JPH0410775B2 - - Google Patents

Info

Publication number
JPH0410775B2
JPH0410775B2 JP57213974A JP21397482A JPH0410775B2 JP H0410775 B2 JPH0410775 B2 JP H0410775B2 JP 57213974 A JP57213974 A JP 57213974A JP 21397482 A JP21397482 A JP 21397482A JP H0410775 B2 JPH0410775 B2 JP H0410775B2
Authority
JP
Japan
Prior art keywords
data
receiving
buffer memory
transmitting device
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57213974A
Other languages
Japanese (ja)
Other versions
JPS59104845A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57213974A priority Critical patent/JPS59104845A/en
Publication of JPS59104845A publication Critical patent/JPS59104845A/en
Publication of JPH0410775B2 publication Critical patent/JPH0410775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/05Electric or magnetic storage of signals before transmitting or retransmitting for changing the transmission rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)
  • Communication Control (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はデータ伝送装置に係る。 CAD(Computer Aided Design)システム等
では、第1図に示すようなCPU(装置A)と端末
の図面出力装置(装置B)間は従来並列信号線接
続されたハンドシエークによりデータ伝送が行な
われており、このようなCPUと端末機間の距離
は一般に数十ないし数百m程度であつた。所が最
近は中央のCPU装置を中心に工場の各所端末が
CADやCAM(Computer Aided
Manufacturing)を実施しようとするとCPUと
端末の距離が数Kmから十数Kmに及ぶことになる。
このため、第1図に示したようなCPUと端末機
との間を第2図に示すようなデータ伝送回路で連
結したシステムが考えられるが、第2図に示した
ようなシステムでは最大データ転送速度が距離と
ともに減少してしまう欠点がある。即ち、第1図
に示す直結方式の場合のデータ転送のタイムチヤ
ートを第3図に示す。第3図に示すように装置A
は装置Bが読込可能(RRDYがLowレベル)か
どうかを調べ、可能であればデータ転送を開始
(READをLowレベル)とする。この装置Aのデ
ータ転送開始時点をt1とする。t1から装置Bの個
有の時間をおいてt2に装置Bは読込中即ち読込不
可を発信し、つづいて装置Aはt3でデータ転送を
止め、装置Bはt4で再び読込可能に復帰する。装
置Aは装置Bの読取可能を検出しt5で再びデータ
転送を開始し、以下同様に装置A,B間でデータ
転送が行なわれる。ところが第2図に示すように
長さLなる伝送線路が挿入されると装置A,B間
の伝送線路を状態確認のための信号が往復するた
め最大データ転送速度が距離とともに減少する。 第2図に示す場合のデータ転送のタイムチヤー
トを第4図に示す。装置Aは装置Bが読込可能
(RRDYがOFFレベル)かどうかを調べ、可能で
あればデータ転送を開始(READをOFFレベル)
とする。この時点をt11とする。転送データを伝
送線路を伝送遅れt0L(ここにt0は信号の伝送線路
単位長の伝搬時間)を伴つて伝搬し、装置Bは時
点t12からデータ取込を開始する。つづいて装置
Bは時点t13にデータ取込中(RRDYをONし)を
発信し、つづいて時点t14にデータ読込可能
(RRDYをOFFする)に戻る。この信号も伝送路
を所定の時間遅れt0Lを伴つて装置Aに通知され
る。装置Aは装置Bが取込開始を知つた上でt16
にデータ転送を止め、t17の時点で装置Bのデー
タ読込可能を知つた上で、t18の時点で再びデー
タ転送を開始する。第4図のタイムチヤートから
明らかな如くデータの伝送線路によるステイタス
確認信号の伝送遅れのためデータ最大転送速度は
大巾に遅れる。 第1表に最大データ転送速度と伝送線路長との
関係を示す。表中kw/sはキロワード/秒であ
り、伝送遅れは5μsec/Kmとする。
The present invention relates to a data transmission device. In CAD (Computer Aided Design) systems, data is conventionally transmitted between the CPU (device A) and the terminal's drawing output device (device B) by handshaking using parallel signal lines, as shown in Figure 1. The distance between such a CPU and a terminal device was generally several tens to several hundred meters. However, recently, terminals in various parts of the factory center around the central CPU unit.
CAD and CAM (Computer Aided
Manufacturing), the distance between the CPU and the terminal will range from several kilometers to more than ten kilometers.
For this reason, a system in which the CPU and the terminal shown in Figure 1 are connected by a data transmission circuit as shown in Figure 2 can be considered, but in the system shown in Figure 2, the maximum data The disadvantage is that the transfer speed decreases with distance. That is, FIG. 3 shows a time chart of data transfer in the case of the direct connection method shown in FIG. As shown in Figure 3, the device A
checks whether device B can read data (RRDY is at low level), and if possible, starts data transfer (READ is at low level). Let the data transfer start time of this device A be t1 . At t 2 after a time interval of device B's own time from t 1 , device B sends a message indicating that it is reading or cannot read, then device A stops data transfer at t 3 , and device B is able to read again at t 4 . to return to. Device A detects that device B is ready for reading and starts data transfer again at t5 , and data transfer is performed between devices A and B in the same manner thereafter. However, as shown in FIG. 2, when a transmission line of length L is inserted, a signal for checking the status travels back and forth on the transmission line between devices A and B, so the maximum data transfer rate decreases with distance. A time chart of data transfer in the case shown in FIG. 2 is shown in FIG. Device A checks whether device B can read data (RRDY is at OFF level), and if possible, starts data transfer (READ is at OFF level).
shall be. This time point is defined as t11 . The transfer data propagates through the transmission line with a transmission delay t 0 L (here, t 0 is the propagation time of the unit length of the signal transmission line), and device B starts acquiring data from time t 12 . Next, at time t13 , device B issues a message indicating that data is being taken in (turns RRDY ON), and then returns to enable data reading (turns RRDY OFF) at time t14 . This signal is also notified to device A along the transmission path with a predetermined time delay t 0 L. After device A knows that device B has started importing, it starts t 16
The device B stops data transfer at t17 , learns that data can be read from device B at t17, and starts data transfer again at t18 . As is clear from the time chart in FIG. 4, the maximum data transfer rate is significantly delayed due to the transmission delay of the status confirmation signal due to the data transmission line. Table 1 shows the relationship between maximum data transfer rate and transmission line length. In the table, kw/s is kiloword/second, and the transmission delay is assumed to be 5 μsec/Km.

【表】 本発明は送信側装置と受信側装置間をデータ伝
送線路で結ばれたことによるデータ転送の遅れを
解消したデータ伝送装置を提供することを目的と
する。 かかる目的を達成した本発明によるデータ伝送
装置の構成は、データ伝送が行なわれる送信側装
置と受信側装置と、上記送信側装置並びに受信側
装置を結ぶ長さLなる伝送線路とからなり、上記
受信側装置にバツフアメモリを設け、該バツフア
メモリの中、受信側装置の使用中のメモリが特定
数N1を超えたときに上記受信側装置は上記送信
側装置にデータ転送停止の信号を送り、使用中の
メモリが特定数N2を切つたときは上記受信側装
置は上記送信側装置に対してデータ転送開始の信
号を送ることを特徴とするものである。 但し、前記バツフアメモリ数N、特定数N1
N2の間には、下記の関係がある。 N≧Na+2×ToL/Te N1>N2 N−N1>2×ToL/Te N2>2ToL/Te ここに、 Na:使用中のバツフア数、 To:伝送線路の単位長当りの伝搬時間、 Te:単位メモリの転送時間、 である。 上述の構成とすることにより、データ転送停止
の信号送信と、データ転送開始の信号送信との間
に、特定数N1とN2で定まるヒステリシスを与
え、伝送線路の長さLもバツフアの一部として使
用することになり、バツフアメモリを最小限度に
することができる。 本発明によるデータ伝送装置の一つの実施例を
図面に従つて説明する。 第5図は本発明によるデータ伝送装置の一つの
実施例の構成図を示す。第5図においてAは
CPU等のデータを発信する装置、1は装置Aに
並列信号線で結ばれた送信側伝送装置、2は図面
出力装置等の端末装置Bに並列信号線で結ばれた
受信側伝送装置、3は送受信伝送装置を結ぶ長さ
Lなる光フアイバ等の伝送線路、4は受信側伝送
装置2内に設けられたバツフアメモリである。第
4図において、装置Aのデータは第2図に示した
場合の如くデータ転送に際しいちいち受信側装置
の読込可能性を調べるものとは異なり、受信側伝
送装置2中にバツフアメモリ4を設け、端末装置
Bはバツフアメモリ4中に蓄えられた装置Aから
転送されて来たメモリを逐次使用し、バツフアメ
モリ中の使用メモリ数が下限値N2を切ると端末
装置Bからデータ転送開始の信号が装置Aに送ら
れ、装置Aは新しいデータを伝送装置1と伝送線
路3を介して受信側伝送装置2へ送り、バツフア
メモリ4にデータを蓄わえる。蓄わえられたデー
タは端末装置Bによつて逐次使用されるが、デー
タ供給速度が使用速度を若干上廻るようにされて
いるため上限値N1の値になると、端末装置Bは
装置Aに対しデータ転送停止の信号を送る。この
ようにバツフアメモリ4に蓄えられたメモリを端
末装置Bは自己の使用ペースに従つた擬似
READをくり返して読み込まれる。 第6図は第5図に示す本発明によるデータ伝送
装置の送信と受信伝送装置内の回路構成をさらに
くわしく示したものである。第6図において、
P/Sは並列・直列変換回路、S/Pは直列・並
列変換回路であり、例えば8ビツトで構成される
データ信号はP/S回路で直列信号に変換され単
一の伝送線路例えば光フアイバで伝送される。尚
送信側制御回路5は送信側装置Aに擬似RRDY
を発信し、装置Aのバツフアメモリ4へのデータ
転送を制御し、端末装置Bからの使用メモリが
N2を切つたことによるデータ転送停止の信号が
来ればRRDY−ONとしてデータ転送を停止した
り、装置AからのREADの信号をデータ回線に
入れて受信側伝送装置Bへ送信する。受信側制御
装置回路6は端末装置Bに擬似READ信号を発
信し、バツフアメモリに蓄えられたデータを装置
Bの要求に応じて供給する。さらに制御回路6は
バツフアメモリの使用中のメモリ数を監視しメモ
リ数が上限値N1を超えた場合はデータ転送停止
の信号を装置Aに発信し、メモリ数が下限N2
切つた場合はデータ転送開始の信号を装置Aに発
信する。尚、第6図に示すものはデータ用伝送線
路31とステイタス情報用伝送線路32は分離され
ている。 ところで、バツフアメモリのメモリ数N、上限
値N1、下限値N2は伝送線路長と信号の伝送速度
によつて決まり、下式の関係にある。 N≧Na+2ToL/Te N1>N2 N−N1>2ToL/Te N2>2ToL/Te ここに、 Na:使用中のバツフアメモリ数、 To:信号が伝送線路の単位長を伝搬する所要時
間例えば、5μsec/Km、 Te:単位メモリ当りのデータ転送時間である。 例えば伝送線路がT0=5μsec/Kmの光フアイバ
であれば、データ伝送速度が100Mbpsだとこの
光フアイバに1Km当り500bitのデータが乗ること
になり、伝送速度アツプの場合に線路長の遅れ効
果を有効に利用してバツフアメモリを最小限度に
することができる。このようなことは、従来の伝
送速度が例えば9600bpsでは全く考えなくても良
かつた。 尚、N1、N2は(N1−N2)が多い程データ転
送停止頻度は少なくなるが端末装置のメモリ使用
数に応じて適当な値に選ばれる。 本発明によるデータ伝送装置によれば従来
CADシステム等でCPUと図面出力装置の配置間
隔は並列信号接続の場合でもたかだか300mしか
離すことができなかつたが、本発明によるデータ
伝送装置を使用することによつて、CPUと端末
装置である図面出力装置の間の距離を数Kmから十
数Kmまで離すことが可能となつた。しかもCAD
の場合図面出力速度が直結の場合と同程度に確保
することができた。このためCPUと図面出力装
置等端末装置の施設内設計配置が今迄の様な距離
の制限を考慮することなく行なえるようになつ
た。
[Table] An object of the present invention is to provide a data transmission device that eliminates delays in data transfer caused by connecting a transmitting device and a receiving device with a data transmission line. The configuration of the data transmission device according to the present invention that achieves the above object is composed of a transmitting device and a receiving device for data transmission, and a transmission line having a length of L that connects the transmitting device and the receiving device. A buffer memory is provided in the receiving device, and when the number of memories being used by the receiving device in the buffer memory exceeds a specific number N1 , the receiving device sends a signal to the transmitting device to stop data transfer, and stops using the buffer memory. The device is characterized in that when the internal memory reaches a specific number N2 , the receiving device sends a signal to the transmitting device to start data transfer. However, the buffer memory number N, the specific number N 1 ,
There is the following relationship between N2 . N≧Na+2×ToL/Te N 1 >N 2 N−N 1 >2×ToL/Te N 2 >2ToL/Te Where, Na: Number of buffers in use, To: Propagation time per unit length of transmission line , Te: unit memory transfer time, . With the above configuration, a hysteresis determined by the specific numbers N 1 and N 2 is provided between the transmission of the signal to stop data transfer and the transmission of the signal to start data transfer, and the length L of the transmission line is also kept at the same level as the buffer. This allows the buffer memory to be minimized. One embodiment of a data transmission device according to the present invention will be described with reference to the drawings. FIG. 5 shows a block diagram of one embodiment of a data transmission device according to the present invention. In Figure 5, A is
A device that transmits data such as a CPU, 1 is a transmitting side transmission device connected to device A by a parallel signal line, 2 is a receiving side transmission device connected to a terminal device B such as a drawing output device by a parallel signal line, 3 4 is a transmission line such as an optical fiber having a length L that connects the transmitting/receiving transmission device, and 4 is a buffer memory provided in the receiving side transmission device 2. In FIG. 4, unlike the case shown in FIG. 2, in which the readability of the receiving side device is checked each time the data is transferred, a buffer memory 4 is provided in the receiving side transmission device 2, and the data of the device A is stored at the terminal. Device B sequentially uses the memory transferred from device A stored in buffer memory 4, and when the number of used memories in the buffer memory falls below the lower limit N2 , a signal to start data transfer is sent from terminal device B to device A. The device A sends the new data to the receiving side transmission device 2 via the transmission device 1 and the transmission line 3, and stores the data in the buffer memory 4. The stored data is sequentially used by terminal device B, but since the data supply rate is set to slightly exceed the usage rate, when the upper limit value N1 is reached, terminal device B uses device A sends a signal to stop data transfer. The terminal device B uses the memory stored in the buffer memory 4 in a pseudo manner according to its own usage pace.
It is read by repeating READ. FIG. 6 shows in more detail the circuit configuration within the transmitting and receiving transmitting device of the data transmitting device according to the present invention shown in FIG. In Figure 6,
P/S is a parallel/serial conversion circuit, and S/P is a serial/parallel conversion circuit. For example, a data signal consisting of 8 bits is converted into a serial signal by the P/S circuit and connected to a single transmission line, such as an optical fiber. Transmitted by . In addition, the transmitting side control circuit 5 provides a pseudo RRDY to the transmitting side device A.
and controls the data transfer to the buffer memory 4 of device A, and the memory usage from terminal device B is
When a signal to stop data transfer is received by turning off N2 , the data transfer is stopped by setting RRDY-ON, or the READ signal from device A is put into the data line and transmitted to transmission device B on the receiving side. The receiving side control device circuit 6 transmits a pseudo READ signal to the terminal device B, and supplies the data stored in the buffer memory in response to a request from the device B. Furthermore, the control circuit 6 monitors the number of buffer memories in use, and if the number of memories exceeds the upper limit N1 , it sends a signal to device A to stop data transfer, and if the number of memories falls below the lower limit N2 , Sends a signal to device A to start data transfer. In the case shown in FIG. 6, the data transmission line 3 1 and the status information transmission line 3 2 are separated. By the way, the number of buffer memories N, the upper limit value N 1 , and the lower limit value N 2 are determined by the transmission line length and the signal transmission speed, and have the following relationship. N≧Na+2ToL/Te N 1 >N 2 N-N 1 >2ToL/Te N 2 >2ToL/Te Where, Na: Number of buffer memories in use, To: Time required for the signal to propagate through the unit length of the transmission line, e.g. , 5μsec/Km, Te: Data transfer time per unit memory. For example, if the transmission line is an optical fiber with T 0 = 5 μsec/Km, if the data transmission speed is 100 Mbps, 500 bits of data will be transferred to this optical fiber per 1 km, and when the transmission speed increases, the delay effect of the line length will be affected. Buffer memory can be minimized by making effective use of the buffer memory. If the conventional transmission speed was, for example, 9,600 bps, there was no need to consider such matters. Note that N 1 and N 2 are selected to be appropriate values depending on the number of memories used by the terminal device, although the frequency of data transfer stop decreases as (N 1 −N 2 ) increases. According to the data transmission device according to the present invention, conventional
In CAD systems, etc., the distance between the CPU and the drawing output device could only be 300 m at most even in the case of parallel signal connections, but by using the data transmission device of the present invention, the distance between the CPU and the terminal device can be increased. It has become possible to increase the distance between drawing output devices from several kilometers to more than ten kilometers. Moreover, CAD
In this case, the drawing output speed was able to be maintained at the same level as in the case of direct connection. This has made it possible to design and arrange CPUs and terminal devices such as drawing output devices within the facility without having to consider the distance limitations that existed up until now.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のデータ処理装置の構成図、第2
図は第1図に示す中央と端末を伝送線路で結んだ
場合の回路構成図、第3図は第1図の回路構成の
場合のデータ転送のタイムチヤート、第4図は第
2図の回路構成の場合のデータ転送のタイムチヤ
ート、第5図は本発明のデータ伝送装置の回路構
成図、第6図は第5図のものの伝送装置部分をさ
らにくわしく示した回路構成図である。 図において、1は伝言側伝送装置、2は受信側
伝送装置、3は伝送線路、4はバツフアメモリ、
5と6は制御回路である。
Figure 1 is a configuration diagram of a conventional data processing device;
The figure is a circuit configuration diagram when the center and terminals shown in Figure 1 are connected by a transmission line, Figure 3 is a data transfer time chart for the circuit configuration shown in Figure 1, and Figure 4 is the circuit shown in Figure 2. FIG. 5 is a circuit configuration diagram of the data transmission device of the present invention, and FIG. 6 is a circuit configuration diagram showing the transmission device portion of FIG. 5 in more detail. In the figure, 1 is a message side transmission device, 2 is a receiving side transmission device, 3 is a transmission line, 4 is a buffer memory,
5 and 6 are control circuits.

Claims (1)

【特許請求の範囲】 1 データ伝送が行なわれる送信側装置と受信側
装置と、上記送信側装置並びに受信側装置を結ぶ
長さLなる伝送線路とからなり、上記受信側装置
にバツフアメモリを設け、 バツフアメモリ数N、特定数N1、N2の間に下
記の関係があり、 N≧Na+2×ToL/Te N1>N2 N−N1>2×ToL/Te N2>2ToL/Te ここに、 Na:使用中のバツフア数、 To:伝送線路の単位長当りの伝搬時間、 Te:単位メモリの転送時間、 該バツフアメモリに受信側装置の使用中のメモ
リが特定数N1を超えたときに上記受信側装置は
上記送信側装置にデータ転送停止の信号を送り、
使用中のメモリが特定数N2を切つたときは上記
受信側装置は上記送信側装置に対してデータ転送
開始の信号を送ることを特徴とするデータ伝送装
置。 2 上記送信側装置が送信装置と送信側伝送装置
とからなり、上記受信側装置が受信装置と受信側
伝送装置とからなり、上記バツフアメモリが上記
受信側伝送装置に配置されていることを特徴とす
る特許請求の範囲第1項記載のデータ伝送装置。
[Scope of Claims] 1. A transmitting device and a receiving device that perform data transmission, and a transmission line having a length of L that connects the transmitting device and the receiving device, and a buffer memory is provided in the receiving device, There is the following relationship between buffer memory number N, specific numbers N 1 and N 2 , N≧Na+2×ToL/Te N 1 >N 2 N−N 1 >2×ToL/Te N 2 >2ToL/Te Here , Na: Number of buffers in use, To: Propagation time per unit length of transmission line, Te: Transfer time of unit memory, When the buffer memory in use on the receiving side device exceeds a specific number N1 The receiving device sends a data transfer stop signal to the transmitting device,
A data transmission device characterized in that when the number of memories in use falls below a specific number N2 , the receiving device sends a data transfer start signal to the transmitting device. 2. The transmitting device includes a transmitting device and a transmitting device, the receiving device includes a receiving device and a receiving transmitting device, and the buffer memory is disposed in the receiving transmitting device. A data transmission device according to claim 1.
JP57213974A 1982-12-08 1982-12-08 Data transmitter Granted JPS59104845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57213974A JPS59104845A (en) 1982-12-08 1982-12-08 Data transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57213974A JPS59104845A (en) 1982-12-08 1982-12-08 Data transmitter

Publications (2)

Publication Number Publication Date
JPS59104845A JPS59104845A (en) 1984-06-16
JPH0410775B2 true JPH0410775B2 (en) 1992-02-26

Family

ID=16648143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57213974A Granted JPS59104845A (en) 1982-12-08 1982-12-08 Data transmitter

Country Status (1)

Country Link
JP (1) JPS59104845A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685518B2 (en) * 1985-06-28 1994-10-26 ソニー株式会社 Information service system
JPS63182935A (en) * 1987-01-26 1988-07-28 Hitachi Cable Ltd Hand shake communication system for line exchange loop network
US5361841A (en) * 1993-05-27 1994-11-08 Shell Oil Company Drilling and cementing with blast furnace slag/polyalcohol fluid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787254A (en) * 1980-11-19 1982-05-31 Hitachi Ltd Data repeating installation
JPS57173255A (en) * 1981-04-17 1982-10-25 Mitsubishi Electric Corp Facsimile transmitter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787254A (en) * 1980-11-19 1982-05-31 Hitachi Ltd Data repeating installation
JPS57173255A (en) * 1981-04-17 1982-10-25 Mitsubishi Electric Corp Facsimile transmitter

Also Published As

Publication number Publication date
JPS59104845A (en) 1984-06-16

Similar Documents

Publication Publication Date Title
US4554659A (en) Data communication network
JP2565631B2 (en) Data frame transmission method and transmission system
EP0175564B1 (en) Data transfer system
US4999769A (en) System with plural clocks for bidirectional information exchange between DMA controller and I/O devices via DMA bus
US5584033A (en) Apparatus and method for burst data transfer employing a pause at fixed data intervals
JPH10177545A (en) Bus communication system, bus arbitrating method, and data transferring method
US8260979B2 (en) Method and apparatus for simultaneous bidirectional signaling in a bus topology
WO1995020192A1 (en) Bus deadlock avoidance during master split-transactions
US5067075A (en) Method of direct memory access control
US6539444B1 (en) Information processing apparatus having a bus using the protocol of the acknowledge type in the source clock synchronous system
US10148420B2 (en) Serial data communications using a UART module and method therefor
JPH0410775B2 (en)
JPH0337221B2 (en)
JPS61121150A (en) Multi-point communication system
JPS58107743A (en) Data transfer system
JPH069036B2 (en) I / O controller
JP3413894B2 (en) Serial transmission device
JPS634216B2 (en)
KR950005802B1 (en) Data transmission unit for dtb of versa module europe bus
JPH11102341A (en) Data transfer system, data transmitter, data receiver, data transfer method, and bus arbitrating method
JP3947223B2 (en) Method and apparatus for reducing waiting time on an interface by overlapping transmission packets
JP2758752B2 (en) Common bus contention arbitration method
KR0138063B1 (en) Inter processor communication apparatus of broad circuit distributing system
JPH0113575B2 (en)
JPH0417492B2 (en)