JPH041063A - Thermal head and manufacture method therefor - Google Patents

Thermal head and manufacture method therefor

Info

Publication number
JPH041063A
JPH041063A JP10346890A JP10346890A JPH041063A JP H041063 A JPH041063 A JP H041063A JP 10346890 A JP10346890 A JP 10346890A JP 10346890 A JP10346890 A JP 10346890A JP H041063 A JPH041063 A JP H041063A
Authority
JP
Japan
Prior art keywords
protective film
film
thermal head
main component
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10346890A
Other languages
Japanese (ja)
Inventor
Keizaburo Kuramasu
敬三郎 倉増
Shinji Saito
斎藤 紳治
Masafumi Chiba
雅史 千葉
Yasutaka Takahashi
康隆 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10346890A priority Critical patent/JPH041063A/en
Publication of JPH041063A publication Critical patent/JPH041063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To prevent defects due to generation of static electricity from happening by forming a second protective film on the surface, of which major component is titanium nitride with a high hardness. CONSTITUTION:A resistor film 13 is formed on a glass layer 12 of an alumina substrate 11, and a resinated gold paste is applied on the alumina substrate 11 by screen printing, and electrode films for wiring 14a, 14b are formed by burning the alumina substrate 11. By using photolithography, a thin film type pattern for which the resistor film 13 is individually separated is formed for the electrode films 14a, 14b and resistor film 13. Then, a glass paste as a first protective film is applied by screen printing, and a glass protective film 15 is formed by burning. In addition, after applying alkoxide of titanium as an organic metallic compound of titanium, by burning in a nitrogen atmosphere, a titanium nitride protective film 16 with a major component of titanium nitride is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はファクシミリやプリンタ等に用いられるサーマ
ルヘッド及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thermal head used in facsimiles, printers, etc., and a method for manufacturing the same.

従来の技術 サーマルヘッドはファクシミリやプリンタ等の記録部品
として使用されている。従来のサーマルヘッドは第4図
に示す構造であった。第4図(alはヘッドの平面図で
、(blは(a)のA−A’断面図である。1は表面に
ガラス層2か形成されたアルミナ基板、3a、3bは金
を主成分とする配線用電極膜で、3aは共通電極、3b
は個別電極である。
2. Description of the Related Art Thermal heads are used as recording components in facsimiles, printers, and the like. A conventional thermal head had a structure shown in FIG. Figure 4 (al is a plan view of the head, (bl is a cross-sectional view taken along the line AA' in (a). 1 is an alumina substrate with a glass layer 2 formed on its surface, 3a and 3b are mainly composed of gold. In the wiring electrode film, 3a is a common electrode, 3b
are individual electrodes.

4はルテニウムを主成分とする抵抗体膜、5はこの抵抗
体膜4と配線用電極膜3a、3bを記録媒体との接触に
よる摩耗から保護するために形成されているガラスを主
成分とする保護膜である。
4 is a resistor film whose main component is ruthenium, and 5 is a glass whose main component is formed to protect the resistor film 4 and the wiring electrode films 3a and 3b from wear due to contact with the recording medium. It is a protective film.

発明が解決しようとする課題 このような構成のサーマルヘッドにおいては、記録媒体
と接触する表面が絶縁性のガラス保護膜5で形成されて
いるために、最近多く使われるようになった熱転写記録
では、以下のような問題点かあった。すなわち、熱転写
記録では、サーマルヘッドと接触するのはインクか塗布
されたプラスチックのフィルム(以下、インクリボンと
いう)であるために、絶縁性のガラス保護膜5と同しく
絶縁性のインクリボンが接触して擦られることで静電気
か発生して、サーマルヘッドを破壊シタリ、インクリボ
ンの走行に異常か生じてしまう等の問題点があった。
Problems to be Solved by the Invention In a thermal head having such a configuration, the surface that comes into contact with the recording medium is formed with an insulating glass protective film 5. There were some problems as below. That is, in thermal transfer recording, what comes into contact with the thermal head is a plastic film coated with ink (hereinafter referred to as an ink ribbon). When the ink ribbon is rubbed, static electricity is generated, causing problems such as damage to the thermal head and abnormal running of the ink ribbon.

本発明はこのような課題に鑑み、熱転写記録でもサーマ
ルヘッドの破壊やインクリホンの走行異常が生しないよ
うにすることを目的とする。
In view of these problems, it is an object of the present invention to prevent damage to the thermal head and abnormal running of the ink phone even in thermal transfer recording.

課題を解決するための手段 この課題を解決するために本発明は、ガラスを主成分と
する第1の保護膜の表面に膜硬度が大きく導電性を有す
る窒化チタンを主成分とする第2の保護膜を設けること
で静電気の発生を防止するものである。
Means for Solving the Problem In order to solve this problem, the present invention provides a second protective film mainly composed of titanium nitride, which has high film hardness and conductivity, on the surface of a first protective film mainly composed of glass. Providing a protective film prevents the generation of static electricity.

作用 この構成により、インクリボンと接触して擦られるサー
マルヘッドの表面は、導電性があり硬度が大きな窒化チ
タンよりなる第2の保護膜となっているため静電気の発
生か防止でき、これによりサーマルヘッドが破壊したり
、インクリボンの走行に異常が生したりすることかなく
なる。
With this configuration, the surface of the thermal head that comes into contact with the ink ribbon and is rubbed is covered with a second protective film made of titanium nitride, which is conductive and has a high hardness, which prevents the generation of static electricity. This eliminates the possibility of the head being damaged or the ink ribbon running abnormally.

実施例 実施例1 第1図(at、 (blに、本発明の第1の実施例によ
り作成したサーマルヘッドの発熱体近傍の平面図と(a
lのA−A’断面図を示す。11は表面にガラス層12
を形成したアルミナ基板、13はルテニウムが約70%
(原子比)でチタンが約30%(原子比)の組成を有す
る抵抗体膜、14a、14bは金よりなる配線用電極膜
(14aは共通電極、14bは個別電極)である。15
はガラスよりなる第1の保護膜、16は窒化チタンを主
成分とする第2の保護膜である。
Examples Example 1 FIG.
1 shows a sectional view taken along line AA'. 11 is a glass layer 12 on the surface
The alumina substrate 13 has approximately 70% ruthenium.
The resistor film has a composition of about 30% (atomic ratio) titanium, and 14a and 14b are wiring electrode films made of gold (14a is a common electrode, 14b is an individual electrode). 15
1 is a first protective film made of glass, and 16 is a second protective film whose main component is titanium nitride.

本実施例においては、以下のような製造工程でヘッドを
作成した。抵抗体膜13としては、ルテニウムの有機金
属化合物とチタンの有機金属化合物をルテニウムとチタ
ンの原子比か70・30となるように配合した液状ペー
ストを、スクリーン印刷で線状に塗布し750℃で焼成
して、約0.1μmの膜厚を有する抵抗体膜13をアル
ミナ基板11のガラス層12上に形成した。次に、レジ
ネート金ペースト(田中マッセイ株式会社製)を同様に
スクリーン印刷でアルミナ基板11上に塗布して800
℃で焼成して配線用電極膜14a。
In this example, a head was created using the following manufacturing process. As the resistor film 13, a liquid paste containing an organometallic compound of ruthenium and an organometallic compound of titanium mixed in an atomic ratio of ruthenium and titanium, or 70.30, was applied in a linear manner by screen printing and heated at 750°C. By firing, a resistor film 13 having a thickness of about 0.1 μm was formed on the glass layer 12 of the alumina substrate 11. Next, resinate gold paste (manufactured by Tanaka Massey Co., Ltd.) was applied onto the alumina substrate 11 by screen printing in the same manner.
The wiring electrode film 14a is baked at .degree.

14bを形成した後、電極膜14a、14bと抵抗体膜
13をフォトリソ技術を用いて、抵抗体膜13か個別に
分離された薄膜タイプのパターンを形成した。この後、
第1の保護膜としてガラスベース) (LS201 ;
田中マッセイ株式会社製)を同様にスクリーン印刷で塗
布し800℃で焼成して約7μmの膜厚のガラス保護膜
15を形成した。さらにこの後、チタンの有機金属化合
物としてチタンのアルコキシドを塗布した後に窒素雰囲
気中で750℃で焼成することで窒化チタンを主成分と
する窒化チタン保護膜16を形成した。この膜16の形
成時に、静電気がよりぬけやすくするために共通電極1
4aと窒化チタン保護膜16が接触するように塗布した
。窒素雰囲気中で焼成して得られた窒化チタン保護膜1
6の比抵抗は約1000μΩ・国が得られたことから、
静電気の発生を防止するためには0,1μm程度の膜厚
で充分であることが判った。また、この窒化チタン保護
膜16の硬度を測定したところマイクロビッカース硬度
で約1800kg/画2であり、従来のガラス保護膜5
の硬度約700kg/+orn2 と比較して大きな硬
度が得られた。この窒化チタンを2回印刷・焼成するこ
とで、約0.5μmの膜厚を形成した。このようにして
形成したサーマルヘッドを、昇華型熱転写記録用のイン
クリボン(犬日本印刷株式会社製)を用いて印字走行試
験を行った。比較のために、第4図に示した従来のサー
マルヘッドも同一条件で印字走行試験を行った。この結
果、従来のサーマルヘッドでは、約100mの印字で静
電気による抵抗体膜4の破壊が発生したが、本実施例の
サーマルヘッドではlkmの印字後でもまったく異常は
生じなかった。また、さらに従来のガラス保護膜5では
約100mの印字で約0.5μm程度の摩耗が生したか
、本実施例のサーマルヘッドでは1kn+の印字でも0
.05μm以下であり、耐摩耗性も大きく改善される効
果も認められた。
After forming the resistor film 14b, the electrode films 14a, 14b and the resistor film 13 were formed into a thin film type pattern in which the resistor film 13 was individually separated using a photolithography technique. After this,
glass base as the first protective film) (LS201;
(manufactured by Tanaka Massey Co., Ltd.) was similarly applied by screen printing and baked at 800° C. to form a glass protective film 15 with a thickness of about 7 μm. Furthermore, after this, titanium alkoxide was applied as an organometallic compound of titanium and then baked at 750° C. in a nitrogen atmosphere to form a titanium nitride protective film 16 containing titanium nitride as a main component. When forming this film 16, the common electrode 1
The coating was applied so that the titanium nitride protective film 4a and the titanium nitride protective film 16 were in contact with each other. Titanium nitride protective film 1 obtained by firing in a nitrogen atmosphere
Since the specific resistance of 6 was obtained about 1000μΩ・country,
It has been found that a film thickness of about 0.1 μm is sufficient to prevent the generation of static electricity. In addition, when the hardness of this titanium nitride protective film 16 was measured, it was approximately 1800 kg/image 2 in terms of micro-Vickers hardness, which was found to be about 1800 kg/image 2 compared to the conventional glass protective film 5.
A large hardness was obtained compared to the hardness of about 700 kg/+orn2. By printing and firing this titanium nitride twice, a film thickness of about 0.5 μm was formed. The thermal head thus formed was subjected to a printing running test using an ink ribbon for sublimation type thermal transfer recording (manufactured by Inu Nippon Printing Co., Ltd.). For comparison, a printing running test was also conducted on the conventional thermal head shown in FIG. 4 under the same conditions. As a result, in the conventional thermal head, destruction of the resistor film 4 due to static electricity occurred after approximately 100 m of printing, but in the thermal head of this embodiment, no abnormality occurred at all even after printing of 1 km. Furthermore, with the conventional glass protective film 5, approximately 0.5 μm of wear occurred after printing of approximately 100 m, and with the thermal head of this embodiment, there was no wear even after printing of 1 kn+.
.. 05 μm or less, and the effect of greatly improving wear resistance was also observed.

実施例2 本実施例において、第2図に示すように従来のサーマル
ヘッドのガラス保護膜上に、スパッタリングにより窒化
チタンを約0.5μm形成した。
Example 2 In this example, as shown in FIG. 2, titanium nitride was formed to a thickness of about 0.5 μm on the glass protective film of a conventional thermal head by sputtering.

第2図(a)1よヘッドの平面図で、(blは(a)の
A−A’断面図である。21はガラス層22を形成した
アルミナ基板、23a、23bは金よりなる配線用電極
(23aは共通電極、23bは個別電極)である。24
はルテニウムフリットとガラスを混合した厚膜抵抗体で
あり、本実施例では厚膜型のパターンを形成した。25
はガラス保護膜で第1の保護膜となる。26は窒化チタ
ン保護膜で、第2の保護膜となる。本実施例で形成した
窒化チタン保護膜26は、比抵抗が約250μΩ・口で
あり、硬度は約2500 kg/ mm2であった。こ
うして作成したサーマルヘッドを実施例1と同じ条件で
印字走行試験を行った。この結果は、実施例1と同様に
静電気不良はまったく生じず、また摩耗はlkmの印字
でも約0.03μmとさらに改善された。
Figure 2 (a) 1 is a plan view of the head, (bl is a sectional view taken along the line AA' in (a). 21 is an alumina substrate on which a glass layer 22 is formed, 23a and 23b are for wiring made of gold. Electrodes (23a is a common electrode, 23b is an individual electrode).24
is a thick film resistor made of a mixture of ruthenium frit and glass, and in this example, a thick film type pattern was formed. 25
is a glass protective film and serves as the first protective film. 26 is a titanium nitride protective film, which serves as a second protective film. The titanium nitride protective film 26 formed in this example had a specific resistance of about 250 μΩ·m and a hardness of about 2500 kg/mm 2 . A printing running test was conducted on the thus prepared thermal head under the same conditions as in Example 1. The results show that, as in Example 1, no static electricity defects occurred at all, and the abrasion was further improved to about 0.03 μm even when printing at 1 km.

実施例3 本発明の第3の実施例に基づいて作成したサーマルヘッ
ドの平面図とA−A’断面図を第3図(al、 (bl
に示す。なお第3図において、第1図と同一番号は、同
一名称を示す。35は絶縁性の酸化物膜による第3の保
護膜として用いたシリカガラス膜である。本実施例のサ
ーマルヘッドは以下に述べるようにして作成した。すな
わち、パターン形成までは第1の実施例と同様の工程を
用いた。
Example 3 FIG.
Shown below. Note that in FIG. 3, the same numbers as in FIG. 1 indicate the same names. 35 is a silica glass film used as a third protective film made of an insulating oxide film. The thermal head of this example was created as described below. That is, the same steps as in the first example were used up to pattern formation.

この後、ガラスペースト(LS201;田中マッセイ株
式会社製)をスクリーン印刷で約3μmの膜厚に形成し
た。このような膜厚のガラス保護膜15には1ヘツド当
たり数箇所のピンホール欠陥36があった。次に、Si
のアルコキシドの溶液をガラス保護膜15上に刷毛で塗
り、750℃で焼成して0.1μmの絶縁性のシリカガ
ラス膜35を形成した。このアルコキシド溶液を塗布す
ることで、ピンホール欠陥36は埋め込まれた。この埋
め込みの効果は、膜厚が0.1μm以上あれば十分なこ
とが膜厚を変えた実験から確認された。
Thereafter, a glass paste (LS201; manufactured by Tanaka Massey Co., Ltd.) was formed by screen printing to a thickness of about 3 μm. The glass protective film 15 having such a thickness had several pinhole defects 36 per head. Next, Si
A solution of the alkoxide was applied with a brush onto the glass protective film 15 and baked at 750° C. to form an insulating silica glass film 35 with a thickness of 0.1 μm. By applying this alkoxide solution, the pinhole defect 36 was filled. It was confirmed through experiments in which the film thickness was varied that the effect of this embedding is sufficient if the film thickness is 0.1 μm or more.

このシリカガラス膜35上に、チタンのアルコキシドを
主成分とする液状ペーストを塗布し、窒素雰囲気中で7
50℃で焼成して窒化チタン保護膜16を約0.5μm
の膜厚に形成した。こうして作成したヘッドのショート
発生状態を評価したところ、3μmの膜厚のガラス保護
膜15上に直接窒化チタン保護膜16を形成したヘッド
では5カ所のショート不良が発生したのに対して、本実
施例ではショート不良はまったくなかった。また、本実
施例のサーマルヘッドと従来のサーマルヘッドの印字性
能を比較評価したところ、印字所要電力は本実施例のヘ
ッドでは従来のヘッドに比べて約り5%小さい値であっ
た。これは、従来のヘッドは、ガラス保護膜5の厚さが
約7μmと厚いために記録媒体への熱の伝達が悪く、3
11mとすることで熱伝達効率が改善されたことによる
。この結果、本実施例のサーマルヘッドでは、静電気不
良を防止すると共に低消費エネルギー化も図れる点で大
きな効果かあった。
On this silica glass film 35, a liquid paste containing titanium alkoxide as a main component is applied and
The titanium nitride protective film 16 is baked at 50°C to a thickness of about 0.5 μm.
It was formed to a film thickness of . When we evaluated the state of short-circuit occurrence in the head created in this way, we found that short-circuit failures occurred at five locations in the head in which the titanium nitride protective film 16 was directly formed on the glass protective film 15 with a film thickness of 3 μm, whereas short-circuit defects occurred in five locations. In this example, there were no short-circuit defects at all. Further, when the printing performance of the thermal head of this embodiment and the conventional thermal head was compared and evaluated, the required printing power was approximately 5% smaller in the head of this embodiment than in the conventional head. This is because the conventional head has a thick glass protective film 5 of approximately 7 μm, which results in poor heat transfer to the recording medium.
This is because the heat transfer efficiency was improved by setting the length to 11 m. As a result, the thermal head of this embodiment had great effects in that it could prevent static electricity defects and also reduce energy consumption.

本実施例では、酸化物薄膜としてシリカガラス膜35を
用いたか、材料的にはこれに限定されるものではなく、
また、成膜方法も真空蒸着やスパフタリング等によって
も同様の効果が得られ、これらの方法を用いてもよい。
In this embodiment, the silica glass film 35 was used as the oxide thin film, but the material is not limited to this.
Furthermore, similar effects can be obtained by using vacuum deposition, sputtering, or the like as a film forming method, and these methods may also be used.

発明の効果 以上のように本発明によれば、表面に硬度の大きな窒化
チタンを主成分とした第2の保護膜を形成することで静
電気発生による不良を防止でき、熱転写記録でも信頼性
のあるサーマルヘッドを得ることが可能となる。また、
さらに硬度が増大することで従来のガラス保護膜に比べ
て耐摩耗性も改善される効果も得られる。さらに、ガラ
スを主成分とする第1の保護膜と窒化チタンを主成分と
する第2の保護膜の間に絶縁性の酸化物を主成分とする
第3の保護膜を形成することで、第1の保護膜を薄く形
成でき、低消費エネルギー化にも大きな効果か得られる
Effects of the Invention As described above, according to the present invention, by forming a second protective film mainly composed of titanium nitride with high hardness on the surface, defects caused by static electricity can be prevented, and thermal transfer recording is also reliable. It becomes possible to obtain a thermal head. Also,
Furthermore, the increased hardness also provides the effect of improved abrasion resistance compared to conventional glass protective films. Furthermore, by forming a third protective film mainly composed of an insulating oxide between the first protective film mainly composed of glass and the second protective film mainly composed of titanium nitride, The first protective film can be formed thinly, and a great effect can be obtained in reducing energy consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図fat、 (blは本発明の第1の実施例による
サーマルヘッドの平面図と(alのA−A’断面図、第
2図(al、 (b)は本発明の第2の実施例によるサ
ーマルヘッドの平面図と(alのA−A’断面図、第3
図(al、 (b)は本発明の第3の実施例によるサー
マルヘッドの平面図と(a)のA−A’断面図、第4図
(at  (b)は従来のサーマルヘッドの平面図とf
a)のAA′断面図である。 11・・・・・・アルミナ基板、 12・・・・・・ガ
ラス層、13・・・・・・抵抗体膜、14a、14b・
・・・・・配線用電極膜、15・・・・・・ガラス保護
膜、16・・・・・・窒化チタン保護膜、21・・・・
・・アルミナ基板、22・・・・・・ガラス層、23a
、23b・・・・・・配線用電極膜、24・・・・・厚
膜抵抗体、25・・・・・・ガラス保護膜、26・・・
・・・窒化チタン保護膜、35・・・・・・シリカガラ
ス膜。 代理人の氏名 弁理士 粟野重孝 ほか1名第1図 11  アルミナJl−オ足 +2−71rラス層 13 倦杭体膜 I4αJ4b配線用を枢1慣 15  がラス保、10羨鷹lの保護膜)+6−f化+
9−/UiUiL(第2nokgMP&)、A /411 / −A 23α L八′ 第 図 、−1 ―A アルミナ基1匁 第4図 −・A 3α
Figure 1 (fat, (bl) is a plan view of a thermal head according to the first embodiment of the present invention, and (al) is a sectional view taken along line A-A'; A plan view of a thermal head according to an example and a sectional view taken along line A-A' (al.
Figures (al and b) are a plan view of a thermal head according to a third embodiment of the present invention and a sectional view taken along line AA' in (a), and Figure 4 (at) is a plan view of a conventional thermal head. and f
It is AA' sectional view of a). 11... Alumina substrate, 12... Glass layer, 13... Resistor film, 14a, 14b.
...Wiring electrode film, 15...Glass protective film, 16...Titanium nitride protective film, 21...
...Alumina substrate, 22...Glass layer, 23a
, 23b... Wiring electrode film, 24... Thick film resistor, 25... Glass protective film, 26...
...Titanium nitride protective film, 35...Silica glass film. Name of agent: Patent attorney Shigetaka Awano and one other person Figure 1 11 Alumina Jl-O foot + 2-71r lath layer 13 Alumina body film I4α J4b wiring for base 1 15 is lath protection, 10 enya l protective film) +6-f conversion+
9-/UiUiL (2nd nokgMP&), A /411 / -A 23α L8' Figure, -1 -A Alumina group 1 momme Figure 4-・A 3α

Claims (5)

【特許請求の範囲】[Claims] (1)少なくとも表面が絶縁性を有する基板上に形成し
たルテニウムを主成分とする抵抗体膜と、この抵抗体膜
に通電するために前記基板上においてこの抵抗体膜に接
続された金を主成分とする配線用電極膜と、少なくとも
前記抵抗体膜と配線用電極膜の記録媒体と接触する領域
との上に設けたガラスを主成分とする第1の保護膜と、
この第1の保護膜上に設けた窒化チタンを主成分とする
第2の保護膜とを備えたサーマルヘッド。
(1) A resistor film mainly composed of ruthenium formed on a substrate having at least an insulating surface, and a resistor film mainly composed of ruthenium connected to the resistor film on the substrate in order to conduct electricity to the resistor film. a first protective film containing glass as a main component and provided on at least the resistor film and the region of the wiring electrode film that contacts the recording medium;
A thermal head comprising a second protective film containing titanium nitride as a main component and provided on the first protective film.
(2)第1、第2の保護膜間に、絶縁性の酸化物を主成
分とする第3の保護膜を介在させた請求項(1)に記載
のサーマルヘッド。
(2) The thermal head according to claim (1), wherein a third protective film containing an insulating oxide as a main component is interposed between the first and second protective films.
(3)少なくとも表面が絶縁性を有する基板上にルテニ
ウムを主成分とする抵抗体膜を形成し、次にこの抵抗体
膜に通電するための金を主成分とする配線用電極膜を前
記基板上において形成し、次に少なくとも前記抵抗体膜
と配線用電極膜の記録媒体と接触する領域との上にガラ
スを主成分とする第1の保護膜を形成し、次にこの第1
の保護膜上に窒化チタンを主成分とする第2の保護膜を
形成するサーマルヘッドの製造方法。
(3) A resistor film containing ruthenium as a main component is formed on a substrate having at least an insulating surface, and then a wiring electrode film containing gold as a main component for supplying electricity to the resistor film is applied to the substrate. A first protective film containing glass as a main component is then formed on at least the resistor film and the area of the wiring electrode film that contacts the recording medium, and then this first
A method for manufacturing a thermal head, comprising forming a second protective film containing titanium nitride as a main component on the protective film.
(4)チタンの有機金属化合物をガラスを主成分とする
第1の保護膜上に塗布し、窒素雰囲気中で焼成すること
により窒化チタンを主成分とする第2の保護膜を形成す
る工程を有する請求項(3)に記載のサーマルヘッドの
製造方法。
(4) Forming a second protective film mainly composed of titanium nitride by applying a titanium organometallic compound onto the first protective film mainly composed of glass and firing in a nitrogen atmosphere. The method for manufacturing a thermal head according to claim (3).
(5)ガラスを主成分とする第1の保護膜上に、絶縁性
の酸化物を形成する有機金属化合物を塗布し、大気中で
焼成して酸化物よりなる第3の保護膜を形成する工程と
、チタンの有機金属化合物をこの酸化物膜上に塗布し、
窒素雰囲気中で焼成することにより窒化チタンを主成分
とする第2の保護膜を形成する工程を有する請求項(3
)に記載のサーマルヘッドの製造方法。
(5) An organic metal compound that forms an insulating oxide is applied on the first protective film whose main component is glass, and then baked in the atmosphere to form a third protective film made of the oxide. process, applying a titanium organometallic compound onto this oxide film,
Claim (3) comprising the step of forming a second protective film containing titanium nitride as a main component by firing in a nitrogen atmosphere.
) The method for manufacturing a thermal head described in .
JP10346890A 1990-04-19 1990-04-19 Thermal head and manufacture method therefor Pending JPH041063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10346890A JPH041063A (en) 1990-04-19 1990-04-19 Thermal head and manufacture method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10346890A JPH041063A (en) 1990-04-19 1990-04-19 Thermal head and manufacture method therefor

Publications (1)

Publication Number Publication Date
JPH041063A true JPH041063A (en) 1992-01-06

Family

ID=14354844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10346890A Pending JPH041063A (en) 1990-04-19 1990-04-19 Thermal head and manufacture method therefor

Country Status (1)

Country Link
JP (1) JPH041063A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137284A (en) * 2007-11-13 2009-06-25 Tdk Corp Thermal head, manufacturing method for thermal head, and printer
USRE45481E1 (en) 1995-10-12 2015-04-21 Kabushiki Kaisha Toshiba Interconnector line of thin film, sputter target for forming the wiring film and electronic component using the same
JP2016005916A (en) * 2015-10-13 2016-01-14 ローム株式会社 Thermal print head
JP2019025713A (en) * 2017-07-27 2019-02-21 京セラ株式会社 Thermal head and thermal printer
JP2020067342A (en) * 2018-10-23 2020-04-30 グローリー株式会社 Magnetic detection device, paper sheet identification device, and paper sheet processing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45481E1 (en) 1995-10-12 2015-04-21 Kabushiki Kaisha Toshiba Interconnector line of thin film, sputter target for forming the wiring film and electronic component using the same
JP2009137284A (en) * 2007-11-13 2009-06-25 Tdk Corp Thermal head, manufacturing method for thermal head, and printer
JP2016005916A (en) * 2015-10-13 2016-01-14 ローム株式会社 Thermal print head
JP2019025713A (en) * 2017-07-27 2019-02-21 京セラ株式会社 Thermal head and thermal printer
JP2020067342A (en) * 2018-10-23 2020-04-30 グローリー株式会社 Magnetic detection device, paper sheet identification device, and paper sheet processing device

Similar Documents

Publication Publication Date Title
US4742362A (en) Thermal head
JPH041063A (en) Thermal head and manufacture method therefor
JPH0334469B2 (en)
US4734563A (en) Inversely processed resistance heater
JP4330681B2 (en) Thermal head and manufacturing method thereof
US5387460A (en) Thermal printing ink medium
JP2808765B2 (en) Manufacturing method of thin film type thermal head
JP3298794B2 (en) Thermal head and method of manufacturing the same
JPH04288244A (en) Thermal head
JPS5874373A (en) Thermal head and manufacture thereof
JP2533088B2 (en) Method of manufacturing thermal head
JPH0557938A (en) Manufacture of thermal head
JP4004893B2 (en) Laminate parts and laminator
KR960014057B1 (en) Manufacturing method of thermal recording apparatus
JPH1148514A (en) Thermal print head and manufacture of thermal print head
JPS61139453A (en) Thermal head
EP0113950B1 (en) Method of making a resistance heater
JPH05330107A (en) Thermal printing head
JP2965339B2 (en) Manufacturing method of thermal head
JPH0846284A (en) Semiconductor laser pellet
JPH0544349B2 (en)
JPH01272466A (en) Thermal head
JPH02182468A (en) Electrode structure for thermal head
JPH04251758A (en) Thermal printing head
JPH01283163A (en) Abrasion-resistant layer for hybrid ic