JP2808765B2 - Manufacturing method of thin film type thermal head - Google Patents

Manufacturing method of thin film type thermal head

Info

Publication number
JP2808765B2
JP2808765B2 JP33331889A JP33331889A JP2808765B2 JP 2808765 B2 JP2808765 B2 JP 2808765B2 JP 33331889 A JP33331889 A JP 33331889A JP 33331889 A JP33331889 A JP 33331889A JP 2808765 B2 JP2808765 B2 JP 2808765B2
Authority
JP
Japan
Prior art keywords
layer
film
wear
protective film
resistant protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33331889A
Other languages
Japanese (ja)
Other versions
JPH03193363A (en
Inventor
誠一郎 坂口
哲広 是近
敬三郎 倉増
孝 平尾
雅俊 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33331889A priority Critical patent/JP2808765B2/en
Publication of JPH03193363A publication Critical patent/JPH03193363A/en
Application granted granted Critical
Publication of JP2808765B2 publication Critical patent/JP2808765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ファクシミリ等に用いられる薄膜型サーマ
ルヘッドの製造方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin-film thermal head used for a facsimile or the like.

従来の技術 薄膜型サーマルヘッドとしては従来より、第4図に示
したものが用いられている。11は絶縁性基板、12は発熱
抵抗体層、13は導体層(電極)、14は耐摩耗保護膜であ
る。
2. Description of the Related Art Conventionally, a thin film type thermal head shown in FIG. 4 has been used. 11 is an insulating substrate, 12 is a heating resistor layer, 13 is a conductor layer (electrode), and 14 is a wear-resistant protective film.

この構成におけるサーマルヘッドの耐摩耗保護膜14に
要求される性質としては以下の事項が挙げられる。
Properties required for the wear-resistant protective film 14 of the thermal head in this configuration include the following.

(1) 耐摩耗性に優れたこと(機械的摩耗[硬度、摩
擦係数が関与]、電気化学的な摩耗[異常摩耗で、紙と
耐摩耗保護膜との反応が関与]のいずれも少ないこ
と)。
(1) Excellent in abrasion resistance (mechanical abrasion [hardness and friction coefficient involved] and electrochemical abrasion [abnormal abrasion involving reaction between paper and abrasion-resistant protective film] ).

(2) 耐熱性が良好であること(加熱時に、ボイドの
発生、クラックの発生がないこと)。
(2) Good heat resistance (no voids or cracks during heating).

(3) 耐摩耗保護膜の下に形成された発熱体層、導体
層等に紙の吸湿下で電解腐食が生じないこと(段差被覆
性が良好なこと、ピンホールフリーであること、緻密で
吸湿性がないこと)。
(3) Electrolytic corrosion does not occur on the heating element layer, conductor layer, etc. formed under the wear-resistant protective film under moisture absorption of the paper (good step coverage, pinhole-free, dense No hygroscopicity).

(4) 発熱抵抗体層、導体層、基板等の下地層との密
着性が良好なこと。
(4) Adhesion with an underlying layer such as a heating resistor layer, a conductor layer, and a substrate is good.

(5) 耐静電気性が良好なこと(熱転写方式に用いら
れる転写紙であるPET(絶縁物)と耐摩耗保護膜との摺
動時に生じる静電気により、特に乾燥下で静電破壊が生
じる)。
(5) Good electrostatic resistance (static electricity generated when sliding the PET (insulating material), which is a transfer paper used in the thermal transfer method, and the abrasion-resistant protective film causes electrostatic breakdown, especially in dry conditions).

(6) 抵抗体破断時に耐摩耗保護膜に異常電流が流れ
異常過熱しないこと。従来のサーマルヘッドの耐摩耗保
護膜14にはスパッタリング法により形成された酸化タン
タル(Ta2O5)、炭化シリコン(SiC)、窒化シリコン
(SiN)等が用いられてきた。しかし、Ta2O5は硬度が小
さく耐摩耗性に劣り、SiCは遊離カーボンと感熱紙が反
応し異常摩耗がおこり、更にSiNは応力が大きいため膜
を厚くするとはがれやすくなる。
(6) Abnormal current does not flow through the wear-resistant protective film when the resistor breaks, and it does not overheat. As a wear-resistant protective film 14 of a conventional thermal head, tantalum oxide (Ta 2 O 5 ), silicon carbide (SiC), silicon nitride (SiN), or the like formed by a sputtering method has been used. However, Ta 2 O 5 has low hardness and poor wear resistance, SiC reacts with free carbon and heat-sensitive paper to cause abnormal wear, and SiN has a large stress, so that the film is easily peeled off when the film is thickened.

一般にスパッタリング法では、高速成膜時に大電力を
投入した際、スプラッツが発生しやすく、これにより、
耐摩耗保護膜14に粒状突起物や、その脱離によるピンホ
ールが発生したり、導体層パターン(導体層圧1μm程
度)の段差被覆が不十分等のため、これら欠陥部分を通
して、下層膜の電解腐食を招くケースがある。
In general, in the sputtering method, when high power is applied during high-speed film formation, splats are likely to occur.
Since granular projections and pinholes due to their detachment are generated in the wear-resistant protective film 14, and the step coverage of the conductor layer pattern (conductor layer pressure is about 1 μm) is insufficient, the defect of the underlying film is reduced through these defective portions. There are cases where electrolytic corrosion occurs.

以上のことを解決するためプラズマCVD(ケミカルベ
ーパーデポジション)法は有用である。プラズマCVD法
では原料にガスを用い、これに高周波をかけプラズマ中
で分解し基板上に膜を堆積させる方法である。プラズマ
CVD法はスパッタリング法に比べ、エネルギー(電力)
が小さくてすみ、異常放電による粒状突起、ピンホール
等が生じにくい。また、緻密かつ段差被覆性に優れてい
るため、下層膜の電解腐食が生じにくく、信頼性が格段
に改善される。
In order to solve the above, the plasma CVD (chemical vapor deposition) method is useful. In the plasma CVD method, a gas is used as a raw material, a high frequency is applied to the raw material, and the gas is decomposed in a plasma to deposit a film on a substrate. plasma
Energy (electric power) is higher in CVD than in sputtering.
And small protrusions due to abnormal discharge are unlikely to occur. Further, since it is dense and excellent in step coverage, electrolytic corrosion of the lower layer film hardly occurs, and reliability is remarkably improved.

また、プラズマCVD法を用いた保護膜としてはシリコ
ンナイトライド膜(以降SiN膜と表記する)が一般的に
用いられているが、先述したスパッタリング膜と同様応
力が大きく、サーマルヘッド保護膜として必要な5μm
程度に厚くつけると、応力割れが生じる。そのため、そ
のSiN膜にO(酸素)原子を加え応力を緩和したシリコ
ンオキシナイトライド膜(以降SiON膜と表記する)が使
用されている。
In addition, a silicon nitride film (hereinafter referred to as a SiN film) is generally used as a protective film using a plasma CVD method. 5μm
Thickening can cause stress cracking. Therefore, a silicon oxynitride film (hereinafter referred to as a SiON film) in which O (oxygen) atoms are added to the SiN film to reduce the stress is used.

発明が解決しようとする課題 しかし、このSiON膜を熱転写記録方式サーマルヘッド
耐摩耗保護膜に用いると、熱転写シート(PET)もSiON
膜(抵抗率1013〜1014Ω・m)も絶縁物のため、両者の
間の摺動時の摩擦により静電気が発生し耐摩耗保護膜14
に絶縁破壊が生じてしまう。
However, if this SiON film is used as a thermal transfer recording type thermal head abrasion protection film, the thermal transfer sheet (PET) also becomes SiON.
Since the film (resistivity 10 13 to 10 14 Ω · m) is also an insulator, static electricity is generated due to friction during sliding between the two, and the wear-resistant protective film 14
Causes dielectric breakdown.

本発明は上記課題に鑑み、絶縁破壊の生じない耐摩耗
保護膜を実現することを目的とする。
In view of the above problems, an object of the present invention is to realize a wear-resistant protective film that does not cause dielectric breakdown.

課題を解決するための手段 上記目的を達成するために、本発明は、絶縁性基板上
に多数の発熱抵抗体列を設ける工程と、この発熱抵抗体
列に対して上層の耐摩耗保護膜の抵抗率が109〜1010Ω
・mになるように原料ガスとしてSiH4またはSi2H6と、N
2と、B2H6またはBF3を用いプラズマCVD法により形成す
る工程と、それに先立って下層の耐摩耗保護膜を原料ガ
スとしてSiH4またはSi2H6と、N2を用いプラズマCVD法に
より形成する工程とを有し、前記上層の耐摩耗保護膜の
抵抗率に比して前記下層の耐摩耗保護膜の抵抗率が102
倍以上大きくなるように前記原料ガスの流量比の調整す
ることを特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a step of providing a number of heating resistor rows on an insulating substrate, and forming an upper wear-resistant protective film on the heating resistor row. Resistivity 10 9 -10 10 Ω
・ SiH 4 or Si 2 H 6 as raw material gas and N
2 , a step of forming by plasma CVD using B 2 H 6 or BF 3 , and before that, a plasma CVD method using SiH 4 or Si 2 H 6 and N 2 using a lower wear-resistant protective film as a raw material gas Wherein the resistivity of the lower wear-resistant protective film is 10 2 compared to the resistivity of the upper wear-resistant protective film.
The flow rate ratio of the source gas is adjusted so as to be twice or more.

また、本発明は、絶縁性基板上に多数の発熱抵抗体列
を設ける工程と、この発熱抵抗体列に対して上層の耐摩
耗保護膜の抵抗率が109〜1010Ω・mになるように原料
ガスとしてSiH4またはSi2H6と、N2と、B2H6またはBF3
用いプラズマCVD法により形成する工程と、それに先立
って下層の耐摩耗保護膜を原料ガスとしてSiH4またはSi
2H6と、N2Oと、N2を用いプラズマCVD法により形成する
工程とを有し、前記上層の耐摩耗保護膜の抵抗率に比し
て前記下層の耐摩耗保護膜の抵抗率が103倍以上大きく
なるように前記原料ガスの流量比の調整することを特徴
とするものである。
Further, according to the present invention, the step of providing a large number of heating resistor rows on the insulating substrate, and the resistivity of the upper wear-resistant protective film with respect to this heating resistor row is 10 9 to 10 10 Ω · m As described above, a step of forming by a plasma CVD method using SiH 4 or Si 2 H 6 , N 2 , B 2 H 6 or BF 3 as a source gas, and prior to that, using a lower wear-resistant protective film as a source gas 4 or Si
And 2 H 6, N 2 and O, and a step of forming by plasma CVD method using N 2, the resistivity of the lower layer of the wear protection layer than the resistivity of the upper layer of wear-resistant protective film There is characterized in that the adjusting of the flow rate ratio of the raw material gas to be greater 10 3 times or more.

さらに、本発明は、絶縁性基板上に多数の発熱抵抗体
列を設ける工程と、この発熱抵抗体列に対して上層の耐
摩耗保護膜の抵抗率が109〜1010Ω・mになるように原
料ガスとしてSiH4またはSi2H6と、N2と、B2H6またはBF3
を用いプラズマCVD法により形成する工程と、それに先
立って下層の耐摩耗保護膜を原料ガスとしてSiH4または
Si2H6と、N2を用いプラズマCVD法により形成する工程
と、その上に中間層の耐摩耗保護膜を原料ガスとしてSi
H4またはSi2H6と、N2Oと、N2を用いプラズマCVD法によ
り形成する工程とを有し、前記上層の耐摩耗保護膜の抵
抗率に比して前記中間層の耐摩耗保護膜の抵抗率、前記
下層の耐摩耗保護膜の抵抗率がそれぞれ103倍以上、102
倍以上大きくなるように前記原料ガスの流量比を調整す
ることを特徴とするものである。
Further, in the present invention, the step of providing a large number of heating resistor arrays on the insulating substrate, and the resistivity of the upper wear-resistant protective film with respect to this heating resistor array is 10 9 to 10 10 Ω · m. As SiH 4 or Si 2 H 6 , N 2 , B 2 H 6 or BF 3
A step of forming by plasma CVD method using SiH 4 or
A process of forming by plasma CVD method using Si 2 H 6 and N 2 , and an intermediate wear-resistant protective film
H 4 or Si 2 H 6 , N 2 O, and a step of forming by a plasma CVD method using N 2 , the abrasion resistance of the intermediate layer compared to the resistivity of the abrasion protection film of the upper layer resistivity of the protective film, the resistivity of the lower layer of the wear protection layer is respectively 10 3 times or more, 10 2
The flow rate ratio of the raw material gas is adjusted so as to be twice or more.

作用 本発明により、この二層または三層構成を有する耐摩
耗保護膜における珪素、窒素、硼素からなる上層(SiBN
層)は硼素が三族元素のため、上層中の珪素との中でア
クセプターとなることにより上層に導電性が付与され
る。そのため転写紙(PET)と耐摩耗保護膜間に発生し
た静電気を耐摩耗保護膜を通して逃がし、耐摩耗保護膜
に絶縁破壊が生じないようにすることができる。
According to the present invention, the upper layer made of silicon, nitrogen, and boron (SiBN) in the two- or three-layer wear-resistant protective film
Since boron is a group III element of the layer, the upper layer is given conductivity by acting as an acceptor with silicon in the upper layer. For this reason, static electricity generated between the transfer paper (PET) and the wear-resistant protective film can be released through the wear-resistant protective film, and dielectric breakdown of the wear-resistant protective film can be prevented.

しかしながら、SiBN層と下地の発熱抵抗体層、導体層
と間の密着性が悪いので、加熱した場合耐摩耗保護膜が
はがれる可能性がある。そのため、下地(発熱抵抗体
層、導体層)と密着性のよいバッファ層としてSiN膜ま
たはSiON膜を下層とする構成にすることで適度の導電性
を有し(絶縁破壊を防ぎ)耐熱性に優れた耐摩耗保護膜
とすることができ、信頼性の高い薄膜型サーマルヘッド
とすることが可能である。
However, since the adhesion between the SiBN layer and the underlying heating resistor layer and conductor layer is poor, the abrasion-resistant protective film may peel off when heated. Therefore, by using a SiN film or SiON film as the lower layer as a buffer layer with good adhesion to the base (heating resistor layer, conductor layer), it has appropriate conductivity (prevents dielectric breakdown) and heat resistance An excellent wear-resistant protective film can be obtained, and a highly reliable thin-film thermal head can be obtained.

さらに、耐摩耗保護膜の抵抗率が低すぎると、サーマ
ルヘッドの駆動用ICが壊れ、常に発熱抵抗体に駆動電圧
が掛かり発熱抵抗体が破断した場合、耐摩耗保護膜に常
に電流が流れ発熱し、紙が燃える可能性がある。そのた
めSiON膜を下層とする二層構成もしくは、上記のSiN膜
を下層とした二層構成の耐摩耗保護膜の上層下層間にSi
ON膜を中間層として形成した三層構成の耐摩耗保護膜と
することで耐摩耗保護膜へ電流が流れることを防ぐこと
ができ、安全性の高い薄膜型サーマルヘッドとすること
が可能となる。
Furthermore, if the resistivity of the wear-resistant protective film is too low, the drive IC of the thermal head is broken, and a drive voltage is constantly applied to the heat-generating resistor. And the paper may burn. Therefore, a two-layer structure with a SiON film as the lower layer or a two-layer structure with the above-mentioned SiN film as the lower layer
By forming a three-layer wear-resistant protective film with the ON film as an intermediate layer, it is possible to prevent current from flowing to the wear-resistant protective film, and it is possible to provide a highly safe thin-film thermal head. .

実施例 本発明の一実施例について図面を用いて説明する。Embodiment An embodiment of the present invention will be described with reference to the drawings.

本実施例ではまず上層として共通な珪素(Si)、窒素
(N)、硼素(B)を主成分としてなる膜(以下SiBN膜
と称する)の性質について述べ、次にそのSiBN膜を上層
として用い二層構成あるいは三層構成といて形成された
耐摩耗保護膜を持つサーマルヘッドについての各実施例
を示す。
In this embodiment, first, the properties of a film mainly composed of silicon (Si), nitrogen (N), and boron (B) (hereinafter, referred to as a SiBN film) as an upper layer are described, and then the SiBN film is used as an upper layer. Examples of a thermal head having a wear-resistant protective film formed in a two-layer configuration or a three-layer configuration will be described.

ここで耐摩耗保護膜の成膜に用いた装置は平行平板型
(容量結合型)プラズマCVD装置で、電極形状は、300mm
φ、電極間隔20mm、RF周波数13.56MHz、RF電力500W、ガ
ス圧力1Torr.、成膜時の基板温度は350℃(一定)とし
た。
Here, the apparatus used for forming the wear-resistant protective film was a parallel plate type (capacitively coupled) plasma CVD apparatus, and the electrode shape was 300 mm.
φ, electrode spacing 20 mm, RF frequency 13.56 MHz, RF power 500 W, gas pressure 1 Torr. The substrate temperature during film formation was 350 ° C. (constant).

SiBN膜の成膜条件はSiH4流量20sccm、N2流量400sccm
(一定)とし、B2H6流量を変化させた(他の成膜条件は
上記の通り)。
The conditions for forming the SiBN film are as follows: SiH 4 flow rate 20 sccm, N 2 flow rate 400 sccm
(Constant), and the flow rate of B 2 H 6 was changed (other film formation conditions were as described above).

なお、第2図に本発明におけるSiBN膜の抵抗率のB2H6
/SiH4流量比依存性を示し、第3図にSiBN膜のビッカー
ス硬度のB2H6/SiH4流量比依存性を示す。B2H6流量が0sc
cmの時、すなわち、SiN膜では1012Ω・m台だった抵抗
率が、B2H6流量の増加に従って減少していくことがわか
る。抵抗率はこの場合最小109Ω・m台に達し、従来のS
iON膜の抵抗率1013Ω・m台に比べ大幅な抵抗率の低下
となった。第3図にB2H6流量を変化させた場合の硬度を
示す。硬度はB2H6流量によってはあまり変化せず、1500
kg/mm2程度の値を示した。以上のことにより上記のSiBN
膜により耐摩耗保護膜の耐静電気性を高めることができ
ることがわかった。
FIG. 2 shows the resistivity B 2 H 6 of the SiBN film in the present invention.
/ SiH 4 shows the flow rate-dependent, indicates the B 2 H 6 / SiH 4 flow ratio dependence of Vickers hardness of SiBN film in Figure 3. B 2 H 6 flow rate is 0sc
It can be seen that the resistivity at cm, that is, the resistivity of the order of 10 12 Ω · m in the SiN film decreases as the flow rate of B 2 H 6 increases. In this case, the resistivity reaches a minimum of 10 9 Ω · m,
The resistivity was significantly lower than the resistivity of the iON film in the order of 10 13 Ω · m. FIG. 3 shows the hardness when the flow rate of B 2 H 6 is changed. Hardness does not change much with B 2 H 6 flow rate, 1500
The value was about kg / mm 2 . From the above, the above SiBN
It was found that the film can enhance the static electricity resistance of the wear-resistant protective film.

以下、上述したSiBN膜を上層に使用したサーマルヘッ
ド耐摩耗保護膜の実施例を示す。
Hereinafter, examples of the thermal head wear-resistant protective film using the above-described SiBN film as the upper layer will be described.

実施例1 本実施例では本発明の二層構成の耐摩耗保護膜とし
て、珪素(Si)、窒素(N)を主成分とするSiN膜の原
料ガスとしてSiH4,N2を用い、上層の珪素(Si)、窒素
(N)、硼素(B)を主成分とするSiBN膜の原料ガスと
して、SiH4,N2,B2H6を用いプラズマCVD法により成膜し
た場合について述べる。成膜条件は上述した通りで、原
料ガスを切り換えることにより順次形成した。
Example 1 In this example, SiH 4 and N 2 were used as a source gas of a SiN film containing silicon (Si) and nitrogen (N) as main components as a two-layer wear-resistant protective film of the present invention, and an upper layer was formed. A case where a film is formed by a plasma CVD method using SiH 4 , N 2 , and B 2 H 6 as a source gas of a SiBN film containing silicon (Si), nitrogen (N), and boron (B) as main components will be described. The film formation conditions were as described above, and the film was formed sequentially by switching the source gas.

第1図(a)に本実施例のサーマルヘッドの構成を示
す。第1図(a)において、1はアルミナの上にガラス
グレイズ層を設けたグレイズドアルミナ基板からなる絶
縁性基板であり、その上に発熱抵抗体層2、導体層(電
極)3を形成し、所望のパターンを形成した後にプラズ
マCVD法により珪素、窒素を主成分とする下層5(SiN
層)と珪素、窒素、硼素を主成分とする上層6(SiBN
層)の二層構成からなる耐摩耗保護膜7を形成する。
FIG. 1A shows the configuration of the thermal head of this embodiment. In FIG. 1 (a), reference numeral 1 denotes an insulating substrate made of a glazed alumina substrate having a glass glaze layer provided on alumina, on which a heating resistor layer 2 and a conductor layer (electrode) 3 are formed. After forming a desired pattern, the lower layer 5 (SiN) mainly containing silicon and nitrogen is formed by plasma CVD.
Layer) and an upper layer 6 mainly composed of silicon, nitrogen and boron (SiBN
A), a wear-resistant protective film 7 having a two-layer structure is formed.

上層6(SiBN層)については上述したように耐静電気
性を高めることができる。しかしながらSiBN膜と発熱抵
抗体層2、導体層3を直接接触させると密着性が悪く加
熱した場合、劣化が早まるおそれがある。SiBN膜一層の
みの耐摩耗保護膜では信頼性が十分ではない。そのため
発熱抵抗体層2、導体層3と上層6との間に密着性の高
い中間層を設ける必要がある。この中間層としてはSiリ
ッチなSiN膜が好ましい。すなわち導体層金属との界面
におけるシリサイド生成による密着性の向上を図れるた
め効果がありさらに高耐熱性を有するものである。
As described above, the upper layer 6 (SiBN layer) can improve the anti-static property. However, if the SiBN film is brought into direct contact with the heating resistor layer 2 and the conductor layer 3, if the heating is performed due to poor adhesion, the deterioration may be accelerated. A wear-resistant protective film with only one SiBN film is not sufficiently reliable. Therefore, it is necessary to provide an intermediate layer having high adhesion between the heating resistor layer 2 and the conductor layer 3 and the upper layer 6. As this intermediate layer, a Si-rich SiN film is preferable. In other words, the adhesion is improved by the generation of silicide at the interface with the metal of the conductor layer, which is effective and has high heat resistance.

従って下層5をSiリッチ(N/Si<1.33)なSiN膜と
し、上層6をSiBN膜とした二層構成の耐摩耗保護膜7と
することで上層SiBN膜による導電性の付与、下層SiN膜
による密着性の強化を同時に達成することができ、極め
て高い信頼性を確保できる。
Therefore, the lower layer 5 is made of a Si-rich (N / Si <1.33) SiN film, and the upper layer 6 is made of a two-layered abrasion-resistant protective film 7 made of a SiBN film. Can be simultaneously achieved, and extremely high reliability can be secured.

但しこれらの性質を得るためにこの二層構成の保護層
の構成上で必要なことは上層SiBN層の膜厚をできるだけ
厚くすることと下層SiN層の膜厚をできるだけ薄くする
ことが挙げられる。特に導電性の観点から、絶縁体であ
るSiNの膜厚は多くとも1μm以下におさえる必要があ
る。
However, in order to obtain these properties, what is necessary in the structure of the two-layered protective layer is to make the film thickness of the upper SiBN layer as thick as possible and to make the film thickness of the lower SiN layer as thin as possible. In particular, from the viewpoint of conductivity, the thickness of SiN, which is an insulator, needs to be at most 1 μm or less.

ついで本実施例の二層構成の保護膜をサーマルヘッド
の耐摩耗保護膜として用い、パルス幅3.6msec.ライン周
期10msec./line、印加電力0.3w/dotで転写紙(PET)を
用いてサーマルヘッドと転写紙を長距離摺動させた。こ
の場合上層SiBN層は4μm、下層SiN層は1μm厚形成
する。また上層SiBN層は第2図に示す種々の値の条件下
で作成したものを用い、比較のためSiN一層膜(膜厚5
μm)についても同様のことを行った。
Then, using the two-layered protective film of this embodiment as a wear-resistant protective film for the thermal head, thermal transfer was performed using transfer paper (PET) with a pulse width of 3.6 msec., A line cycle of 10 msec./line, and an applied power of 0.3 w / dot. The head and the transfer paper were slid for a long distance. In this case, the upper SiBN layer is 4 μm thick, and the lower SiN layer is 1 μm thick. The upper SiBN layer was prepared under the conditions of various values shown in FIG.
μm).

これにより、SiN一層膜すなわち1012Ω・m程度の抵
抗率のものでは、静電気による発熱抵抗体ドットの損傷
による白抜けが生じたのに対し、第1図に示すようにB2
H6流量を増加させるにつれ、すなわち、導電性が付与さ
れるにつれ静電破壊が減り、109〜1010Ω・m以下の抵
抗率になると静電破壊は全く生じなくなった。
As a result, in the case of a single SiN film, that is, a film having a resistivity of about 10 12 Ω · m, white spots occurred due to damage of the heating resistor dots due to static electricity, whereas B 2
As increasing H 6 flow rate, i.e., reduce the electrostatic breakdown as the conductivity is imparted, becomes 10 9 ~10 10 Ω · m or less of the resistivity of the electrostatic breakdown is no longer occur at all.

また、SiBN一層膜と本実施例の二層構成の耐摩耗保護
膜に対して、高温高湿下での腐食試験を行ったところ、
SiBN一層膜では、発熱抵抗体層、導体層部分に一部腐食
が生じ、かつSiBN膜と導体層の界面において剥離が生じ
たのに対して、該二層構成の耐摩耗保護膜7については
全く腐食、剥離は生じなかった。
In addition, a corrosion test was performed on the SiBN single-layer film and the two-layer wear-resistant protective film of the present example under high temperature and high humidity.
In the single-layer SiBN film, the heating resistor layer and the conductor layer part were partially corroded, and peeling occurred at the interface between the SiBN film and the conductor layer. No corrosion or peeling occurred.

実施例2 本実施例は第1図(a)において二層構成からなる耐
摩耗保護膜7の下層5を珪素(Si)、酸素(O)、窒素
(N)を主成分としてなるSiON膜としたものであり、他
の構成部分は実施例1と同じである。SiON膜の原料ガス
としてはSiH4,N2,N2Oを用いてプラズマCVD法により成膜
したものについて述べる。耐摩耗保護膜の成膜条件は上
述した通りであり、原料ガスを切り換えることにより順
次形成する。
Embodiment 2 In this embodiment, the lower layer 5 of the wear-resistant protective film 7 having a two-layer structure in FIG. 1A is formed of a SiON film containing silicon (Si), oxygen (O) and nitrogen (N) as main components. The other components are the same as those in the first embodiment. A film formed by a plasma CVD method using SiH 4 , N 2 , and N 2 O as a raw material gas for the SiON film will be described. The conditions for forming the wear-resistant protective film are as described above, and the wear-resistant protective film is sequentially formed by switching the source gas.

実施例1で述べたように、上層6にSiBN膜を用いるこ
とによって、耐静電気性を高めることができるが、SiBN
膜と発熱抵抗体層2、導体層3を直接接触させると密着
性が悪くなり、加熱した場合劣化が早まるおそれがあ
り、SiBN膜一層のみの耐摩耗保護膜では信頼性が十分で
はない。また、加えて耐摩耗保護膜に導電性がありすぎ
ると、サーマルヘッドに接続されている駆動用ICのラッ
チアップ現象が生じた場合、サーマルヘッドの発熱抵抗
体に常にDC的に駆動電圧が掛かり、これにより発熱抵抗
体は破断するが、耐摩耗保護膜は温度上昇により一層導
電性を帯びるため、あたかも耐摩耗保護膜が発熱抵抗体
であるかのように振舞い、紙が加熱されすぎ発煙する
(燃える)現象(以降発煙現象と呼ぶ)が起きる。
As described in the first embodiment, the use of the SiBN film for the upper layer 6 can improve the electrostatic resistance.
If the film and the heat-generating resistor layer 2 and the conductor layer 3 are brought into direct contact with each other, the adhesiveness is deteriorated, and if heated, the deterioration may be accelerated. Therefore, the wear-resistant protective film having only one SiBN film has insufficient reliability. In addition, if the abrasion-resistant protective film is too conductive, if the drive IC connected to the thermal head latches up, a drive voltage is always applied to the heating resistor of the thermal head in a DC manner. This causes the heating resistor to break, but the wear-resistant protective film becomes more conductive as the temperature rises, so it behaves as if the wear-resistant protective film is a heating resistor, and the paper is overheated and emits smoke. A (burning) phenomenon (hereinafter referred to as a smoke phenomenon) occurs.

以上のことを防ぐため、発熱抵抗体層2、導体層3と
SiBN膜との間に密着性が高く導電性の低い(抵抗率の高
い)中間層を設ける必要がある。SiON膜は抵抗率が1013
〜1014Ω・mと大きく、また、高耐熱性を有するため中
間層として好ましい。従って下層5をSiON膜とし上層6
をSiBN膜とした二層構成の耐摩耗保護膜7とすることで
上層SiBN膜による導電性の付与、下層SiON膜による密着
性の強化、発煙現象の防止を同時に達成することがで
き、極めて高い信頼性を確保できる。但しこれらの性質
を得るために二層構成の保護膜の構成上で必要なこと
は、上層SiBN層の膜厚をできるだけ厚くすることと下層
SiN膜の膜厚をできるだけ薄くすることが挙げられる。
特に導電性の観点から絶縁体であるSiON膜厚は多くとも
1μm以下におさえる必要がある。
In order to prevent the above, the heating resistor layer 2, the conductor layer 3
It is necessary to provide an intermediate layer having high adhesion and low conductivity (high resistivity) between the SiBN film. SiON film has a resistivity of 10 13
1010 14 Ω · m, which is high and has high heat resistance, and is therefore preferred as an intermediate layer. Therefore, the lower layer 5 is made of a SiON film and the upper layer 6
Is a two-layered abrasion-resistant protective film 7 made of SiBN film, whereby it is possible to simultaneously provide conductivity by the upper SiBN film, enhance adhesion by the lower SiON film, and prevent smoke generation, which is extremely high. Reliability can be ensured. However, in order to obtain these properties, what is necessary in the configuration of the two-layered protective film is to make the thickness of the upper SiBN layer as thick as possible
One example is to reduce the thickness of the SiN film as much as possible.
In particular, from the viewpoint of conductivity, the thickness of the SiON insulator must be at most 1 μm or less.

ついで本実施例の二層構成の保護膜をサーマルヘッド
の耐摩耗保護膜として用い、パルス幅3.6msec.ライン周
期10msec./line、印加電力0.3w/dotで転写紙(PET)を
用いてサーマルヘッドと転写紙を長距離摺動させた。こ
の場合上層SiBN層は4μm、下層SiON層は1μm厚形成
する。また上層SiBN層は第2図に示す種々の値の条件下
で作成したものを用い、比較のためSiON一層膜(膜厚5
μm)についても同様のことを行った。
Then, using the two-layered protective film of this embodiment as a wear-resistant protective film for the thermal head, thermal transfer was performed using transfer paper (PET) with a pulse width of 3.6 msec., A line cycle of 10 msec./line, and an applied power of 0.3 w / dot. The head and the transfer paper were slid for a long distance. In this case, the upper SiBN layer is 4 μm thick and the lower SiON layer is 1 μm thick. The upper SiBN layer was prepared under the conditions of various values shown in FIG.
μm).

これにより、SiON一層膜すなわち1013Ω・m程度の抵
抗率のものでは、静電気による発熱抵抗体ドットの損傷
による白抜けが著しく生じたのに対し、第2図に示すよ
うにB2H6流量を増加させるにつれ、すなわち、導電性が
付与されるにつれ静電破壊が減り、109〜1010Ω・m以
下の抵抗率になると静電破壊は全く生じなくなった。
As a result, in the case of a single-layer SiON film, that is, with a resistivity of about 10 13 Ω · m, white spots due to damage of the heating resistor dots due to static electricity were remarkably generated, whereas B 2 H 6 as shown in FIG. As the flow rate was increased, that is, as the conductivity was increased, the electrostatic breakdown was reduced. When the resistivity became 10 9 to 10 10 Ω · m or less, the electrostatic breakdown did not occur at all.

また、SiBN一層構成の耐摩耗保護膜と本実施例の二層
構成の耐摩耗保護膜に対して、高温高湿下での腐食試験
を行ったところ、SiBN一層膜では、発熱抵抗体層、導体
層部分に一部腐食が生じ、かつSiBN膜と導体層の界面に
おいて剥離が生じたのに対して、二層構成の耐摩耗保護
膜7については全く腐食は生じなかった。
Further, a corrosion test was performed on the wear-resistant protective film having a single-layer structure of SiBN and the wear-resistant protective film having a two-layer structure of the present embodiment under high temperature and high humidity. Corrosion occurred partially in the conductor layer portion, and peeling occurred at the interface between the SiBN film and the conductor layer, whereas no corrosion occurred in the two-layer wear-resistant protective film 7.

さらに、SiON一層構成、SiBN一層構成、この二層構成
を耐摩耗保護膜としたサーマルヘッドについて、感熱紙
を用い24Vの直流電圧を連続印加した場合、SiBN一層構
成の耐摩耗保護膜では、発煙現象が生じたのに対して、
SiON一層構成の耐摩耗保護膜、この二層構成の耐摩耗保
護膜については、発煙現象はみられず、安全性の面でも
この二層構成は優れているといえる。
Furthermore, for a thermal head with a SiON single-layer structure, a SiBN single-layer structure, and a two-layer structure as a wear-resistant protective film, when a 24V DC voltage is continuously applied using thermal paper, the SiBN single-layer wear-resistant protective film produces smoke. While the phenomenon occurred,
Regarding the wear-resistant protective film having a single-layer SiON structure and the wear-resistant protective film having the two-layer structure, no smoke phenomenon was observed, and it can be said that this two-layer structure is excellent in terms of safety.

実施例3 本実施例では本発明の三層構成の耐摩耗保護膜とし
て、下層5の珪素(Si)、窒素(N)を主成分とするSi
N層の原料ガスとして、SiH4,N2を用い、中間層8の珪素
(Si)、酸素(O)、窒素(N)を主成分とするSiON層
の原料ガスとして、SiH4,N2,N2Oを用い、上層6の珪素
(Si)、窒素(N)、硼素(B)を主成分としてなるSi
BN層の原料ガスとして、SiH4,N2,B2H6を用いプラズマCV
D法により成膜した場合について述べる。成膜条件は上
述した通りで、原料ガスを切り換えることにより順次形
成した。
Embodiment 3 In this embodiment, as the wear-resistant protective film having a three-layer structure of the present invention, the lower layer 5 composed of silicon (Si) and nitrogen (N) as main components is used.
As a source gas for N layers, as SiH 4, using N 2, silicon intermediate layer 8 (Si), oxygen (O), in the raw material gas of the SiON layer mainly composed of nitrogen (N), SiH 4, N 2 , N 2 O, and silicon (Si) containing silicon (Si), nitrogen (N), and boron (B) as main components of the upper layer 6.
Plasma CV using SiH 4 , N 2 , B 2 H 6 as source gas for BN layer
The case where the film is formed by the method D will be described. The film formation conditions were as described above, and the film was formed sequentially by switching the source gas.

第1図(b)に本発明の第3の実施例を示す。第1図
(b)において1はアルミナの上にガラスグレイズ層を
設けたグレイズドアルミナ基板からなる絶縁性基板であ
り、その上の発熱抵抗体層2、導体層(電極)3を形成
し、所望のパターンを形成した後にプラズマCVD法によ
り珪素、窒素を主成分とする下層5(SiN層)と、珪
素、酸素、窒素を主成分とする中間層8(SiON層)と珪
素、窒素、硼素を主成分とする上層6(SiBN層)の三層
構成からなる耐摩耗保護膜9を形成したものである。
FIG. 1 (b) shows a third embodiment of the present invention. In FIG. 1 (b), reference numeral 1 denotes an insulating substrate made of a glazed alumina substrate having a glass glaze layer provided on alumina, on which a heating resistor layer 2 and a conductor layer (electrode) 3 are formed. After a desired pattern is formed, a lower layer 5 (SiN layer) mainly containing silicon and nitrogen, an intermediate layer 8 (SiON layer) mainly containing silicon, oxygen and nitrogen, and silicon, nitrogen and boron are formed by a plasma CVD method. A wear-resistant protective film 9 having a three-layer structure of an upper layer 6 (SiBN layer) whose main component is.

実施例1で述べたように発熱抵抗体層2、導体層3に
対する密着性の上げるため下層5(SiN層)を設ける必
要がある。また、実施例2で述べたように発煙性を防止
する観点から、SiN膜よりも抵抗率の高い(より絶縁性
の大きい)SiON膜を用いる方がよく、その場合、SiN膜
の方が若干、下地(発熱抵抗体層2、導体層3)との密
着性がよいので下層SiN膜の上に中間層としてSiON膜を
設ける方が効果が大きい。
As described in the first embodiment, it is necessary to provide the lower layer 5 (SiN layer) in order to increase the adhesion to the heating resistor layer 2 and the conductor layer 3. Further, as described in Example 2, from the viewpoint of preventing smoke emission, it is better to use a SiON film having a higher resistivity (more insulating property) than a SiN film, in which case the SiN film is slightly more likely to be used. Since the adhesion to the underlying layers (heating resistor layer 2 and conductor layer 3) is good, it is more effective to provide a SiON film as an intermediate layer on the lower SiN film.

従って下層5をSiN膜とし中間層8をSiON膜とし上層
6をSiBN膜とした三層構成の耐摩耗保護膜9とすること
で上層SiBN膜による導電性の付与、中間層SiON膜による
発煙性の防止、下層SiN膜による密着性の強化を同時に
達成することができ、極めて高い信頼性、安全性を確保
できる。
Therefore, the lower layer 5 is made of a SiN film, the intermediate layer 8 is made of a SiON film, and the upper layer 6 is made of a SiBN film. Prevention and enhancement of adhesion by the lower SiN film can be achieved at the same time, and extremely high reliability and safety can be secured.

但しこれらの性質を得るために三層構成の保護膜の構
成上で必要なことは上層SiBN層の膜厚をできるだけ厚く
することと中間層SiON層、下層SiN膜の膜厚をできるだ
け薄くすることが挙げられる。特に導電性の観点から絶
縁体であるSiN層とSiON層の膜厚は両方合計して多くと
も1μm以下におさえる必要がある。
However, in order to obtain these properties, it is necessary to make the thickness of the upper SiBN layer as thick as possible and to make the thickness of the intermediate SiON layer and the lower SiN film as thin as possible in the structure of the three-layered protective film. Is mentioned. In particular, from the viewpoint of conductivity, the total thickness of both the SiN layer and the SiON layer, which are insulators, must be at most 1 μm or less.

ついで本実施例3の三層構成の膜を耐摩耗保護膜とし
て持つサーマルヘッドを用い、パルス幅3.6msec.ライン
周期10msec./line、印加電力0.3w/dotで転写紙(PET)
を用いてサーマルヘッドと転写紙を長距離摺動させた。
この場合上層SiBN層は4μm、中間層SiON層は0.5μ
m、下層SiN層は0.5μm厚形成する。また上層SiBN層は
第2図に示す種々の値の条件下で作成したものを用い
た。
Then, using a thermal head having the three-layered film of Example 3 as a wear-resistant protective film, a transfer paper (PET) with a pulse width of 3.6 msec., A line cycle of 10 msec./line, and an applied power of 0.3 w / dot.
The thermal head and the transfer paper were slid over a long distance by using.
In this case, the upper SiBN layer is 4 μm, and the intermediate SiON layer is 0.5 μm.
m, the lower SiN layer is 0.5 μm thick. The upper SiBN layer used was formed under the conditions of various values shown in FIG.

SiN一層膜(1012Ω・m程度の抵抗率)とSiON一層膜
(1013Ω・m程度の抵抗率)では、静電気による発熱抵
抗体ドットの損傷による白抜け(特にSiON一層膜では多
数)が生じたのに対し、本実施例のサーマルヘッドは上
層6(SiBN層)作成時に第2図に示すようにB2H6流量を
増加させるにつれ、すなわち、導電性が付与されるにつ
れ静電破壊が減り、109〜1010Ω・m以下の抵抗率にな
ると静電破壊は全く生じなくなった。
In the single-layer SiN film (resistivity of about 10 12 Ω · m) and single-layer SiON film (resistivity of about 10 13 Ω · m), white spots due to damage of the heating resistor dots due to static electricity (especially many in the single-layer SiON film) On the other hand, the thermal head of the present embodiment increases the flow rate of B 2 H 6 when forming the upper layer 6 (SiBN layer) as shown in FIG. When the breakdown was reduced and the resistivity became 10 9 to 10 10 Ω · m or less, no electrostatic breakdown occurred at all.

SiBN一層膜と本実施例3の三層構成の耐摩耗保護膜に
対して、高温高湿下での腐食試験を行ったところ、SiBN
一層膜では、発熱抵抗体層2、導体層3部分に一部腐食
が生じ、かつSiBN膜と導体層の界面において剥離が生じ
たのに対して、この三層構成の耐摩耗保護膜については
全く腐食、剥離は生じなかった。
A corrosion test was performed on the single-layer SiBN film and the three-layer wear-resistant protective film of Example 3 under a high temperature and high humidity.
In the single-layer film, the heating resistor layer 2 and the conductor layer 3 were partially corroded and peeled off at the interface between the SiBN film and the conductor layer. No corrosion or peeling occurred.

上記の実施例では、原料ガスとしてSiH4,N2,B2H6を用
いたが、SiH4の変わりにSi2H6を用いれば、Si2H6→SiH2
+SiH4の反応が起こり成膜速度を上げることができる。
この場合他のN2,B2H6の流量も多くし膜の組成を一定に
する必要がある。また、BF3を用いればH+F→HF↑の
反応により膜中の水素(H)が減り耐熱性を向上し、さ
らに硬度も大きくなる。
In the above embodiment, SiH 4 , N 2 , and B 2 H 6 were used as source gases. However, if Si 2 H 6 is used instead of SiH 4 , Si 2 H 6 → SiH 2
+ SiH 4 reaction occurs, and the film formation rate can be increased.
In this case, it is necessary to increase the flow rates of other N 2 and B 2 H 6 and to keep the composition of the film constant. When BF 3 is used, hydrogen (H) in the film is reduced by the reaction of H + F → HF ↑, heat resistance is improved, and hardness is further increased.

なお、下層を形成してから上層を形成する際、あるい
は下層を形成してから中間層を形成する際、あるいは中
間層を形成してから上層を形成する際、その組成を急激
に変化させると層間の密着が劣化する。特に、上層の膜
厚を厚くする場合影響が大きい。しかし本実施例ではSi
BN膜の原料ガスはSiN膜の原料ガスにB2H6またはBF3を加
えたもので、SiON膜の原料ガスはSiN膜の原料ガスにN2O
を加えたものなので、原料ガスの切り替えを連続的に流
量を変化させたり、変化分を小さく取って断続的に変化
させて行うと組成が徐々に変わって行き、密着性を向上
させられることは云うまでもない。
When the lower layer is formed and then the upper layer is formed, or when the lower layer is formed and then the intermediate layer is formed, or when the intermediate layer is formed and then the upper layer is formed, the composition is rapidly changed. The adhesion between layers deteriorates. In particular, the effect is large when the thickness of the upper layer is increased. However, in this embodiment,
The source gas for the BN film is obtained by adding B 2 H 6 or BF 3 to the source gas for the SiN film, and the source gas for the SiON film is N 2 O as the source gas for the SiN film.
Therefore, if the source gas is switched continuously by changing the flow rate or by changing the amount of change to a small amount and changing it intermittently, the composition gradually changes, and it is possible to improve the adhesion. Needless to say.

また、本実施例では成膜時の基板温度を350℃とした
が、この理由は以下の通りである。サーマルヘッドが発
熱した場合、膜に珪素(Si)と結合した水素が含まれて
いるとSi−H結合が小さいため熱エネルギーによりその
結合が切れ水素が放出され膜のクラック、気泡の原因と
なる。そのため、基板をあらかじめ高い温度(350℃程
度)に保っておくと、成膜段階で膜から水素が放出され
膜中に水素が取り込まれにくくなる。また、膜中の水素
が少なくなると膜の密度が大きくなり、それにつれ硬度
が大きくなる。このように、耐熱性、硬度の向上を図る
ためには基板温度を高くする必要がある。さらに抵抗
体、電極等の下地との付着力の向上も図れる。
In this embodiment, the substrate temperature during film formation was set to 350 ° C., for the following reason. When the thermal head generates heat, if the film contains hydrogen bonded to silicon (Si), the bond is broken by thermal energy because the Si-H bond is small, and the hydrogen is released, causing cracks and bubbles in the film. . Therefore, if the substrate is kept at a high temperature (about 350 ° C.) in advance, hydrogen is released from the film at the film formation stage, and it is difficult for hydrogen to be taken into the film. Further, when the amount of hydrogen in the film decreases, the density of the film increases, and accordingly, the hardness increases. As described above, in order to improve heat resistance and hardness, it is necessary to increase the substrate temperature. Further, the adhesion to the base such as the resistor and the electrode can be improved.

以上述べたように本実施例によれば、熱転写記録方式
用サーマルヘッド耐摩耗保護膜をプラズマCVD法により
形成し、その耐静電気性を高め性能を向上することがで
きる。
As described above, according to the present embodiment, the thermal head abrasion protection film for the thermal transfer recording system can be formed by the plasma CVD method, and the electrostatic resistance can be increased and the performance can be improved.

発明の効果 以上説明したように、本発明によれば、熱転写シート
とサーマルヘッドとの間に生じる静電気による絶縁破壊
を防止すると共に、耐熱性も改善することができる。さ
らに、発煙現象を防止し、下地層(発熱抵抗体層、導体
層等)との密着性を向上し、発熱抵抗体層、導体層の腐
食を防止することが可能である。
Effects of the Invention As described above, according to the present invention, dielectric breakdown due to static electricity generated between a thermal transfer sheet and a thermal head can be prevented, and heat resistance can be improved. Furthermore, it is possible to prevent the smoke generation phenomenon, improve the adhesion to the underlying layer (heating resistor layer, conductor layer, etc.), and prevent corrosion of the heating resistor layer and conductor layer.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は本発明の二層構成の耐摩耗保護膜を有す
る薄膜型サーマルヘッドの断面図、第1図(b)は本発
明の三層構成の耐摩耗保護膜を有する薄膜型サーマルヘ
ッドの断面図、第2図はSiBN膜のB2H6/SiH4流量比に対
する依存性を示す特性図、第3図はSiBN膜のビッカース
硬度のB2H6/SiH4流量比に対する依存性を示す特性図、
第4図は従来の薄膜型サーマルヘッドの断面図である。 1……絶縁性基板、2……発熱抵抗体層、3……導体層
(電極)、5……下層、6……上層、7……耐摩耗保護
膜、8……中間層、9……耐摩耗保護膜。
FIG. 1 (a) is a cross-sectional view of a thin-film thermal head having a two-layer wear-resistant protective film of the present invention, and FIG. 1 (b) is a thin-film thermal head having a three-layer wear-resistant protective film of the present invention. sectional view of a thermal head, for the second figure characteristic diagram showing the dependency on B 2 H 6 / SiH 4 flow ratio of SiBN film, FIG. 3 is B 2 H 6 / SiH 4 flow ratio of Vickers hardness of the SiBN layer Characteristic diagram showing dependency,
FIG. 4 is a sectional view of a conventional thin film thermal head. DESCRIPTION OF SYMBOLS 1 ... Insulating board, 2 ... Heating resistor layer, 3 ... Conductor layer (electrode), 5 ... Lower layer, 6 ... Upper layer, 7 ... Abrasion-resistant protective film, 8 ... Intermediate layer, 9 ... ... Abrasion-resistant protective film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平尾 孝 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 北川 雅俊 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平1−148569(JP,A) 特開 昭61−291154(JP,A) 特開 昭63−157311(JP,A) 特開 昭62−156822(JP,A) 特開 昭61−44401(JP,A) 特開 昭61−267328(JP,A) 特開 昭63−265423(JP,A) 特開 昭63−299322(JP,A) 特開 昭60−263121(JP,A) 実開 平1−67047(JP,U) (58)調査した分野(Int.Cl.6,DB名) B41J 2/335──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Takashi Hirao 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-1-148569 (JP, A) JP-A-61-291154 (JP, A) JP-A-63-157311 (JP, A) JP-A-62-156822 (JP, A) JP-A-61-44401 (JP, A) JP-A-61-267328 (JP, A) JP-A-63-265423 (JP, A) JP-A-63-299322 (JP, A) JP-A-60-263121 (JP, A) Japanese Utility Model 1-67047 (JP, U) (58) Fields surveyed (Int. Cl. 6 , DB name) B41J 2/335

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性基板上に多数の発熱抵抗体列を設け
る工程と、この発熱抵抗体列に対して上層の耐摩耗保護
膜の抵抗率が109〜1010Ω・mになるように原料ガスと
してSiH4またはSi2H6と、N2と、B2H6またはBF3を用いプ
ラズマCVD法により形成する工程と、それに先立って下
層の耐摩耗保護膜を原料ガスとしてSiH4またはSi2H
6と、N2を用いプラズマCVD法により形成する工程とを有
し、前記上層の耐摩耗保護膜の抵抗率に比して前記下層
の耐摩耗保護膜の抵抗率が102倍以上大きくなるように
前記原料ガスの流量比の調整することを特徴とする薄膜
型サーマルヘッドの製造方法。
A step of providing a large number of heating resistor rows on an insulating substrate; and adjusting the resistivity of the upper wear-resistant protective film to the heating resistor row to be 10 9 to 10 10 Ω · m. in a SiH 4 or Si 2 H 6 as a source gas, and N 2, SiH 4 and forming a B 2 H 6 or a plasma CVD method using a BF 3, the lower wear protection film prior to it as a raw material gas Or Si 2 H
6, and a step of forming by plasma CVD method using N 2, the resistivity of the lower layer of the wear protection layer increases 10 2 times or more than the resistivity of the upper layer of wear-resistant protective film The method of manufacturing a thin-film thermal head, wherein the flow rate ratio of the source gas is adjusted as described above.
【請求項2】絶縁性基板上に多数の発熱抵抗体列を設け
る工程と、この発熱抵抗体列に対して上層の耐摩耗保護
膜の抵抗率が109〜1010Ω・mになるように原料ガスと
してSiH4またはSi2H6と、N2と、B2H6またはBF3を用いプ
ラズマCVD法により形成する工程と、それに先立って下
層の耐摩耗保護膜を原料ガスとしてSiH4またはSi2H
6と、N2Oと、N2を用いプラズマCVD法により形成する工
程とを有し、前記上層の耐摩耗保護膜の抵抗率に比して
前記下層の耐摩耗保護膜の抵抗率が103倍以上大きくな
るように前記原料ガスの流量比の調整することを特徴と
する薄膜型サーマルヘッドの製造方法。
2. A process of providing a plurality of heating resistor arrays on an insulating substrate, such that the resistivity of an upper wear-resistant protective film for the heating resistor arrays is 10 9 to 10 10 Ω · m. in a SiH 4 or Si 2 H 6 as a source gas, and N 2, SiH 4 and forming a B 2 H 6 or a plasma CVD method using a BF 3, the lower wear protection film prior to it as a raw material gas Or Si 2 H
6, and N 2 O, and a step of forming by plasma CVD method using N 2, the resistivity of the lower layer of the wear protection layer than the resistivity of the upper layer of wear-resistant protective film 10 A method for manufacturing a thin-film thermal head, wherein the flow rate ratio of the source gas is adjusted to be three times or more.
【請求項3】絶縁性基板上に多数の発熱抵抗体列を設け
る工程と、この発熱抵抗体列に対して上層の耐摩耗保護
膜の抵抗率が109〜1010Ω・mになるように原料ガスと
してSiH4またはSi2H6と、N2と、B2H6またはBF3を用いプ
ラズマCVD法により形成する工程と、それに先立って下
層の耐摩耗保護膜を原料ガスとしてSiH4またはSi2H
6と、N2を用いプラズマCVD法により形成する工程と、そ
の上に中間層の耐摩耗保護膜を原料ガスとしてSiH4また
はSi2H6と、N2Oと、N2を用いプラズマCVD法により形成
する工程とを有し、前記上層の耐摩耗保護膜の抵抗率に
比して前記中間層の耐摩耗保護膜の抵抗率、前記下層の
耐摩耗保護膜の抵抗率がそれぞれ103倍以上、102倍以上
大きくなるように前記原料ガスの流量比を調整すること
を特徴とする薄膜型サーマルヘッドの製造方法。
3. A step of providing a large number of heating resistor rows on an insulating substrate, such that the resistivity of the upper wear-resistant protective film with respect to the heating resistor rows is 10 9 to 10 10 Ω · m. in a SiH 4 or Si 2 H 6 as a source gas, and N 2, SiH 4 and forming a B 2 H 6 or a plasma CVD method using a BF 3, the lower wear protection film prior to it as a raw material gas Or Si 2 H
6 and a step of forming by a plasma CVD method using N 2, and a plasma CVD method using SiH 4 or Si 2 H 6 , N 2 O and N 2 using a wear-resistant protective film of an intermediate layer as a source gas thereon. Forming a resist by a method, wherein the resistivity of the wear-resistant protective film of the intermediate layer and the resistivity of the wear-resistant protective film of the lower layer are each 10 3 compared to the resistivity of the wear-resistant protective film of the upper layer. more than doubled, the method of manufacturing a thin film type thermal head and adjusting the flow rate of the material gas so as to increase 10 2 times or more.
JP33331889A 1989-12-22 1989-12-22 Manufacturing method of thin film type thermal head Expired - Fee Related JP2808765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33331889A JP2808765B2 (en) 1989-12-22 1989-12-22 Manufacturing method of thin film type thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33331889A JP2808765B2 (en) 1989-12-22 1989-12-22 Manufacturing method of thin film type thermal head

Publications (2)

Publication Number Publication Date
JPH03193363A JPH03193363A (en) 1991-08-23
JP2808765B2 true JP2808765B2 (en) 1998-10-08

Family

ID=18264770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33331889A Expired - Fee Related JP2808765B2 (en) 1989-12-22 1989-12-22 Manufacturing method of thin film type thermal head

Country Status (1)

Country Link
JP (1) JP2808765B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137284A (en) * 2007-11-13 2009-06-25 Tdk Corp Thermal head, manufacturing method for thermal head, and printer
CN104619504B (en) 2012-09-28 2017-05-03 京瓷株式会社 Thermal head and thermal printer provided with same

Also Published As

Publication number Publication date
JPH03193363A (en) 1991-08-23

Similar Documents

Publication Publication Date Title
JPH07132628A (en) Thermal head and production thereof
JP2808765B2 (en) Manufacturing method of thin film type thermal head
US4708915A (en) Thermal head for thermal recording
US4845339A (en) Thermal head containing an insulating, heat conductive layer
JP2808769B2 (en) Thermal head and method of manufacturing the same
JPH02137944A (en) Thin film type thermal head and manufacture thereof
JPH03155955A (en) Thin film type thermal head and manufacture thereof
JP2676787B2 (en) Thin film thermal head and manufacturing method thereof
JPS63141764A (en) Thermal recording head
JP3107911B2 (en) Thermal print head
JP2676786B2 (en) Thin film thermal head and manufacturing method thereof
JPH0449057A (en) Thin film type thermal head and manufacture thereof
JPH041063A (en) Thermal head and manufacture method therefor
JPH0544349B2 (en)
JPH03189169A (en) Thin film type thermal head and its manufacture
JP3451026B2 (en) Thermal head
JPH03240568A (en) Production of thermal head
JPH0641212B2 (en) Abrasion resistant protective film
JPS63145052A (en) Thermal recording head
JPH03258560A (en) Thin membrane type thermal head and manufacture thereof
JPH0312480B2 (en)
KR920005317B1 (en) Heat-resistant insulating substrate thermal head and thermographic apparatus
JPS6277476A (en) Protective film and its production
JP2000246929A (en) Manufacture of thermal head
JP2639622B2 (en) Thermal head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees