JPH04107864A - Power semiconductor device - Google Patents

Power semiconductor device

Info

Publication number
JPH04107864A
JPH04107864A JP22612990A JP22612990A JPH04107864A JP H04107864 A JPH04107864 A JP H04107864A JP 22612990 A JP22612990 A JP 22612990A JP 22612990 A JP22612990 A JP 22612990A JP H04107864 A JPH04107864 A JP H04107864A
Authority
JP
Japan
Prior art keywords
layer
base layer
base
emitter
emitter layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22612990A
Other languages
Japanese (ja)
Inventor
Takayasu Kawamura
川村 貴保
Masako Tanaka
雅子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP22612990A priority Critical patent/JPH04107864A/en
Publication of JPH04107864A publication Critical patent/JPH04107864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To remove the malfunction by a parasitic thyristor such as an IGBT while making it simple voltage control similar to the IGBT by forming n-emitter layers alternately between p-base layers so as to form main current paths, and forming gate electrodes through gate insulating films at the surfaces between other p-base layers so as to control the depletion layers of the main current paths. CONSTITUTION:When a gate electrode 8 is biased to positive for a electrode 6, an n-type inversion layer is formed at the surface region of a second p-base layer 4. Hereby, a diode is formed by the course of a p-emitter layer 2 an n-base layer - an n-type inversion layer - an n-emitter layer 5, and a main current can be let flow along this course. When this current begins to flow, the main current comes to flow also to the diode consisting of the p-base layer - 2 the n-base layer 1 - the n-emitter layer 5 right below the n-emitter layer 5. And when the gate electrode 8 is biased to zero or negative for the cathode electrode 6, the n-type inversion layer vanishes, and the holes injected from the p-emitter layer 2 to the n-base layer are pulled out through the first p-base layer 3, and a depletion layer is formed again in the n-base layer, and it returns to the voltage checking condition.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、絶縁ゲート型静電誘導サイリスタ(IG−S
lサイリスタ)や絶縁ゲート型静電誘導トランジスタ(
IG−SIT)等の電力用半導体素子に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field The present invention relates to an insulated gate type static induction thyristor (IG-S).
l thyristor) and insulated gate static induction transistor (
The present invention relates to power semiconductor devices such as IG-SIT).

B9発明の概要 本発明は、nベース層の一方の主面にPエミッタ層を、
反対側の主面に短冊状のPベース層を設けた電力用半導
体素子において、 Pベース層間で1つおきにnエミッタ層を形成して主電
流路を形成し、他のPベース層間表面にはゲート絶縁膜
を介してゲート電極を形成して主電流路の空乏層を制御
する構造により、IGBTと同様の簡単な電圧制御にし
ながらIGBTのような寄生サイリスタによる誤動作を
無くしたものである。
B9 Summary of the Invention The present invention provides a P emitter layer on one main surface of an N base layer.
In a power semiconductor device in which a strip-shaped P base layer is provided on the main surface on the opposite side, an N emitter layer is formed every other P base layer to form a main current path, and a main current path is formed between the other P base layers. This structure uses a structure in which a gate electrode is formed through a gate insulating film to control the depletion layer of the main current path, thereby eliminating malfunctions caused by parasitic thyristors like in IGBTs while providing simple voltage control similar to IGBTs.

C3従来の技術 近年、電力用半導体の分野では、応用装置の高効率化、
低騒音化の観点から高周波化に対応できるデバイスの要
求が高まってきている。周知のように、SITやSlサ
イリスタに代表される静電誘導型の半導体デバイスは、
他の電力用デバイスに較べて優れた高周波特性が認めら
れており、高周波インバータの主スィッチ素子等に使用
されてきている。
C3 Conventional technology In recent years, in the field of power semiconductors, improvements in the efficiency of applied equipment,
From the perspective of reducing noise, there is an increasing demand for devices that can handle higher frequencies. As is well known, electrostatic induction semiconductor devices such as SIT and Sl thyristors are
It has been recognized to have superior high frequency characteristics compared to other power devices, and has been used as the main switch element of high frequency inverters.

高周波特性に優れる他の半導体デバイスとして、縦型M
O8−FETのドレイン層をn型半導体層からP型半導
体層部首き替え、このP型半導体層からホールの注入を
積極的に行い、高速のMOS−FETのオン抵抗の低減
を図った絶縁ゲート型バイポーラトランジスタ(IGB
T)が電流容量15〜400Aの領域で広く用いられて
いる。この素子例としては、特開昭56−150870
号公報に開示されている。
As another semiconductor device with excellent high frequency characteristics, vertical M
The drain layer of the O8-FET is changed from the n-type semiconductor layer to the P-type semiconductor layer, and holes are actively injected from this P-type semiconductor layer to reduce the on-resistance of the high-speed MOS-FET. gated bipolar transistor (IGB)
T) is widely used in the current capacity range of 15 to 400 A. As an example of this element, JP-A-56-150870
It is disclosed in the publication No.

D0発明が解決しようとする課題 Slサイリスタは、電力用半導体素子のうちでも高周波
応用の分野で優れた性能を発揮するデバイスとして注目
されるが、ターンオフ時にゲートから引き抜く電流のピ
ーク値が主電流とほぼ同じ(ターンオフゲイン=1)で
あるため、ゲート回路が複雑で大掛かりになるという問
題点があった。
D0 Problems to be Solved by the Invention Sl thyristors are attracting attention as devices that exhibit excellent performance in the field of high frequency applications among power semiconductor devices, but the peak value of the current drawn from the gate at turn-off is equal to the main current. Since they are almost the same (turn-off gain=1), there is a problem that the gate circuit becomes complicated and large-scale.

一方、I GBTは電圧制御型のデバイスであるため、
制御回路がSlサイリスタのような電流制御型のデバイ
スに較べ簡単になるという利点をもつ。しかし、I G
BT素子はPエミッタ、nベース、Pベース、nエミッ
タからなる寄生サイリスタを有しているため、大電流を
Pエミッタとnエミッタ間に流すと該寄生サイリスタ部
分が点弧してしまい、ゲートで主電流を遮断することが
不可能(ラッチアップ現象)になる問題があった。
On the other hand, since IGBT is a voltage-controlled device,
This has the advantage that the control circuit is simpler than current control type devices such as Sl thyristors. However, I.G.
Since the BT element has a parasitic thyristor consisting of a P emitter, an n base, a P base, and an n emitter, if a large current is passed between the P emitter and the n emitter, the parasitic thyristor section will fire, causing the gate to fail. There was a problem in that it was impossible to shut off the main current (latch-up phenomenon).

本発明の目的は、IGBT等と同様の簡単な電圧制御に
しながらIGBTのような寄生サイリスタによる誤動作
を無くした電力用半導体素子を提供することにある。
An object of the present invention is to provide a power semiconductor device that eliminates malfunctions caused by parasitic thyristors like IGBTs while providing simple voltage control similar to IGBTs.

20課題を解決するための手段 本発明は、前記目的を達成するため、n型半導体のnベ
ース層の一方の主面にP型半導体のPエミッタ層を形成
し、前記主面とは反対側の主面にP型半導体のPベース
層を短冊状に形成した電力用半導体素子において、前記
Pベース層は互いに隣接する層の間に1つおきにnエミ
ッタ層を形成し、該nエミッタ層と該Pベース層の一方
をカソード電極で短絡し、前記nエミッタ層を形成しな
い前記Pベース層に挟まれた前記nベース層表面にゲー
ト絶縁膜を形成し、このゲート絶縁膜上で少なくとも前
記Pベース層の他方の直上を覆ってゲート電極を形成し
た構造を特徴とする。
20 Means for Solving the Problems In order to achieve the above object, the present invention forms a P emitter layer of a P type semiconductor on one main surface of an n base layer of an n type semiconductor, and forms a P emitter layer of a P type semiconductor on the side opposite to the main surface. In a power semiconductor device in which a P base layer of a P type semiconductor is formed in a strip shape on the main surface of the P base layer, an n emitter layer is formed every other layer between adjacent layers, and the n emitter layer and one of the P base layers is short-circuited with a cathode electrode, a gate insulating film is formed on the surface of the n base layer sandwiched between the p base layers on which the n emitter layer is not formed, and at least the above p base layer is formed on the gate insulating film. It is characterized by a structure in which a gate electrode is formed directly over the other P base layer.

F8作用 短冊状に形成するPベース層間の1つおきにnエミッタ
層を形成し、このnエミッタ層を挟むPベース層の空乏
層を絶縁ゲートからの電圧制御で行うことで主電流の制
御を行う。
F8 action An n emitter layer is formed every other layer between the P base layers formed in a strip shape, and the depletion layer of the P base layer sandwiching this n emitter layer is controlled by voltage from an insulated gate to control the main current. conduct.

G、実施例 第1図は、本発明の一実施例を示す素子構造図である。G. Example FIG. 1 is an element structure diagram showing an embodiment of the present invention.

nベース層1の一方の主面にはPエミッタ層2が形成さ
れ、他方の主面にはPベース層3及び4が短冊状に複数
本形成される。第1のPべ一層3と第2のPベース層4
が互いに隣接する間隔は、広い方(幅a)と狭い方(幅
b)が交互に形成されており、広い方の幅aは2XWd
よりも大きく、狭い方の幅すは2 XWdよりも小さく
形成される。ここで、WdはPベース層3とnベース層
1で形成されるPN接合が内部起電力で形成される空乏
層の幅である。
A P emitter layer 2 is formed on one main surface of the n-base layer 1, and a plurality of strip-shaped P base layers 3 and 4 are formed on the other main surface. First P base layer 3 and second P base layer 4
are adjacent to each other, a wide side (width a) and a narrow side (width b) are formed alternately, and the width a of the wide side is 2XWd.
The narrower width is smaller than 2.times.Wd. Here, Wd is the width of the depletion layer formed by the internal electromotive force of the PN junction formed by the P base layer 3 and the N base layer 1.

狭幅すを持つ領域にはnベース層1表面にnエミッタ層
5が形成される。そして、このnエミッタ層5は第1の
Pベース層3内との間がカソード電極6によって短絡さ
れ、第1のPベース層3の残り表面部分及び第2のPベ
ース層4の表面とnベース層1はゲート絶縁膜7で覆わ
れている。また、第2ベース層4の直上にはゲート電極
8が形成され、Pエミッタ層2表面にはアノード電極9
が形成される。10は保護絶縁膜である。
An n emitter layer 5 is formed on the surface of the n base layer 1 in a region having a narrow width. This n emitter layer 5 is short-circuited with the inside of the first P base layer 3 by the cathode electrode 6, and the remaining surface portion of the first P base layer 3 and the surface of the second P base layer 4 are connected to the n emitter layer 5. The base layer 1 is covered with a gate insulating film 7. Further, a gate electrode 8 is formed directly above the second base layer 4, and an anode electrode 9 is formed on the surface of the P emitter layer 2.
is formed. 10 is a protective insulating film.

上述の構造になるデバイスの動作を以下に詳細に説明す
る。
The operation of the device having the above structure will be described in detail below.

まず、ゲートバイアスが印加されていない状態では、ア
ノード・カソード間はb<2Wdの関係からノーマリ・
オフ型のSlサイリスタと同様に、nエミッタ層5を挟
むPベース層3.4から広がる空乏層によって電圧が阻
止される。次に、カソード電極6に対してゲート電極8
を正にバイアスすると、第2のPベース層4の表面領域
にn型の反転層が形成される。これにより、Pエミッタ
層2−nベース層1−n型反転層−nエミッタ層5の経
路でダイオードが形成され、この経路に沿つて主電流を
流すことができる。この電流が流れ始めると、nエミッ
タ層5側から電子が反転層及びnエミッタ層5の直下の
nベース1領域に注入されるようになり、これによりn
エミッタ層5直下のPベース層2−nベース層1−nエ
ミッタ層5で構成されるダイオードにも主電流が流れる
ようになる。そして、カソード電極6に対してゲート電
極8を零又は負バイアスにすると、上述のn型反転層が
消滅し、かつ、Pエミッタ層2からnベース領域に注入
されたホールが第1のPベース層3を通して引き抜かれ
、nベース領域に再び空乏層が形成されて電圧阻止状態
に戻る。
First, when no gate bias is applied, the relationship between the anode and cathode is b<2Wd, so the normal
Similar to the off-type Sl thyristor, voltage is blocked by a depletion layer extending from the P base layer 3.4 sandwiching the n emitter layer 5. Next, the gate electrode 8 is connected to the cathode electrode 6.
When biased positively, an n-type inversion layer is formed in the surface region of the second P base layer 4. As a result, a diode is formed along the path of P emitter layer 2 - n base layer 1 - n type inversion layer - n emitter layer 5, and a main current can flow along this path. When this current starts to flow, electrons are injected from the n-emitter layer 5 side into the n-base 1 region directly under the inversion layer and the n-emitter layer 5.
The main current also flows through the diode composed of the P base layer 2-n base layer 1-n emitter layer 5 directly below the emitter layer 5. Then, when the gate electrode 8 is set to zero or negative bias with respect to the cathode electrode 6, the above-mentioned n-type inversion layer disappears, and the holes injected from the P emitter layer 2 into the n base region are transferred to the first P base region. It is extracted through layer 3, and a depletion layer is again formed in the n-base region, returning to the voltage blocking state.

Tのように電圧制御型にしてその制御を容易にし、しか
もノーマリφオフ型のSlサイリスタと同様に短冊状に
配置されたゲートによってnベース領域に形成される空
乏層によってスイッチング動作を行い、Slサイリスタ
と同様の低損失かつ高速動作が可能となる。また、IG
BTとは異なり主電流が流れるPエミッタ層2−nベー
ス層1− nエミッタ層5の経路がダイオード構造にな
り、IGBTのような寄生サイリスタによるラッチアッ
プ現象がなく、またIGBTに比べてオン電圧を低くす
ることができる。
It is a voltage-controlled type like T, which makes it easy to control, and, like the normally φ-off type Sl thyristor, the switching operation is performed by the depletion layer formed in the n base region by the gate arranged in a strip shape. Low loss and high speed operation similar to thyristors are possible. Also, IG
Unlike a BT, the path from the P emitter layer 2 to the N base layer 1 to the N emitter layer 5 through which the main current flows has a diode structure, so there is no latch-up phenomenon caused by a parasitic thyristor like in an IGBT, and the on-voltage is lower than that in an IGBT. can be lowered.

第2図は本発明の他の実施例を示す構造図である。同図
が第1図と異なる部分は、ゲート電極8Aを第1のPベ
ース層3と第2のPベース層4従って、本実施例の素子
構造は、従来のIGBの間の広い幅aを持つ領域全面に
形成したことにある。
FIG. 2 is a structural diagram showing another embodiment of the present invention. The difference between this figure and FIG. 1 is that the gate electrode 8A is connected to the first P base layer 3 and the second P base layer 4. Therefore, the device structure of this embodiment has a wide width a between the conventional IGBs. This is due to the fact that it is formed over the entire area.

本実施例では、ゲート電極8Aに正バイアスを印加した
とき、第2のPベース層4と同様にnベース層1の表面
にも・電子が誘起されるため、このPベース層の間隔a
を2XWdより狭くしてもターンオンできるようになる
。すなわち、本実施例では前述の実施例(第1図)のも
のに較べて幅aを狭くできるため、基板の面積利用率を
高めることができる。
In this embodiment, when a positive bias is applied to the gate electrode 8A, electrons are induced on the surface of the n-base layer 1 as well as on the second P-base layer 4, so that the interval a between the P-base layers is
It becomes possible to turn on even if it is narrower than 2XWd. That is, in this embodiment, the width a can be made narrower than that of the above-mentioned embodiment (FIG. 1), so that the area utilization rate of the substrate can be increased.

また、絶縁ゲート8Aに負バイアスを印加すると、その
直下のnベース層1の表面層がP型に反転するため、よ
り高い電圧阻止(耐電圧を高く)ができる。
Furthermore, when a negative bias is applied to the insulated gate 8A, the surface layer of the n-base layer 1 immediately below it is inverted to the P type, so that higher voltage blocking (higher withstand voltage) can be achieved.

なお、上述までの実施例において、カソード電極6はゲ
ート電極保護絶縁膜3によって分断されるが、カソード
電極6の膜厚を大きくして保護絶縁膜3の上部で互いに
連結した一体電極となることができる。
In the embodiments described above, the cathode electrode 6 is divided by the gate electrode protective insulating film 3, but the film thickness of the cathode electrode 6 can be increased to form an integral electrode connected to each other above the protective insulating film 3. I can do it.

また、実施例において、Pエミッタ層2側は全面P型半
導体層で形成されるが、従来のSIサイリスタやIGB
Tと同様に、nベース層1とPエミッタ層2の間にnベ
ース層よりも高濃度の 、<ッファ層を設けた構造、さ
らにPエミッタ層2の一部分にn型半導体よりなる短絡
層とパターン状に形成したアノード・エミッタ短絡構造
を採用することにより、スイッチング速度の向上や低損
失化を図れることは勿論である。
In addition, in the embodiment, the P emitter layer 2 side is entirely formed of a P-type semiconductor layer, but the conventional SI thyristor or IGB
Similar to T, a structure in which a buffer layer with a higher concentration than the n base layer is provided between the n base layer 1 and the P emitter layer 2, and a shorting layer made of an n-type semiconductor in a part of the P emitter layer 2. Of course, by employing a patterned anode-emitter short circuit structure, it is possible to improve switching speed and reduce loss.

H8発明の効果 以上のとおり、本発明によれば、短冊状のPベース層間
で1つおきにnエミッタ層を形成して主電流路を形成し
、このnエミッタ層を挟むPベース層間の絶縁ゲート制
御による空乏層制御により主電流制御を行うようにした
たため、電圧制御による主電流制御になってゲート制御
を簡単、容易にし、またIGBTのような寄生サイリス
タを持たないためラッチング現象による誤動作を無くす
ことができる。
H8 Effects of the Invention As described above, according to the present invention, an n emitter layer is formed every other strip-shaped P base layer to form a main current path, and the insulation between the P base layers sandwiching this n emitter layer is Since the main current is controlled by controlling the depletion layer by gate control, the main current is controlled by voltage control, making gate control simple and easy. Also, since it does not have a parasitic thyristor like an IGBT, malfunctions due to latching phenomenon are prevented. It can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構造図、第2図は他の
実施例の構造図である。 1・・・nベース層、2・・・エミッタ層、3.4・・
・Pベース層、5・・・nエミッタ層、6・・・カソー
ド電極、7・・・ゲート絶縁膜、8・・・ゲート電極、
9・・・アノード電極、10・・・保護絶縁膜。 第1図 実施例の構造図 9・アノード電極 lO・保護絶縁膜 他の実施例の構造図
FIG. 1 is a structural diagram showing one embodiment of the present invention, and FIG. 2 is a structural diagram of another embodiment. 1...n base layer, 2...emitter layer, 3.4...
- P base layer, 5... n emitter layer, 6... cathode electrode, 7... gate insulating film, 8... gate electrode,
9... Anode electrode, 10... Protective insulating film. Fig. 1 Structure diagram of the embodiment 9 Structural diagram of the anode electrode lO, protective insulating film, and other embodiments

Claims (1)

【特許請求の範囲】[Claims] (1)n型半導体のnベース層の一方の主面にP型半導
体のPエミッタ層を形成し、前記主面とは反対側の主面
にP型半導体のPベース層を短冊状に形成した電力用半
導体素子において、前記Pベース層は互いに隣接する層
の間に1つおきにnエミッタ層を形成し、該nエミッタ
層と該Pベース層の一方をカソード電極で短絡し、前記
nエミッタ層を形成しない前記Pベース層に挟まれた前
記nベース層表面にゲート絶縁膜を形成し、このゲート
絶縁膜上で少なくとも前記Pベース層の他方の直上を覆
ってゲート電極を形成した構造を特徴とする電力用半導
体素子。
(1) A P emitter layer of a P type semiconductor is formed on one main surface of an n base layer of an n type semiconductor, and a P base layer of a P type semiconductor is formed in a strip shape on the main surface opposite to the main surface. In the power semiconductor device, the P base layer has an n emitter layer formed between every other layer adjacent to each other, one of the n emitter layer and the P base layer is short-circuited with a cathode electrode, and the n A structure in which a gate insulating film is formed on the surface of the n-base layer sandwiched between the p-base layers on which no emitter layer is formed, and a gate electrode is formed on the gate insulating film, covering at least immediately above the other P-base layer. A power semiconductor device characterized by:
JP22612990A 1990-08-28 1990-08-28 Power semiconductor device Pending JPH04107864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22612990A JPH04107864A (en) 1990-08-28 1990-08-28 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22612990A JPH04107864A (en) 1990-08-28 1990-08-28 Power semiconductor device

Publications (1)

Publication Number Publication Date
JPH04107864A true JPH04107864A (en) 1992-04-09

Family

ID=16840302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22612990A Pending JPH04107864A (en) 1990-08-28 1990-08-28 Power semiconductor device

Country Status (1)

Country Link
JP (1) JPH04107864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151826A (en) * 1992-11-06 1994-05-31 Naoshige Tamamushi Insulated-gate electrostatic induction thyristor with split-gate type cathode short-circuiting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151826A (en) * 1992-11-06 1994-05-31 Naoshige Tamamushi Insulated-gate electrostatic induction thyristor with split-gate type cathode short-circuiting structure

Similar Documents

Publication Publication Date Title
EP0581246B1 (en) MIS-type semiconductor device
JP2002532885A (en) Output semiconductor circuit
JP3214343B2 (en) Insulated gate thyristor
JP2766071B2 (en) Composite semiconductor device and power conversion device using the same
JPH03194974A (en) Mos type semiconductor device
JP2946750B2 (en) Semiconductor device
US7173290B2 (en) Thyristor switch with turn-off current shunt, and operating method
JP3257186B2 (en) Insulated gate thyristor
US6242967B1 (en) Low on resistance high speed off switching device having unipolar transistors
JPH04107864A (en) Power semiconductor device
JP2782638B2 (en) MOS control thyristor
JPH08274306A (en) Insulated gate thyristor
JP3196575B2 (en) Composite semiconductor device and power conversion device using the same
JP2856257B2 (en) P-channel insulated gate bipolar transistor
JPH06163908A (en) Double gate mos device
JP3183037B2 (en) Insulated gate bipolar transistor
JP2505121B2 (en) Electrostatic induction thyristor
JPH0758328A (en) Self-extinction type semiconductor device
JPS63265465A (en) Semiconductor device
KR100274835B1 (en) A trench dual-gated base-resistance-controlled thyristor(tdgbrt) and its manufacturing process
JP2618943B2 (en) Semiconductor switching equipment
JP3180872B2 (en) Insulated gate thyristor
JP2876832B2 (en) Semiconductor device having MISFET controlled thyristor
JPH01125864A (en) Self-arc-exitnguishing semiconductor device
JP2756395B2 (en) Semiconductor device