JPH0410706B2 - - Google Patents

Info

Publication number
JPH0410706B2
JPH0410706B2 JP3369082A JP3369082A JPH0410706B2 JP H0410706 B2 JPH0410706 B2 JP H0410706B2 JP 3369082 A JP3369082 A JP 3369082A JP 3369082 A JP3369082 A JP 3369082A JP H0410706 B2 JPH0410706 B2 JP H0410706B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
cupric oxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3369082A
Other languages
Japanese (ja)
Other versions
JPS58150272A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3369082A priority Critical patent/JPS58150272A/en
Publication of JPS58150272A publication Critical patent/JPS58150272A/en
Publication of JPH0410706B2 publication Critical patent/JPH0410706B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は負極活物質としてリチウムを用い、正
極活物質として鉄の硫化物と酸化第二銅とを用い
る有機電解質電池の改良に係り、特に放電末期に
おける閉路電圧の向上をはかることを目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an organic electrolyte battery using lithium as a negative electrode active material and iron sulfide and cupric oxide as positive electrode active materials, and particularly improves the closed circuit voltage at the end of discharge. The purpose is to measure.

正極活物質として鉄の硫化物や酸化第二銅を用
いる有機電解質電池は、二酸化マンガンやフツ化
炭素を正極活物質として用いる有機電解質電池に
比べて、単位体積あたりの電気容量が大きく、ま
た放電電圧が約1.5Vで一般市販のルクランシエ
電池や酸化銀電池と互換性を有するという特徴が
あり、電気容量の大きい高エネルギー密度電池と
してその発展が期待されている。
Organic electrolyte batteries that use iron sulfide or cupric oxide as positive electrode active materials have a larger electrical capacity per unit volume and have a higher discharge capacity than organic electrolyte batteries that use manganese dioxide or carbon fluoride as positive electrode active materials. It has a voltage of approximately 1.5V and is compatible with commercially available Lecrancier batteries and silver oxide batteries, and its development as a high energy density battery with a large electrical capacity is expected.

しかしながら、鉄の硫化物を正極活物質として
用いた場合は、放電生成物が正極に蓄積して正極
を膨潤させ体積増加を引き起して電池にふくれが
生じ電池使用機器を破損するなどの問題があり、
また酸化第二銅を正極活物質として用いた場合は
放電反応が2段になり放電電圧が平担性に欠ける
などの欠点があるため、前記のような長所は認め
ながらも、充分に活用されるまでにはいたらなか
つた。
However, when iron sulfide is used as a positive electrode active material, there are problems such as discharge products accumulating on the positive electrode, causing the positive electrode to swell and increase in volume, causing the battery to swell and damaging equipment using the battery. There is,
In addition, when cupric oxide is used as a positive electrode active material, there are disadvantages such as a two-stage discharge reaction and a lack of flatness of the discharge voltage, so although cupric oxide is recognized as having the above advantages, it is not fully utilized. I didn't get there until now.

そのため、本発明者らは鉄の硫化物や酸化第二
銅の長所を生かしつつ、それらの欠点を解消した
電池を得るべく鋭意研究を重ね、それら鉄の硫化
物と酸化第二銅とを混合して正極活物質として用
いることにより、放電電圧が平担で、かつ放電に
伴なう電池ふくれが少なく、しかもそれらをそれ
ぞれ単独で用いた場合のいずれよりも放電容量が
大きい有機電解質電池が得られることを見出し、
それについて既に特許出願をしたが、さらに研究
を重ねた結果、鉄の硫化物と酸化第二銅とをそれ
ぞれ単独で正極活物質とする正極合剤を調製して
加圧成形し、鉄の硫化物を正極活物質とする層と
酸化第二銅を正極活物質とする層との2層構造の
正極にし、酸化第二銅を正極活物質とする層をセ
パレータ側に、鉄の硫化物を正極活物質とする層
を正極缶の缶底側に配するときは、鉄の硫化物と
酸化第二銅との混合物を正極活物質として用いた
場合の特徴をすべて備えながら、放電末期におけ
る閉路電圧が上記混合物を用いる場合よりもさら
に高くなることを見出し、本発明を完成するにい
たつた。
Therefore, the present inventors have conducted extensive research in order to obtain a battery that takes advantage of the strengths of iron sulfide and cupric oxide while eliminating their drawbacks, and has mixed these iron sulfides and cupric oxide. By using these as positive electrode active materials, it is possible to obtain an organic electrolyte battery with a flat discharge voltage, less battery swelling due to discharge, and a larger discharge capacity than when each of these is used alone. I discovered that
A patent application has already been filed for this, but as a result of further research, a positive electrode mixture containing iron sulfide and cupric oxide as positive electrode active materials was prepared and pressure-molded, and iron sulfide and cupric oxide were used as positive electrode active materials. The positive electrode has a two-layer structure of a layer containing copper as the positive electrode active material and a layer using cupric oxide as the positive electrode active material, and the layer using cupric oxide as the positive electrode active material is on the separator side, and iron sulfide is used as the positive electrode active material. When a layer serving as the positive electrode active material is placed on the bottom side of the positive electrode can, it has all the characteristics of using a mixture of iron sulfide and cupric oxide as the positive electrode active material, while maintaining a closed circuit at the end of discharge. It was discovered that the voltage was even higher than when the above mixture was used, and the present invention was completed.

正極を鉄の硫化物を正極活物質とする層と酸化
第二銅を正極活物質とする層との2層構造にし、
酸化第二銅を正極活物質とする層をセパレータ側
に配することによつて、それらの混合物を正極活
物質として用いる場合よりも、放電末期における
閉路電圧が高くなる理由は、現在のところ必ずし
も明確ではないが、セパレータ側すなわち負極に
対向する側に配した酸化第二銅が正極缶缶底側の
鉄の硫化物より優先的に放電して、電導性の良好
な金属銅が生成するので界面の電導性が改良され
て放電反応がスムーズに進行するようになるため
であると考えられる。
The positive electrode has a two-layer structure of a layer using iron sulfide as the positive electrode active material and a layer using cupric oxide as the positive electrode active material,
At present, the reason why the closed circuit voltage at the end of discharge is higher by disposing a layer containing cupric oxide as the positive electrode active material than when a mixture thereof is used as the positive electrode active material is not necessarily explained. Although it is not clear, the cupric oxide placed on the separator side, that is, the side facing the negative electrode, discharges preferentially over the iron sulfide on the bottom side of the positive electrode can, producing metallic copper with good conductivity. This is thought to be because the electrical conductivity of the interface is improved and the discharge reaction proceeds smoothly.

本発明において鉄の硫化物としては、たとえば
硫化第一鉄(FeS)、硫化第二鉄(Fe2S3)、二硫
化鉄(FeS2)などが用いられ、また一般に硫化
第一鉄として市販されているような一般式Fex
で表わすときxが1より若干小さいものもFeS同
様に使用することができる。また電解液として
は、たとえばプロピレンカーボネート、γ−ブチ
ロラクトン、テトラヒドロフラン、1,2−ジメ
トキシエタン、ジオキソランなどの単独または2
種以上の混合溶媒に過塩素酸リチウム、ホウフツ
化リチウムなどの電解質を溶解させたものが好ま
しく使用される。
In the present invention, iron sulfides used include, for example, ferrous sulfide (FeS), ferric sulfide (Fe 2 S 3 ), iron disulfide (FeS 2 ), etc., and are generally commercially available as ferrous sulfide. The general formula Fe x S as
When expressed as , x is slightly smaller than 1 and can also be used in the same way as FeS. Examples of the electrolytic solution include propylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,2-dimethoxyethane, dioxolane, etc. alone or in combination.
Preferably used is a mixed solvent of at least two types in which an electrolyte such as lithium perchlorate or lithium borofluoride is dissolved.

鉄の硫化物と酸化第二銅との使用割合として
は、どのような特性をより多くもたせようとする
かによつても異なるが、通常は鉄の硫化物が50〜
80%(重量%、以下同様)、酸化第二銅が50〜20
%の範囲、特に鉄の硫化物が50〜75%で酸化第二
銅が50〜25%の範囲が好ましい。
The ratio of iron sulfide to cupric oxide varies depending on which properties are desired, but usually iron sulfide is
80% (weight%, same below), cupric oxide 50-20
% range, particularly 50-75% iron sulfide and 50-25% cupric oxide.

つぎに本発明の実施例を図面とともに説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の有機電解質電池を示す断面図
であり、1は正極で、この正極1は鉄の硫化物を
正極活物質とする層1aと酸化第二銅を正極活物
質とする層1bからなり、後者の酸化第二銅を正
極活物質とする層1bはセパレータ2側に、前者
の鉄の硫化物を正極活物質とする層1aは正極缶
3の缶底側に配置されている。4は正極1を補強
するステンレス銅製の環状台座であり、セパレー
タ2はポリプロピレン不織布からなり、正極缶3
は外面にニツケルメツキを施した鉄製である。5
はニツケル−ステンレス鋼クラツド板製の負極缶
で、この負極缶5の内面にステンレス鋼製網6が
スポツト溶接され、円板状のリチウムが圧着され
て負極7が構成されている。そして8はポリプロ
ピレン製の環状ガスケツトである。
FIG. 1 is a sectional view showing an organic electrolyte battery of the present invention, and 1 is a positive electrode, which includes a layer 1a containing iron sulfide as a positive electrode active material and a layer 1a containing cupric oxide as a positive electrode active material. 1b, the latter layer 1b using cupric oxide as a positive electrode active material is arranged on the separator 2 side, and the former layer 1a using iron sulfide as a positive electrode active material is arranged on the bottom side of the positive electrode can 3. There is. 4 is an annular pedestal made of stainless steel that reinforces the positive electrode 1, the separator 2 is made of polypropylene nonwoven fabric, and the positive electrode can 3 is
It is made of iron with nickel plating on the outside. 5
1 is a negative electrode can made of a nickel-stainless steel clad plate. A stainless steel mesh 6 is spot-welded to the inner surface of the negative electrode can 5, and a disk-shaped lithium is crimped to form a negative electrode 7. And 8 is an annular gasket made of polypropylene.

上記のような2層構造の正極1はたとえば下記
に示すようにしてつくられる。まず金型に環状台
座を第1図に示す状態とは上下を反転させた状態
で入れ、ついで酸化第二銅を正極活物質とする顆
粒状ないしは粉末状の正極合剤を充填する。この
正極合剤はたとえば酸化第二銅83部(重量部、以
下同様)、アセチレンブラツク15部およびポリテ
トラフルオルエチレン2部よりなる。上記正極合
剤の充填後、軽く加圧して、予備成形し、つぎに
上記予備成形層上に鉄の硫化物を正極活物質とす
る顆粒状ないしは粉末状の正極合剤を充填し、加
圧して本成形する。なお、後者の鉄の硫化物を正
極活物質とする正極合剤はたとえば二硫化鉄
(FeS2)83部、アセチレンブラツク15部およびポ
リテトラフルオルエチレン2部よりなる。
The positive electrode 1 having a two-layer structure as described above is manufactured, for example, as shown below. First, an annular pedestal is placed in a mold with its top and bottom reversed from the state shown in FIG. 1, and then a granular or powdered positive electrode mixture containing cupric oxide as a positive electrode active material is filled. This positive electrode mixture consists of, for example, 83 parts of cupric oxide (parts by weight, the same applies hereinafter), 15 parts of acetylene black, and 2 parts of polytetrafluoroethylene. After filling the above positive electrode mixture, it is lightly pressurized and preformed, and then a granular or powdered positive electrode mixture containing iron sulfide as the positive electrode active material is filled onto the above preformed layer and pressurized. Then, form the final product. The latter positive electrode mixture using iron sulfide as a positive electrode active material consists of, for example, 83 parts of iron disulfide (FeS 2 ), 15 parts of acetylene black, and 2 parts of polytetrafluoroethylene.

上記のごとく正極1が2層構造で、かつ酸化第
二銅を正極活物質とする層1bをセパレータ2側
に配した電池Aの20℃、15Ωで終止電圧1.2Vまで
連続放電させたときの放電電気量と電池のふくれ
を第4図に、また80%放電時における−10℃、負
荷2kΩで0.1秒間放電後の閉路電圧を第5図に示
す。
As described above, when battery A, in which the positive electrode 1 has a two-layer structure and the layer 1b containing cupric oxide as the positive electrode active material is arranged on the separator 2 side, is continuously discharged at 20°C and 15Ω to a final voltage of 1.2V. Figure 4 shows the amount of discharged electricity and the swelling of the battery, and Figure 5 shows the closed circuit voltage after discharging for 0.1 seconds at -10°C and a load of 2 kΩ at 80% discharge.

比較のため、第2図に示すように正極1が2層
構造で、二硫化鉄を正極活物質とする層1aをセ
パレータ2側に、酸化第二銅を正極活物質とする
層1bを正極缶3の缶底側に配した電池Bおよび
第3図に示すように正極1が単層構造で、二硫化
鉄と酸化第二銅との混合物を正極活物質として用
いた電池Cの放電電気量と電池のふくれを第4図
に、また、これら電池BおよびCの80%放電時に
おける−10℃、負荷2kΩで0.1秒放電後の閉路電
圧を第5図に示す。
For comparison, as shown in FIG. 2, the positive electrode 1 has a two-layer structure, with the layer 1a containing iron disulfide as the positive electrode active material on the separator 2 side, and the layer 1b containing cupric oxide as the positive electrode active material on the positive electrode side. Discharge electricity of battery B placed on the bottom side of can 3 and battery C, in which the positive electrode 1 has a single-layer structure and a mixture of iron disulfide and cupric oxide is used as the positive electrode active material, as shown in FIG. Fig. 4 shows the amount and swelling of the battery, and Fig. 5 shows the closed circuit voltage of these batteries B and C after discharging for 0.1 seconds at -10°C and a load of 2 kΩ at 80% discharge.

いずれの電池においても、正極合剤組成は正極
活物質83部、アセチレンブラツク15部およびポリ
テトラフルオルエチレン2部よりなり、各電池は
第1〜3図に示すような正極構造をとりながら正
極活物質である二硫化鉄(FeS2)と酸化第二銅
(CuO)との使用比率を変えている。そして、各
電池の正極1個あたりの正極合剤使用量は140mg
で、負極は直径63mm、厚さ1.3mmのリチウム板よ
りなり、電解液はプロピレンカーボネートと1,
3−ジオキソランとの容量比が1:1の混合溶媒
に過塩素酸リチウムを0.5モル/の割合で溶解
させたもので、電池は直径9.5mm、高さ3.6mmであ
る。
In each battery, the positive electrode mixture composition consists of 83 parts of positive electrode active material, 15 parts of acetylene black, and 2 parts of polytetrafluoroethylene, and each battery has a positive electrode structure as shown in Figures 1 to 3. The ratio of the active materials iron disulfide (FeS 2 ) and cupric oxide (CuO) used is changed. The amount of positive electrode mixture used per positive electrode of each battery is 140 mg.
The negative electrode consists of a lithium plate with a diameter of 63 mm and a thickness of 1.3 mm, and the electrolyte is propylene carbonate and 1.
The battery is made by dissolving lithium perchlorate at a ratio of 0.5 mol/volume in a mixed solvent with a volume ratio of 1:1 to 3-dioxolane, and the battery has a diameter of 9.5 mm and a height of 3.6 mm.

第4図に示すように、本発明の電池Aは二硫化
鉄と酸化第二銅を混合した電池Cの特徴を備えな
がら、第5図に示すように電池Cより閉路電圧が
高い。なお二硫化鉄を正極活物質とする層1aを
セパレータ側に配した電池Bは本発明の電池Aよ
り特性がすべて劣つている。
As shown in FIG. 4, the battery A of the present invention has the characteristics of the battery C, which is a mixture of iron disulfide and cupric oxide, but has a higher closed circuit voltage than the battery C, as shown in FIG. Note that the battery B in which the layer 1a containing iron disulfide as the positive electrode active material is disposed on the separator side has all characteristics inferior to the battery A of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の有機電解質電池の一実施例を
示す断面図、第2図および第3図は本発明とは異
なる構成の有機電解質電池の断面図である。第4
図は第1〜3図に示す電池の放電電気量と電池の
ふくれを二硫化鉄(FeS2)と酸化第二銅(CuO)
の使用比率の変化とともに示す図であり、第5図
は第1〜3図に示す電池の閉路電圧を二硫化鉄と
酸化第二銅の使用比率の変化とともに示す図であ
る。 1……正極、1a……鉄の硫化物を正極活物質
とする層、1b……酸化第二銅を正極活物質とす
る層、2……セパレータ、3……正極缶、7……
負極。
FIG. 1 is a cross-sectional view showing an embodiment of an organic electrolyte battery of the present invention, and FIGS. 2 and 3 are cross-sectional views of organic electrolyte batteries having different configurations from that of the present invention. Fourth
The figure shows the amount of electricity discharged and the swelling of the battery shown in Figures 1 to 3 using iron disulfide (FeS 2 ) and cupric oxide (CuO).
FIG. 5 is a diagram showing the closed-circuit voltage of the batteries shown in FIGS. 1 to 3 together with changes in the usage ratio of iron disulfide and cupric oxide. 1... Positive electrode, 1a... Layer using iron sulfide as positive electrode active material, 1b... Layer using cupric oxide as positive electrode active material, 2... Separator, 3... Positive electrode can, 7...
Negative electrode.

Claims (1)

【特許請求の範囲】 1 負極活物質としてリチウムを用い、正極活物
質として鉄の硫化物と酸化第二銅とを用いる有機
電解質電池であつて、正極を鉄の硫化物を正極活
物質とする層と酸化第二銅を正極活物質とする層
との2層構造にし、酸化第二銅を正極活物質とす
る層をセパレータ側に、鉄の硫化物を正極活物質
とする層を正極缶の缶底側に配したことを特徴と
する有機電解質電池。 2 鉄の硫化物と酸化第二銅との割合を鉄の硫化
物が50〜75重量%、酸化第二銅が50〜25重量%と
した特許請求の範囲第1項記載の有機電解質電
池。
[Scope of Claims] 1. An organic electrolyte battery using lithium as a negative electrode active material and iron sulfide and cupric oxide as positive electrode active materials, the positive electrode having iron sulfide as the positive electrode active material. The layer has a two-layer structure, with the layer having cupric oxide as the positive electrode active material and the layer having cupric oxide as the positive electrode active material, and the layer having iron sulfide as the positive electrode active material in the positive electrode case. An organic electrolyte battery characterized by being placed on the bottom side of the can. 2. The organic electrolyte battery according to claim 1, wherein the proportions of iron sulfide and cupric oxide are 50 to 75% by weight for iron sulfide and 50 to 25% by weight for cupric oxide.
JP3369082A 1982-03-02 1982-03-02 Organic electrolyte battery Granted JPS58150272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3369082A JPS58150272A (en) 1982-03-02 1982-03-02 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3369082A JPS58150272A (en) 1982-03-02 1982-03-02 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS58150272A JPS58150272A (en) 1983-09-06
JPH0410706B2 true JPH0410706B2 (en) 1992-02-26

Family

ID=12393416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3369082A Granted JPS58150272A (en) 1982-03-02 1982-03-02 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS58150272A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708887B2 (en) * 1989-06-15 1998-02-04 三洋電機株式会社 Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JPS58150272A (en) 1983-09-06

Similar Documents

Publication Publication Date Title
JP3450894B2 (en) Alkaline manganese battery
US5262255A (en) Negative electrode for non-aqueous electrolyte secondary battery
WO2023168845A1 (en) Button cell, preparation method therefor and electronic device
EP0408249B1 (en) Non-aqueous alkali metal battery having an improved cathode
JP2003526877A (en) Rechargeable nickel zinc battery
JPH0410706B2 (en)
JPH0410707B2 (en)
JPS5912566A (en) Organic electrolyte battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
JP2612002B2 (en) Battery
JPH0770326B2 (en) Organic electrolyte battery
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPS6315703B2 (en)
JPH0353743B2 (en)
JP3968248B2 (en) Aluminum battery
JPS5851472A (en) Manufacture of positive electrode for solid electrolyte battery
JPS6041761A (en) Lithium organic secondary battery
JPS6362069B2 (en)
JP2552393B2 (en) Lithium battery
JP2572337B2 (en) Nickel-hydrogen secondary battery
JPH1021904A (en) Alkaline storage battery
JPH0763015B2 (en) Organic electrolyte battery
JPS5912567A (en) Organic electrolyte battery
JPS58206059A (en) Organic electrolyte battery
JPS63175349A (en) Lithium-manganese dioxide cell