apparatus for controlling the thickness of a metal plate of the present invention using monitoring AGC and a method and equipment for manufacturing a metal plate will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a main part of a metal plate manufacturing facility to which the plate thickness control method and apparatus of the present embodiment are applied. This manufacturing facility includes a rolling mill 1 for rolling a metal plate such as a steel plate. The rolling mill 1 includes upper and lower work rolls 1a and 1b and upper and lower backup rolls 1c and 1d. In the example of the manufacturing equipment of the present embodiment, a metal plate such as a steel plate is conveyed from the left side of the drawing, and is rolled by the rolling mill 1 from the left side to the right side of the drawing so as to have a target plate thickness. The metal plate rolled to a predetermined plate thickness is conveyed to a post-process (not shown) provided on the right side of the drawing. The rolling mill may be either a reversible type or a non-reversible type. In FIG. 1, h GM (TRK) indicates the tracked gauge meter plate thickness described later, and Δh GM is the deviation between the measurement plate thickness h γ and the tracked gauge meter plate thickness h GM (TRK) and the reduction point. The difference between the gauge meter plate thickness h GM (compression point) and the deviation between the target plate thickness h 0 is shown, and ΔS indicates the difference between the reference gap and the actual gap.

本実施形態における金属板の板厚制御装置は、圧延機1の後面側に配置され、金属板の出側板厚を実測するγ線板厚計等の板厚計2と、上下のワークロール1a,1b間の開度、つまり圧下位置を調整する例えば油圧シリンダからなる開度変更機構3と、圧下時の圧延荷重Pを測定する荷重計(ロードセル)4と、ワークロール1a,1bによる圧下位置を検出する圧下位置検出器5と、モニタリング制御器6と、板厚制御器7とを備え、圧延機1にて測定した圧延荷重Pおよびロール開度に基づき推定したゲージメータ板厚hGMを用いて板厚制御を行うゲージメータAGCと、板厚計2による測定板厚hγを用いて板厚制御を行うモニタリングAGCとを併用したものある。 The plate thickness control device for the metal plate in the present embodiment is arranged on the rear surface side of the rolling mill 1, and has a plate thickness gauge 2 such as a γ-ray plate thickness gauge for measuring the output side plate thickness of the metal plate, and upper and lower work rolls 1a. The opening degree between 1b and 1b, that is, the opening degree changing mechanism 3 including a hydraulic cylinder, the load meter (load cell) 4 for measuring the rolling load P at the time of reduction, and the reduction position by the work rolls 1a and 1b. A gauge meter plate thickness h GM estimated based on the rolling load P and the roll opening measured by the rolling mill 1 is provided with a reduction position detector 5 for detecting the rolling load, a monitoring controller 6, and a plate thickness controller 7. There is a combination of a gauge meter AGC that controls the plate thickness using the gauge meter AGC and a monitoring AGC that controls the plate thickness using the plate thickness h γ measured by the plate thickness meter 2.

図2に、板厚制御系のブロック線図を示す。なお、図中、「h」は出側板厚(実板厚)、「S」はロール開度(最終的なワークロール1a,1b間のギャップ)、「P」は圧延荷重(実荷重)、「K」はミル定数、「Km」は予測ミル定数、「M」は塑性定数、「Kg」は制御ゲイン、「α」はチューニング率、「hγ」は測定板厚(実厚)、「PI」はPI制御コントローラ、「Sagc−mon」はモニタリングAGC後の指示ギャップ、「Sagc−ag」はゲージメータAGCの操作量、また、図中、文字または記号に付された「0」は目標値を、「Δ」は偏差をそれぞれ表す。また、図中の符号9は、ロール開度Sから圧延荷重Pを逆算する圧延荷重演算部であり、符号10は、ゲージメータAGC操作量演算部であり、符号11は、ゲージメータ厚演算部、符号12は、測定板厚hγとトラッキングしたゲージメータ厚hGM(TRK)との差を生成する加算部であり、符号13は、測定板厚hγとトラッキングしたゲージメータ厚hGM(TRK)との差と、圧下点でのゲージメータ厚hGM(圧下点)と目標板厚hとの差との偏差を生成する加算部であり、符号14は、モニタリング操作量とロール開度の目標Sとの差を生成する加算部である。 FIG. 2 shows a block diagram of the plate thickness control system. In the figure, "h" is the output side plate thickness (actual plate thickness), "S" is the roll opening (final gap between the work rolls 1a and 1b), and "P" is the rolling load (actual load). "K" is the mill constant, "Km" is the predicted mill constant, "M" is the plastic constant, "Kg" is the control gain, "α" is the tuning rate, "h γ " is the measuring plate thickness (actual thickness), and ""PI" is the PI control controller, " Sagc-mon " is the indication gap after monitoring AGC, " Sagc-ag " is the operation amount of the gauge meter AGC, and "0" attached to a letter or symbol in the figure. Represents the target value, and "Δ" represents the deviation. Further, reference numeral 9 in the drawing is a rolling load calculation unit that calculates the rolling load P back from the roll opening degree S, reference numeral 10 is a gauge meter AGC operation amount calculation unit, and reference numeral 11 is a gauge meter thickness calculation unit. , Reference numeral 12 is an addition unit that generates a difference between the measurement plate thickness h γ and the tracked gauge meter thickness h GM (TRK), and reference numeral 13 is a measurement plate thickness h γ and the tracked gauge meter thickness h GM (reference numeral 12 ). It is an addition part that generates a deviation between the difference from TRK) and the difference between the gauge meter thickness h GM (reduction point) and the target plate thickness h 0 at the reduction point , and reference numeral 14 is a monitoring operation amount and roll opening. It is an addition part that generates a difference from the target S 0 of the degree.

まず、ゲージメータAGCについて説明する。塑性変動や入側板厚変動によって荷重変動(図中ΔPで示す差荷重)が生じると、ゲージメータ式の考え方に従い出側板厚変動は、ミル定数Kを用いて以下の(1)式のよう表される。
Δh=ΔP/K ・・・・・(1)
この出側板厚変動Δhを、開度操作により補償するのがゲージメータAGCの考え方であり、補償量Sagc−agは、荷重変動ΔP、チューニング率α、および予想ミル定数Kmを用いて以下の(2)式となる。なお、チューニング率αは0≦α≦1の範囲の値をもち、いわゆる制御ゲインと呼ばれるものである。
agc−ag=α・ΔP/Km ・・・・・(2)
すなわち、ゲージメータAGCでは、荷重の増加に対してワークロール1a,1bを閉めこむよう補償することで板厚変動が除去される。
First, the gauge meter AGC will be described. When a load fluctuation (difference load indicated by ΔP in the figure) occurs due to a plastic fluctuation or a fluctuation of the inlet plate thickness, the fluctuation of the outlet side plate thickness is shown in the following equation (1) using the mill constant K according to the concept of the gauge meter formula. Will be done.
Δh = ΔP / K (1)
The idea of the gauge meter AGC is to compensate for this output side plate thickness fluctuation Δh by opening operation, and the compensation amount Sagc-ag is as follows using the load fluctuation ΔP, the tuning rate α, and the expected mill constant Km. It becomes the formula (2). The tuning rate α has a value in the range of 0 ≦ α ≦ 1, and is a so-called control gain.
Sagc-ag = α ・ ΔP / Km ・ ・ ・ ・ ・ (2)
That is, in the gauge meter AGC, fluctuations in plate thickness are eliminated by compensating for the increase in load so that the work rolls 1a and 1b are closed.

これに対して、モニタリングAGCは、板厚計2による測定板厚hγと目標板厚hの差を操作量として用い、比例積分制御により板厚を補償する。ゲージメータAGCではゲージメータ式の誤差により板厚を狙い厚に正確に制御することは困難であるが、モニタリングAGCでは実測した板厚をフィードバックするため、狙い厚偏差の除去に大きく寄与することができる。しかし、モニタリングAGCの問題点は、圧延機1による圧下点と板厚計2の測定点とのずれにより生じる搬送時間遅れによって制御系にむだ時間が発生することである。そこで本実施形態では、スミス補償器を追加してむだ時間を補償する。スミス補償器では動特性モデルを用いることでプロセスの活動を予測して制御を行うが、本実施形態ではこの動特性モデルとしてゲージメータ式を用いる。ゲージメータ板厚hGMは、ミル定数Kを用いて、以下の(3)式のように表される。
なお、βはゲージメータ厚補正項である。
GM=P/K+S+β・・・・(3)
On the other hand, the monitoring AGC uses the difference between the plate thickness h γ measured by the plate thickness meter 2 and the target plate thickness h 0 as the manipulated variable, and compensates the plate thickness by proportional integration control. With the gauge meter AGC, it is difficult to accurately control the plate thickness to the target thickness due to the error of the gauge meter type, but with the monitoring AGC, the measured plate thickness is fed back, which can greatly contribute to the removal of the target thickness deviation. it can. However, the problem with the monitoring AGC is that waste time occurs in the control system due to the delay in transport time caused by the deviation between the rolling point of the rolling mill 1 and the measurement point of the plate thickness gauge 2. Therefore, in the present embodiment, a Smith compensator is added to compensate for the wasted time. The Smith compensator predicts and controls process activity by using a dynamic characteristic model, but in this embodiment, a gauge meter type is used as this dynamic characteristic model. The gauge meter plate thickness h GM is expressed by the following equation (3) using the mill constant K.
Note that β is a gauge meter thickness correction term.
h GM = P / K + S 0 + β ... (3)

また、図2のブロック線図中の「e-Ls」は圧延機1から板厚計2までの搬送時間遅れによって生じるむだ時間であり、実際には圧下点でのゲージメータ板厚hGMを板厚計2の位置までトラッキングするトラッキング部である。このため、スミス補償器を導入する際には先進率の変動によるトラッキング誤差やゲージメータ誤差等が生じ、モニタリングAGCの操作量が不安定となるおそれがある。そこで、本実施形態の板厚制御装置は、圧下点からトラッキングしたゲージメータ板厚hGM(TRK)と板厚計2で実測した測定板厚hγとの差と、圧下点でのゲージメータ板厚hGM(圧下点)と目標板厚hとの差とを補償すべきモニタリング操作量とする場合に、該モニタリング操作量を指数平滑化により補正し、その値を板厚制御器7に補正後のモニタリング操作量として加える指数平滑回路8を備える。指数平滑回路8は図2中の加算部13の後に配置してもよい。指数平滑回路8による処理は以下の(4)式により表される。
出力=a×入力+(1−a)×出力i−1・・・・(4)
なお、入力は指数平滑回路に入力される補正前のモニタリング操作量であり、出力は指数平滑回路から出力された指数平滑化により補正されたモニタリグ操作量であり、出力i−1は前回出力値である。また、aは平滑定数であり、0<a<1の範囲の値をもつ。平滑定数aが大きいと、入力値への重みづけが大きくなるので平滑化の程度が低くなり、平滑定数aが小さいと前回出力値に対する重みづけが大きくなるので平滑化の程度は大きくなる。トラッキング誤差やゲージメータ誤差等は圧延機毎に異なることから最適な平滑定数aは圧延機毎に異なるが、発明者らの研究により、aを例えば0.02〜0.10の範囲することでモニタリングAGCのモニタリング操作量を概ね安定化させることができることが判った。
Further, "e- Ls " in the block diagram of FIG. 2 is the wasted time caused by the delay in the transport time from the rolling mill 1 to the plate thickness gauge 2, and the gauge meter plate thickness h GM at the rolling point is actually used. It is a tracking unit that tracks up to the position of the plate thickness meter 2. Therefore, when the Smith compensator is introduced, tracking error, gauge meter error, etc. due to fluctuations in the advanced rate may occur, and the operation amount of the monitoring AGC may become unstable. Therefore, in the plate thickness control device of the present embodiment, the difference between the gauge meter plate thickness h GM (TRK) tracked from the reduction point and the measurement plate thickness h γ measured by the plate thickness meter 2 and the gauge meter at the reduction point When the difference between the plate thickness h GM (compression point) and the target plate thickness h 0 is set as the monitoring operation amount to be compensated, the monitoring operation amount is corrected by exponential smoothing, and the value is corrected by the plate thickness controller 7. The exponential smoothing circuit 8 is provided as a monitoring operation amount after correction. The exponential smoothing circuit 8 may be arranged after the addition unit 13 in FIG. The processing by the exponential smoothing circuit 8 is represented by the following equation (4).
Output i = a x Input i + (1-a) x Output i-1 ... (4)
The input i is the monitoring operation amount before correction input to the exponential smoothing circuit, the output i is the monitor rig operation amount corrected by exponential smoothing output from the exponential smoothing circuit, and the output i-1 is the previous time. The output value. Further, a is a smoothing constant and has a value in the range of 0 <a <1. If the smoothing constant a is large, the weighting on the input value is large, so that the degree of smoothing is low. If the smoothing constant a is small, the weighting on the previous output value is large, so that the degree of smoothing is large. Since the tracking error, gauge meter error, etc. are different for each rolling mill, the optimum smoothing constant a is different for each rolling mill, but according to the research by the inventors, a can be set in the range of 0.02 to 0.10. It was found that the monitoring operation amount of the monitoring AGC can be substantially stabilized.

また、圧下点でのゲージメータ板厚hGM(圧下点)の算出周期と板厚計2のサンプリング周期とが不一致であると制御量悪化の要因にもなり得ることから、本実施形態のように、板厚計のサンプリング周期を調整するサンプリング周期調整部15を備えることが好ましい。このサンプリング周期調整部15は、板厚計2による板厚hγのサンプリング周期を圧下点でのゲージメータ板厚hGM(圧下点)の算出周期と同じにする機能を有する。 Further, if the calculation cycle of the gauge meter plate thickness h GM (compression point) at the reduction point and the sampling cycle of the plate thickness meter 2 do not match, it may cause deterioration of the control amount, and therefore, as in the present embodiment. It is preferable to provide a sampling cycle adjusting unit 15 for adjusting the sampling cycle of the plate thickness gauge. The sampling cycle adjusting unit 15 has a function of making the sampling cycle of the plate thickness h γ by the plate thickness gauge 2 the same as the calculation cycle of the gauge meter plate thickness h GM (compression point) at the reduction point .

以上説明したように、モニタリングAGCにおけるモニタリング操作量を指数平滑化により補正することでモニタリングAGCのモニタリング操作量を安定化させ板内変動を抑制することができる。また、圧下点でのゲージメータ板厚の算出周期と板厚計のサンプリング周期とを同じにすることで板内変動をさらに抑制することが可能にある。 As described above, by correcting the monitoring operation amount in the monitoring AGC by exponential smoothing, the monitoring operation amount in the monitoring AGC can be stabilized and the in-plate fluctuation can be suppressed. Further, by making the calculation cycle of the gauge meter plate thickness at the reduction point and the sampling cycle of the plate thickness meter the same, it is possible to further suppress the fluctuation in the plate.

実施例として、図1,2に示した圧延機および板厚制御装置を用いて、金属板として厚み10mmの鋼板を目標板厚8mmとなるよう圧延を行った。板厚計にはγ線板厚計を用いた。本実施例では、板厚計のサンプリング周期を100mm間隔とするとともに、圧下点の圧延荷重Pおよび圧下点でのゲージメータ板厚hGMを100mm間隔でトラッキングし、トラッキング点が板厚計に達した際に板厚計の測定板厚hγとトラッキングしたゲージメータ板厚hGM(TRK)との差を求め、この差と、圧下点でのゲージメータ板厚hGM(圧下点)および目標板厚h間の差との偏差をモニタリング操作量として目標板厚になるように前記圧延機における圧下位置をダイナミックに制御する際に、このモニタリング操作量を指数平滑回路で指数平滑化して補正し、その補正後の値を板厚制御器にモニタリング操作量として加えた。指数平滑回路の平滑定数は0.04とした。また、板厚制御装置における主な条件は、ミル定数900ton/mm、予測ミル定数950ton/mm、および塑性定数1500ton/mmとした。 As an example, using the rolling mill and the plate thickness control device shown in FIGS. 1 and 2, a steel plate having a thickness of 10 mm as a metal plate was rolled to a target plate thickness of 8 mm. A gamma-ray plate thickness gauge was used as the plate thickness gauge. In this embodiment, the sampling period of the plate thickness gauge is set to 100 mm intervals, and the rolling load P at the rolling point and the gauge meter plate thickness h GM at the rolling point are tracked at 100 mm intervals, and the tracking points reach the plate thickness gauge. The difference between the measured plate thickness h γ of the plate thickness gauge and the tracked gauge meter plate thickness h GM (TRK) was obtained, and this difference, the gauge meter plate thickness h GM (rolling point) at the rolling point, and the target When the rolling position in the rolling mill is dynamically controlled so that the deviation from the difference between the plate thickness h 0 is used as the monitoring operation amount to reach the target plate thickness, this monitoring operation amount is exponentially smoothed by an exponential smoothing circuit and corrected. Then, the corrected value was added to the plate thickness controller as a monitoring operation amount. The smoothing constant of the exponential smoothing circuit was 0.04. The main conditions in the plate thickness control device were a mill constant of 900 ton / mm, a predicted mill constant of 950 ton / mm, and a plastic constant of 1500 ton / mm.

本実施例による自動板厚制御を行った場合のモニタリングAGCの、指数平滑回路で補正されたモニタリング操作量(図中「モニタ操作量」または「モニタリングAGC操作量」と記載する。)を図3(a)に、狙い厚に対する板厚偏差(図中「γ厚偏差」または「狙い厚偏差」と記載する。)を図3(b)にそれぞれ示す。このように、本発明を適用することで、モニタリングAGCのモニタリング操作量が安定し、狙い厚に対する板厚偏差が早期に収束することが確認された。 The monitoring operation amount corrected by the exponential smoothing circuit (referred to as "monitor operation amount" or "monitoring AGC operation amount" in the figure) of the monitoring AGC when the automatic plate thickness control according to this embodiment is performed is shown in FIG. In (a), the plate thickness deviation with respect to the target thickness (described as “γ-thickness deviation” or “target thickness deviation” in the figure) is shown in FIG. 3 (b), respectively. As described above, it was confirmed that by applying the present invention, the monitoring operation amount of the monitoring AGC was stabilized, and the plate thickness deviation with respect to the target thickness converged at an early stage.

本発明により、モニタリングAGCが安定するまでの時間を短くし、板厚計および圧延機間の搬送時間(むだ時間)が長い制御系においても安定して板厚精度を向上させることが可能となった。 According to the present invention, it is possible to shorten the time until the monitoring AGC stabilizes and stably improve the plate thickness accuracy even in a control system in which the transfer time (waste time) between the plate thickness gauge and the rolling mill is long. It was.

1 圧延機
1a,1b ワークロール
1c,1d バックアップロール
2 板厚計
3 開度変更機構
4 荷重計
5 圧下位置検出器
6 モニタリング制御器
7 板厚制御器
8 指数平滑回路
9 圧延荷重演算部
10 ゲージメータAGC操作量演算部
11 ゲージメータ厚演算部
12,13,14 加算部
15 サンプリング周期調整部
1 Rolling machine 1a, 1b Work roll 1c, 1d Backup roll 2 Plate thickness meter 3 Opening change mechanism 4 Load meter 5 Reduction position detector 6 Monitoring controller 7 Plate thickness controller 8 Exponential smoothing circuit 9 Rolling load calculation unit 10 gauge Meter AGC operation amount calculation unit 11 Gauge meter thickness calculation unit 12, 13, 14 Addition unit 15 Sampling cycle adjustment unit

Claims (6)

金属板を圧延機で圧下する際の圧下点での板厚をゲージメータ式からゲージメータ板厚として算出し、該ゲージメータ板厚を前記圧延機の後面に設置された板厚計の測定点までトラッキングし、前記測定点において前記板厚計で測定した板厚と前記トラッキングした前記ゲージメータ板厚との偏差と、前記圧下点での前記ゲージメータ板厚と目標板厚との偏差との差分をモニタリング操作量として、前記目標板厚になるように前記圧延機における圧下位置をダイナミックに制御する金属板の板厚制御方法であって、
前記測定点において前記板厚計で測定した板厚と前記トラッキングした前記ゲージメータ板厚との偏差と、前記圧下点での前記ゲージメータ板厚と目標板厚との偏差との差分である前記モニタリング操作量を指数平滑化したものを補正後のモニタリング操作量として、前記目標板厚になるように前記圧延機における圧下位置をダイナミックに制御することを特徴とする金属板の板厚制御方法。
The plate thickness at the rolling point when rolling down a metal plate with a rolling mill is calculated as the gauge meter plate thickness from the gauge meter type, and the gauge meter plate thickness is measured at the measuring point of the plate thickness gauge installed on the rear surface of the rolling mill. Tracking up to, the deviation between the plate thickness measured by the plate thickness gauge at the measurement point and the tracked gauge meter plate thickness, and the deviation between the gauge meter plate thickness and the target plate thickness at the rolling point. It is a method of controlling the thickness of a metal plate that dynamically controls the rolling position in the rolling mill so that the difference is used as the monitoring operation amount to reach the target thickness.
The difference between the deviation between the plate thickness measured by the plate thickness gauge at the measurement point and the tracked gauge meter plate thickness, and the deviation between the gauge meter plate thickness and the target plate thickness at the rolling point. A method for controlling the thickness of a metal plate, which comprises dynamically controlling a rolling position in the rolling mill so that the target plate thickness is obtained by using an exponentially smoothed monitoring operation amount as the corrected monitoring operation amount.
前記ゲージメータ板厚の算出周期と前記板厚計の測定周期とを同じに設定することを特徴とする、請求項1に記載の金属板の板厚制御方法。 The method for controlling the thickness of a metal plate according to claim 1, wherein the calculation cycle of the gauge meter plate thickness and the measurement cycle of the plate thickness gauge are set to be the same. 請求項1または2に記載の金属板の板厚制御方法を用いて金属板を圧延することを特徴とする金属板の製造方法。 A method for manufacturing a metal plate, which comprises rolling the metal plate by using the method for controlling the thickness of the metal plate according to claim 1 or 2. 金属板を圧延機で圧下する際の圧下点での板厚をゲージメータ式からゲージメータ板厚として算出し、該ゲージメータ板厚を前記圧延機の後面に設置された板厚計の測定点までトラッキングし、前記測定点において前記板厚計で測定した板厚と前記トラッキングした前記ゲージメータ板厚との偏差と、前記圧下点での前記ゲージメータ板厚と目標板厚との偏差との差分をモニタリング操作量として、前記目標板厚になるように前記圧延機における圧下位置をダイナミックに制御する金属板の板厚制御装置であって、
前記測定点において前記板厚計で測定した板厚と前記トラッキングした前記ゲージメータ板厚との偏差と、前記圧下点での前記ゲージメータ板厚と目標板厚との偏差との差分である前記モニタリング操作量を指数平滑化により補正する指数平滑回路を備えることを特徴とする金属板の板厚制御装置。
The plate thickness at the rolling point when rolling down a metal plate with a rolling mill is calculated as the gauge meter plate thickness from the gauge meter type, and the gauge meter plate thickness is measured at the measuring point of the plate thickness gauge installed on the rear surface of the rolling mill. The deviation between the plate thickness measured by the plate thickness gauge at the measurement point and the tracked gauge meter plate thickness, and the deviation between the gauge meter plate thickness and the target plate thickness at the rolling point. A metal plate thickness control device that dynamically controls the rolling position in the rolling mill so that the target plate thickness is obtained by using the difference as the monitoring operation amount.
The difference between the deviation between the plate thickness measured by the plate thickness gauge at the measurement point and the tracked gauge meter plate thickness, and the deviation between the gauge meter plate thickness and the target plate thickness at the reduction point. A plate thickness control device for a metal plate, which comprises an exponential smoothing circuit that corrects a monitoring operation amount by exponential smoothing.
前記ゲージメータ板厚の算出周期と前記板厚計の測定周期とを同じに設定することを特徴とする、請求項4に記載の金属板の板厚制御装置。 The plate thickness control device for a metal plate according to claim 4, wherein the calculation cycle of the gauge meter plate thickness and the measurement cycle of the plate thickness gauge are set to be the same. 金属板を圧延する圧延機と、請求項4または5に記載の金属板の板厚制御装置とを備えることを特徴とする金属板の製造設備。 A metal plate manufacturing facility including a rolling mill for rolling a metal plate and a sheet thickness control device for the metal plate according to claim 4 or 5.
JP2018068572A 2018-03-30 2018-03-30 Metal plate thickness control method and equipment, and metal plate manufacturing method and equipment Active JP6781411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018068572A JP6781411B2 (en) 2018-03-30 2018-03-30 Metal plate thickness control method and equipment, and metal plate manufacturing method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018068572A JP6781411B2 (en) 2018-03-30 2018-03-30 Metal plate thickness control method and equipment, and metal plate manufacturing method and equipment

Publications (2)

Publication Number Publication Date
JP2019177400A JP2019177400A (en) 2019-10-17
JP6781411B2 true JP6781411B2 (en) 2020-11-04

Family

ID=68277451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018068572A Active JP6781411B2 (en) 2018-03-30 2018-03-30 Metal plate thickness control method and equipment, and metal plate manufacturing method and equipment

Country Status (1)

Country Link
JP (1) JP6781411B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932721B (en) * 2021-10-19 2024-01-19 济南邦威仪器有限公司 Plate powder spreading thickness detection equipment and control method thereof

Also Published As

Publication number Publication date
JP2019177400A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
CN101147918A (en) Control method for using forward slip adaptive dynamic correction strip steel thickness deviation
US20210381093A1 (en) Coating Weight Control Apparatus and Coating Weight Control Method
JPS641208B2 (en)
JP6781411B2 (en) Metal plate thickness control method and equipment, and metal plate manufacturing method and equipment
JP5251427B2 (en) Metal plate thickness control device and plastic coefficient estimation function setting method
JP2014210275A (en) Plate thickness control method and plate thickness control device
KR102367345B1 (en) Plant control apparatus and plant control method
JP2002346616A (en) Method for controlling sheet thickness
JPH0413411A (en) Method for controlling strip thickness when strip is passed through in hot continuous mill
JPH0413413A (en) Method for controlling strip thickness at passing time on hot continuous rolling mill
JP3466523B2 (en) Thickness control method
JP2019098370A (en) Estimation method of gage meter plate thickness error, plate thickness control method, manufacturing method of rolled material and plate thickness controller
JP3267841B2 (en) Controller with phase compensation function
JP3241585B2 (en) Plate thickness control device
JPS6124082B2 (en)
JPS6224809A (en) Method for controlling sheet width in hot rolling
JPH0475714A (en) Method for controlling top end sheet thickness of hot continuous rolling mill
JPH08332506A (en) Method for controlling thickness of taper plate
JP6520864B2 (en) Method and apparatus for controlling plate thickness of rolling mill
JP2023163603A (en) Control system and control method
JPH038845B2 (en)
JPH0818058B2 (en) Automatic plate thickness control method for plate rolling
JPH06238313A (en) Method for rolling thick plate material
JPH0739914A (en) Method for controlling plate thickness of hot rolling mill
JPH03151109A (en) Method for controlling plate thickness in hot continuous rolling mill when plate is passing through

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200929

R150 Certificate of patent or registration of utility model

Ref document number: 6781411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250