JPH04109620A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04109620A
JPH04109620A JP22947790A JP22947790A JPH04109620A JP H04109620 A JPH04109620 A JP H04109620A JP 22947790 A JP22947790 A JP 22947790A JP 22947790 A JP22947790 A JP 22947790A JP H04109620 A JPH04109620 A JP H04109620A
Authority
JP
Japan
Prior art keywords
etching
insulating film
film
solution
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22947790A
Other languages
Japanese (ja)
Inventor
Jun Osanai
潤 小山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP22947790A priority Critical patent/JPH04109620A/en
Publication of JPH04109620A publication Critical patent/JPH04109620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce dispersion on manufacture, and to obtain the excellent shape of a contact hole by composing an intermediate insulating film of two layer films having different impurity concentration and conducting the boring method of the contact hole at the two stages of isotropic etching in a solution and anisotropic etching in vapor phase. CONSTITUTION:An insulating film 2 electrically isolating a semiconductor substrate 1 and a metallic wiring is formed in two layer structure having different impurity concentration, and a boring method for obtaining the electrical coupling of the semiconductor substrate 1 and the metallic wiring is carried out at two stages by isotropic etching in a solution and anisotropic etching in vapor phase. Consequently, etching can be stopped near the boundary of a first layer film 5 and a second layer film 5' in isotropic etching in the solution at a time when a contact hole 6 is bored to intermediate insulating films 5, 5', and extrusion from a gate electrode 4 of a contact can be prevented. Accordingly, a semiconductor device having the excellent shape of the contact and being superior even from the viewpoint of long-term reliability can be acquired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高集積、高速な半導体集積回路装置の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a highly integrated and high-speed semiconductor integrated circuit device.

〔発明の概要〕[Summary of the invention]

半導体基板と金属配線を電気的に分離しているいわゆる
中間絶縁膜を不純物濃度の異なる2層膜で構成し、金属
配線と半導体基板との電気的結合を得るためのいわゆる
コンタクト孔の開花法を溶液中での等方性エツチングと
気相中での異方性エツチングと2段階に行うことにより
、製造上のバラツキを少なくし、優れたコンタクト孔の
形状を達成できる。
The so-called intermediate insulating film that electrically separates the semiconductor substrate and metal wiring is composed of two layers of films with different impurity concentrations, and the so-called contact hole blooming method is used to obtain electrical coupling between the metal wiring and the semiconductor substrate. By performing isotropic etching in a solution and anisotropic etching in a gas phase, manufacturing variations can be reduced and an excellent contact hole shape can be achieved.

〔従来の技術〕[Conventional technology]

図面に基づき従来の技術を説明する。第2図ta+は半
導体基板と後に形成する金属配線を電気的に分離する中
間絶縁[5を被着した様子を示す。このとき、中間絶縁
膜5は例えば化学的成長法(CVD法)により、ボロン
3wt%、リン5wt%を含むシリコン酸化膜(B P
 S G膜: Baron PhosSilicate
 Gluss)を約6000〜10000 人程度被着
させる。次に第2図(b)に示すように900℃〜10
00℃の熱処理を30分程度行い、いわゆるグラスフロ
ーにより形状の平滑化を行う。後に形成する金属配線の
断切れや、ショートを防ぐためである。この後、第2図
tC)に示すようにフォトリソグラフィ法によりフォト
レジストをパターニングして、例えばフッ化アンモンと
フン酸の混合液中にて等方性エツチングにより中間絶縁
膜の途中までエツチングを行い、次にガスプラズマ中に
て異方性であるドライエツチングを行ない、金属配線と
拡散層およびゲート電極との電気的結合を得るためのコ
ンタクト孔6を開孔する。この2段階エツチング法によ
り、コンタクト孔の形状は改善され、実質的にアスペク
ト比は小さくなる。次にさらなる形状改善として、90
0℃程度の温度で約30分熱処理を行い、角を丸める(
第2図(a))。この方法によりコンタクト部での金属
配線の断差被覆性が向上し歩留りや信頼性を起こさずに
済むのである。
A conventional technique will be explained based on the drawings. FIG. 2 ta+ shows the state in which an intermediate insulator [5] is deposited to electrically isolate the semiconductor substrate and the metal wiring to be formed later. At this time, the intermediate insulating film 5 is made of a silicon oxide film (B P
SG film: Baron PhosSilicate
Approximately 6,000 to 10,000 people will be covered by Gluss. Next, as shown in Figure 2(b),
Heat treatment is performed at 00° C. for about 30 minutes, and the shape is smoothed by so-called glass flow. This is to prevent breakage and short-circuiting of the metal wiring that will be formed later. Thereafter, as shown in Figure 2 (tC), the photoresist is patterned by photolithography, and the intermediate insulating film is etched halfway through, for example, by isotropic etching in a mixed solution of ammonium fluoride and hydrofluoric acid. Then, anisotropic dry etching is performed in gas plasma to form contact holes 6 for electrically connecting the metal wiring, the diffusion layer, and the gate electrode. This two-step etching process improves the shape of the contact hole and substantially reduces the aspect ratio. Next, as a further shape improvement, 90
Heat treatment is performed at a temperature of about 0℃ for about 30 minutes, and the corners are rounded (
Figure 2(a)). This method improves the gap coverage of the metal wiring at the contact portion and does not affect yield or reliability.

〔発明が解決しようとするHUE 従来の技術において、コンタクト孔の形状改善のための
溶液中の等方性エツチングはアンダーであると形状改善
即ち、アスペクト比改善に効果はないため、ある程度エ
ツチングしなくてはならない。例えば8C00人のBP
SG膜を用いた場合、少なくとも3000人程度エフチ
ングする必要があるが、製造上のエツチングや膜厚のバ
ラツキを考慮すると実際には4000人程度エフツチン
グ量を設定しておく必要がある。ところが、BPSG膜
が製造上のバラツキ内下限膜厚でかつガラスフローによ
り膜厚が薄くなりやすいゲート電極上にて、最悪の場合
、第2図(C1に示すように最初の等方性エツチングに
てコンタクト孔がすべて開いてしまう時がある。ここで
のコンタクト径はフォトレジスト開口径よりかなり大き
くなっており、フォトリソグラフィ工程での合わせ精度
が悪いとコンタクトはゲート電極よりはみ出してしまう
ことがある。この様な場合、歩留りの低下及び長期信転
性の低下を招いてしまうという問題を有している。
[HUE to be solved by the invention In the conventional technology, isotropic etching in a solution to improve the shape of a contact hole is not effective in improving the shape or improving the aspect ratio if it is under-etched. must not. For example, BP of 8C00 people
When an SG film is used, it is necessary to etch at least 3,000 layers, but when considering manufacturing etching and film thickness variations, it is actually necessary to set the etch amount to about 4,000 layers. However, in the worst case, when the BPSG film is at the lower limit film thickness within the manufacturing variation and on the gate electrode where the film thickness tends to become thinner due to the glass flow, the initial isotropic etching will fail as shown in Figure 2 (C1). In some cases, all the contact holes are opened.The contact diameter here is considerably larger than the photoresist opening diameter, and if the alignment accuracy in the photolithography process is poor, the contact may protrude beyond the gate electrode. In such a case, there is a problem that the yield and long-term reliability are lowered.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明は中間絶縁膜を各々
不純物濃度の異なる2層構造にし、さらに必要ならば各
々の膜の受ける熱処理を変えることにした。
In order to solve the above-mentioned problems, the present invention makes the intermediate insulating film a two-layer structure with different impurity concentrations, and if necessary, changes the heat treatment that each film undergoes.

〔作用〕[Effect]

このように中間絶縁膜を不純物濃度を変更した2層構造
し、かつ各々の膜の熱処理を変更することにより、各々
の膜の溶液中のエッチレートに大幅な差を待たせること
が可能となる。上膜層のエッチレートを大きくし下層膜
のエッチレートを小さくできる。従って、溶液中のエツ
チングによりコンタクト孔がすべてが開孔することはな
くなり、しいてはゲート電極からコンタクト孔がはみ出
すこともなくなるのである。
By forming the intermediate insulating film into a two-layer structure with different impurity concentrations and by changing the heat treatment of each film, it is possible to make a large difference in the etch rate of each film in solution. . The etch rate of the upper layer can be increased and the etch rate of the lower layer can be decreased. Therefore, all of the contact holes will not be opened by etching in the solution, and the contact holes will not protrude from the gate electrode.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。第1
図ialはCVD法によりボロン4wt%、リン4I%
含有するBPSG膜5を 5000人被看した様子を示
す0次に900℃〜1000℃の濃度にて約30分熱処
理を行いガラスフローを行う (第1図山))。この後
第1図(C)に示すようにCVD法により例えば、ボロ
ン3wt%、リン5wt%含有するBPSGI!I5″
を3000人被着し、800℃〜900℃の間で約30
程度熱処理を行う6次に第1図(d)に示すように、フ
ォトリソグラフィ法により、コンタクト孔のパターンを
フォトレジスト7でバターニングし、まず例えばフッ化
アンモンとフッ酸の混合液中にて等方性エツチングを行
い、次にガスプラズマ中にて異方性ドライエツチングを
行い、コンタクト孔6を開孔する。この時、第1中間絶
縁膜5であるボロン4轢t%、リン5iit、BPSG
膜と第2中間絶縁膜5゛であるボロン3wt%、リン5
wt%、BPSG膜は不純物濃度も異なり、受けた熱処
理を各々異なっている。フン化アンモンとフッ酸混合液
に対してはリン濃度が高いほどまた受けた熱処理温度が
低いほどエッチレートは高くなる。従って、第1絶縁膜
5と第2絶縁膜5′のフッ化アンモンとフン酸混合液に
対するエンチング選択比を例えば3〜5程度にすること
が可能となる。こうしておくと、溶液中のエツチングに
おいてエツチングは、第1中間絶縁膜5と第2中間絶縁
膜5°境界近傍で止まり、コンタクト孔すべてが開孔す
ることはなくなる。次にフォトレジストを除去して、コ
ンタクト孔の形状改善のため熱処理を900℃程度で約
30分行い角を丸める(第1図(e))。第1中間絶縁
膜5、第2中間絶縁W15゛ とも高濃度にボロン、リ
ンを含有したBPSG膜であるので両方での角がこの熱
処理により十分丸められる。
Embodiments of the present invention will be described below based on the drawings. 1st
Figure ial is 4wt% boron and 4I% phosphorus by CVD method.
The BPSG film 5 containing 5000 people was subjected to heat treatment at a concentration of 900° C. to 1000° C. for about 30 minutes to perform glass flow (Fig. 1). Thereafter, as shown in FIG. 1(C), for example, BPSGI containing 3 wt% boron and 5 wt% phosphorus is processed by CVD. I5″
Approximately 3000 people were exposed to the temperature between 800℃ and 900℃.
6 Next, as shown in FIG. 1(d), the contact hole pattern is patterned with a photoresist 7 by photolithography, and first in a mixed solution of ammonium fluoride and hydrofluoric acid, for example. Isotropic etching is performed, and then anisotropic dry etching is performed in gas plasma to form contact holes 6. At this time, the first intermediate insulating film 5 is made of 4t% boron, 5iit phosphorus, BPSG
The film and the second intermediate insulating film 5 are made of 3 wt% boron and 5 wt% phosphorus.
wt%, the BPSG films have different impurity concentrations and have undergone different heat treatments. For ammonium fluoride and hydrofluoric acid mixtures, the higher the phosphorus concentration and the lower the heat treatment temperature, the higher the etch rate. Therefore, it is possible to set the etching selectivity of the first insulating film 5 and the second insulating film 5' to the mixed solution of ammonium fluoride and hydrofluoric acid to about 3 to 5, for example. If this is done, etching in the solution will stop near the 5° boundary between the first intermediate insulating film 5 and the second intermediate insulating film, and all contact holes will not be opened. Next, the photoresist is removed, and in order to improve the shape of the contact hole, heat treatment is performed at about 900° C. for about 30 minutes to round the corners (FIG. 1(e)). Since both the first intermediate insulating film 5 and the second intermediate insulating film W15' are BPSG films containing boron and phosphorus at a high concentration, the corners of both are sufficiently rounded by this heat treatment.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明してきたように、半導体基板と金属配
線を電気的に分離する中間絶縁膜を2層構造にしてかつ
各々の膜の不純物濃度を変え、さらに必!であれば各々
の膜が受ける熱処理を変更することにより、製版金属と
半導体基板を電気的に結合させるコンタクト孔を中間絶
縁膜を開孔する際の溶液中等方性エツチングにて、この
エンチングを第1層膜と第2層膜の境界近傍で止めるこ
とが可能となる。従って優れたコンタクト形状を持ち、
しいては安定した歩留りを示し、長期信輔性の観点から
も優良な半導体装置を製造することができる。また、本
発明によりコンタクト開孔時の等方性エツチングに用い
られる溶液のエッチレート管理が楽になり、コストとい
った観点からも有利であることは言うまでもない。
As explained above, the present invention has a two-layer structure for the intermediate insulating film that electrically isolates the semiconductor substrate and the metal wiring, and the impurity concentration of each film is changed, and furthermore, the present invention has the following features: If so, by changing the heat treatment that each film undergoes, this etching can be removed by isotropic etching in solution when opening the intermediate insulating film to form contact holes that electrically connect the plate-making metal and the semiconductor substrate. It becomes possible to stop near the boundary between the first layer film and the second layer film. Therefore, it has an excellent contact shape,
Furthermore, it is possible to produce semiconductor devices that exhibit stable yields and are excellent from the viewpoint of long-term reliability. Furthermore, the present invention makes it easier to manage the etch rate of the solution used for isotropic etching when forming contact holes, and it goes without saying that this invention is advantageous from the viewpoint of cost.

第1図+a+〜telは本発明による半導体装置の製造
方法を示す工程順断面間、第2スレ)〜(d)は従来の
半導体装置の製造方法を示す工程順断面図である。
1+a+ to tel are process-order cross-sectional views showing a method for manufacturing a semiconductor device according to the present invention, and 2nd thread) to (d) are process-order cross-sectional views showing a conventional method for manufacturing a semiconductor device.

・半導体基板 ・素子分離絶縁膜 拡散層 ゲート電極 第1中間絶縁膜 第2中間絶縁膜 コンタクト孔 フォトレジスト 出願人 セイコー電子工業株式会社 代理人 弁理士 林  敬 之 助・Semiconductor substrate ・Element isolation insulating film diffusion layer gate electrode First intermediate insulating film Second intermediate insulating film contact hole photoresist Applicant: Seiko Electronics Industries Co., Ltd. Agent: Patent Attorney Takayoshi Hayashi

【図面の簡単な説明】[Brief explanation of drawings]

No.

Claims (1)

【特許請求の範囲】[Claims] 半導体装置の製造方法において、半導体基板と金属配線
を電気的に分離する絶縁膜を不純物濃度の異なる2層構
造にして、かつ半導体基板と金属配線の電気的結合を得
るための開孔法を溶液中で等方性エッチングと気相中で
の異方性エッチングにより、2段階で行うことを特徴と
する半導体装置の製造方法。
In a method of manufacturing a semiconductor device, an insulating film that electrically isolates a semiconductor substrate and metal wiring has a two-layer structure with different impurity concentrations, and a hole-opening method is used to create an electrical connection between the semiconductor substrate and metal wiring. A method for manufacturing a semiconductor device, characterized in that the process is carried out in two steps using isotropic etching and anisotropic etching in a gas phase.
JP22947790A 1990-08-29 1990-08-29 Manufacture of semiconductor device Pending JPH04109620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22947790A JPH04109620A (en) 1990-08-29 1990-08-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22947790A JPH04109620A (en) 1990-08-29 1990-08-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04109620A true JPH04109620A (en) 1992-04-10

Family

ID=16892791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22947790A Pending JPH04109620A (en) 1990-08-29 1990-08-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04109620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318578A (en) * 1993-03-15 1994-11-15 Hyundai Electron Ind Co Ltd Forming method for contact hole in semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318578A (en) * 1993-03-15 1994-11-15 Hyundai Electron Ind Co Ltd Forming method for contact hole in semiconductor element

Similar Documents

Publication Publication Date Title
KR950000867B1 (en) Fabricating method of semiconductor device
US20020070456A1 (en) Semiconductor device having interconnection implemented by refractory metal nitride layer and refractory metal silicide layer and process of fabrication thereof
US5849604A (en) Method of manufacturing a semiconductor device
EP0239746A2 (en) Method for manufacturing a semiconductor device
JPH08222559A (en) Manufacture of semiconductor device
JPH04109620A (en) Manufacture of semiconductor device
JPH02148855A (en) Semiconductor device and manufacture thereof
JPS59148350A (en) Manufacture of semiconductor device
JPH0653334A (en) Manufacturing for semiconductor device
JPH10256187A (en) Semiconductor device and fabrication thereof
JPS63182839A (en) Semiconductor device
JPH07321098A (en) Contact hole forming method
JPS59191354A (en) Manufacture of semiconductor device
JPH1168048A (en) Semiconductor device and forming method thereof
JPS62269340A (en) Method of filling contact hole drilled in insulating isolation layer with tungsten
JPS6081833A (en) Semiconductor device
JPH04123458A (en) Manufacture of semiconductor device
JPS59124742A (en) Manufacture of semiconductor device
JPH05308068A (en) Manufacture of semiconductor device
KR100511397B1 (en) Method for forming connect hole of semiconductor device
JPH03120826A (en) Formation of metal wiring of semiconductor device
JPH0342834A (en) Semiconductor device
JP2937675B2 (en) Method for manufacturing semiconductor device
JPH04127425A (en) Manufacture of semiconductor integrated circuit
JPS60240138A (en) Manufacture of dielectric isolating substrate in semiconductor integrated circuit device