JP2676787B2 - Thin film thermal head and manufacturing method thereof - Google Patents

Thin film thermal head and manufacturing method thereof

Info

Publication number
JP2676787B2
JP2676787B2 JP14211488A JP14211488A JP2676787B2 JP 2676787 B2 JP2676787 B2 JP 2676787B2 JP 14211488 A JP14211488 A JP 14211488A JP 14211488 A JP14211488 A JP 14211488A JP 2676787 B2 JP2676787 B2 JP 2676787B2
Authority
JP
Japan
Prior art keywords
film
flow rate
sih
thermal head
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14211488A
Other languages
Japanese (ja)
Other versions
JPH021342A (en
Inventor
哲広 是近
敬三郎 倉増
誠一郎 坂口
孝 平尾
雅俊 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14211488A priority Critical patent/JP2676787B2/en
Publication of JPH021342A publication Critical patent/JPH021342A/en
Application granted granted Critical
Publication of JP2676787B2 publication Critical patent/JP2676787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、感熱記録に用いる薄膜型サーマルヘッド
と、その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film thermal head used for thermal recording and a method for manufacturing the same.

従来の技術 一般に薄膜型サーマルヘッドは、絶縁性基板上に、多
数の発熱抵抗体列と、これに電力を供給する導体層を設
け、これらの上に、耐摩耗保護膜を形成した構成を取
る。
2. Description of the Related Art Generally, a thin-film thermal head has a structure in which a large number of heating resistor rows and a conductor layer for supplying electric power to the heating resistor rows are provided on an insulating substrate, and an abrasion-resistant protective film is formed on these. .

ところで、この構成において、耐摩耗保護膜に要求さ
れる性質としては、次の事柄が挙げられる。
By the way, in this structure, the following matters can be mentioned as the properties required for the wear-resistant protective film.

(1) 耐摩耗性が良好なこと。(機械的な摩耗(硬
度、摩擦係数が関与),電気化学的な摩耗(異常摩耗
で、紙と耐摩耗保護膜の反応が関与)のいずれも小さい
こと) (2) 耐熱性が良好であること(加熱時、ボイドの発
生,クラックの発生がないこと) (3) 発熱抵抗体,導体層等、耐摩耗保護膜の下に形
成された膜の電界腐食が生じないこと。(紙等の吸湿下
での駆動時に生じ、段差被覆性が良好なこと、ピンホー
ルフリーであること、緻密で吸湿性がないこと) (4) 発熱抵抗体,導体層,基板等の下地との密着性
が良好なこと。
(1) Good wear resistance. (Mechanical wear (related to hardness and friction coefficient) and electrochemical wear (abnormal wear due to reaction between paper and wear resistant protective film) are both small) (2) Good heat resistance (No voids or cracks are generated during heating.) (3) Electric corrosion of the heating resistor, conductor layer, etc. formed under the wear-resistant protective film should not occur. (It is generated when driving under moisture absorption of paper etc., it has good step coverage, it is pinhole free, and it is dense and has no hygroscopicity.) (4) As a base for heating resistors, conductor layers, substrates, etc. Adhesion of is good.

(5) 耐静電気性が良好なこと。(特に乾燥下、熱転
写方式の様に、転写紙であるPET(絶縁物)と、耐摩耗
保護膜の摺動時に生じる静電気により静電破壊が生じ
る) これらの事柄が考えられる。
(5) Static electricity resistance is good. (Especially under dry conditions, like the thermal transfer system, electrostatic damage occurs due to static electricity generated when the abrasion resistant protective film and the PET (insulator) that is the transfer paper slide.) These things are conceivable.

上述した事柄に対して、特に(3)は、信頼性の面
で、重要な問題であり、こうした問題に対しては、プラ
ズマCVD(ケミカル バーパ デェポジション)法が効
果がある。何故なら、プラズマCVD法は、基本的に原料
ガスの分解と、表面反応の促進により、膜を堆積させる
方法であるため、成膜に要するエネルギー(電力)が小
さくて済み、異常放電に依る粒状突起,ピンホール等の
欠陥が生じにくく、また、緻密かつ段差被覆性に優れて
いるため、下層膜の電界腐食が生じにくく、信頼性が格
段に改善される。ところで、このプラズマCVDを用いた
保護膜としては、通常、半導体IC等で、SiH4,N2ガス,Si
H4,NH3ガス,SiH4,N2,NH3ガス等を原料ガスとして用いた
SiN(シリコンナイトライド)膜が、一般的に用いられ
ている。それは、SiN膜のアルカリイオン阻止能が大き
く、また吸湿性が低いためである。一方、SiN膜の応力
は、極めて大きく、通常厚くつけたり、熱が加わると、
応力割れを引き起こす。サーマルヘッドの耐摩耗保護膜
は、摩耗特性および、信頼性の観点から、通常5μm程
度の厚さが必要であるため、クラックが生じやすく、使
用に供せない。このため、例えば、特開昭62−145735号
公報にある様に、シリコンオキシナイトライド膜(以降
SiON膜と表記)、しかも原料ガスとして、SiH4,N2O,N2
を用い、プラズマCVD法により成膜した膜は、有用であ
る。SiON膜の原料ガスとしては、この他に、SiH4,NH3,N
2OやSiH4,NH3,N2,N2O等が報告されており、これらは、
いずれも成膜の低電力化を主体として考えられている
が、サーマルヘッドの様に、短時間でパルス加熱を必要
とする場合、その表面温度は、最高で500℃程度まで上
昇する。この際、原料ガス中に水素含有量が多く、これ
が、膜中に、Si−H,Si−H2,O−H,N−H2等の形で、比較
的結合エネルギーの低い生成物として、多量に残ってい
る。これらの形で存在する水素は、500℃程度の加熱に
よっても比較的簡単にH2,H2O等の形で膜の外へ抜け出
る。この様に膜中水素が離脱する際、気泡やクラックの
発生を伴い、サーマルヘッドの耐摩耗保護膜の様に、長
期に渡る耐熱性が要求される用途で用いることは難し
い。この点、SiH4,N2O,N2を原料ガスとして用いた場合
には、元々の原料ガスにおける水素含有量が少ないこと
および、N2Oガスの解離エネルギーがO.845eVと小さく、
N2O→N2+Oの分解で生じるOによって水素が引き抜か
れるため、膜中に存在する水素が少なくなる。従って、
耐熱性が向上する。しかしながら、この原料ガス系で成
膜した場合も、Si−H,O−H,N−H等の形で水素は残り、
特に前二者の場合、つまりSi−H,O−Hの形で残る水素
は、耐熱性劣化の原因であり、N−Hは、高耐熱である
ため、高耐熱化の観点ではSi−H,O−Hの各結合を減ら
し、N−H結合を増加せしめることが重要である。この
ためには、入射電力を増加させることが必要であるが、
これは、特に大型の生産装置等の場合、非常に高電力化
し、異常放電の発生を助長するため、必ずしも好ましい
方向ではなく、従って、依然として、Si−H,O−H等の
耐熱性劣化をもたらす結合を低減化することが難しく、
従って、残留水素量を低減するためには、N2Oガスの分
解で生じた酸素により、水素を引き抜くことで、水素量
を低減していたが、この様に、N2Oを増加させると、必
然的に、Si−O結合も増し、硬度の低下を招く。従っ
て、これまでサーマルヘッドの耐摩耗保護膜に要求され
る高硬度,高耐熱性の両者を同時に満足することが難し
かった。
Regarding the above-mentioned matters, particularly (3) is an important problem in terms of reliability, and the plasma CVD (chemical vapor deposition) method is effective for such a problem. Because the plasma CVD method is basically a method of depositing a film by decomposing the source gas and promoting the surface reaction, the energy (electric power) required for film formation can be small, and the granularity due to abnormal discharge can be used. Defects such as protrusions and pinholes are unlikely to occur, and since the density and the step coverage are excellent, galvanic corrosion of the lower layer film is unlikely to occur, and the reliability is significantly improved. By the way, as a protective film using this plasma CVD, it is usually used in semiconductor ICs and the like, SiH 4 , N 2 gas, Si
H 4, NH 3 gas, SiH 4, N 2, NH 3 gas or the like used as a raw material gas
A SiN (silicon nitride) film is commonly used. This is because the SiN film has a large ability to block alkali ions and has a low hygroscopicity. On the other hand, the stress of the SiN film is extremely large, and when it is usually thickened or heat is applied,
Causes stress cracking. The wear-resistant protective film of the thermal head usually needs to have a thickness of about 5 μm from the viewpoint of wear characteristics and reliability, and therefore cracks easily occur and cannot be used. Therefore, for example, as disclosed in JP-A-62-145735, a silicon oxynitride film (hereinafter
SiON film), and SiH 4 , N 2 O, N 2 as source gas
A film formed by a plasma CVD method using is useful. In addition to these, SiH 4 , NH 3 and N are used as the source gas for the SiON film.
2 O and SiH 4 , NH 3 , N 2 , N 2 O, etc. have been reported.
Both of them are mainly considered to reduce the power consumption of film formation, but when pulse heating is required in a short time like a thermal head, the surface temperature rises up to about 500 ° C. In this case, many hydrogen content in the feed gas, which, in the film, Si-H, Si-H 2, O-H, in the form of such N-H 2, as a low product relatively binding energy , A lot remains. Hydrogen existing in these forms can be relatively easily released to the outside of the film in the form of H 2 , H 2 O, etc. even by heating at about 500 ° C. In this way, when hydrogen in the film is released, bubbles and cracks are generated, and it is difficult to use it in applications requiring heat resistance for a long period of time, such as a wear-resistant protective film of a thermal head. In this respect, when SiH 4 , N 2 O, N 2 is used as a source gas, the hydrogen content in the original source gas is small, and the dissociation energy of N 2 O gas is small as O.845eV,
O is generated by the decomposition of N 2 O → N 2 + O, and hydrogen is extracted, so that the amount of hydrogen existing in the film is reduced. Therefore,
Heat resistance is improved. However, even when a film is formed with this source gas system, hydrogen remains in the form of Si-H, OH, N-H, etc.
Particularly in the former two cases, that is, hydrogen remaining in the form of Si-H, OH is a cause of heat resistance deterioration, and NH is high heat resistance, so from the viewpoint of high heat resistance, Si-H It is important to reduce each O, H bond and increase N-H bond. For this, it is necessary to increase the incident power,
This is not always a preferable direction, especially in the case of a large-scale production apparatus, because the electric power becomes extremely high and the occurrence of abnormal discharge is promoted, and therefore, the heat resistance deterioration of Si-H, O-H, etc. still remains. Difficult to reduce the resulting coupling,
Therefore, in order to reduce the residual amount of hydrogen, the oxygen generated by the decomposition of N 2 O gas, by abstracting hydrogen, which had been reduced hydrogen content, in this way, an increase in the N 2 O Inevitably, the Si—O bond also increases, leading to a decrease in hardness. Therefore, it has been difficult to satisfy both the high hardness and the high heat resistance required for the wear resistant protective film of the thermal head at the same time.

発明が解決しようとする課題 この様に、プラズマCVD法により形成した保護膜は、
緻密で、粒状突起,ピンホール等の欠陥の低減化と、段
差被覆性に優れ、下層膜の腐食防止に対して、大きな効
果があり、信頼性が格段に向上するが、一方で、原料ガ
スをプラズマで分解して堆積させる形成方式であるた
め、ガスが未分解の形で膜中に取り込まれることがあ
る。例えば、SiH4とN2を原料ガスとして用いたプラズマ
SiN膜におけるSi−H結合等である。このSi−Hの様に
未分解のまま膜中に取り込まれた水素は、結合エネルギ
ーが比較的小さいため、加熱により水素が離脱し、その
際、膜に気泡,クラックが発生する等、耐熱性に問題を
生じる。これに対しては、SiN膜に酸素を導入したシリ
コンオキシナイトライド膜(SiON膜)が、耐クラック性
を向上させる面で有用である。このSiON膜は、通常原料
ガスとして、SiH4,N2,N2O系もしくは、SiH4,NH3,N2O系
で成膜されるが、後者は、原料ガス中に存在する水素量
が多く、膜中に水素結合を伴うので、未だ耐熱性に劣
る。これに対して、前者、即ちSiH4,N2,N2O系では、原
料ガス中の水素含有量が少ないため、膜中に存在する水
素量を低減化でき、耐熱性が向上し、サーマルヘッド用
保護膜に適していると言える。ところが、このSiH4,N2,
N2Oの原料ガスに依るプラズマSiOH膜においても、未だ
次の事柄が問題となる。それは、N2の電離電圧,解離エ
ネルギーが大きく、従って、入射電力を大きくしなけれ
ばならないことである。これは、特に、大型の生産装置
において、非常に大電力を投入しなければならないこと
になり、異常放電の発生を助長する形となって、必ずし
も好ましい方向ではなく、従って、依然として膜中に
は、Si−H結合、O−H結合等の耐熱性の劣化をもたら
す結合が存在し、これを低減化することが難しい。これ
に対して、通常の耐熱性を必要とする絶縁膜の用途にお
いては、残留水素量を低減させるためにN2Oガス流量を
増して、この分解で生じた酸素により、水素を引き抜く
ことで、水素量を低減させているが、この様にN2Oガス
流量を増加させると、必然的に、Si−O結合も増し、硬
度の低下を招く。従って、これまでサーマルヘッドの耐
摩耗保護膜に要求される高硬度化,高耐熱性の両者を同
時に満足することが難しかった。
As described above, the protective film formed by the plasma CVD method is
Dense, with reduced defects such as granular projections and pinholes, excellent step coverage, and has a great effect on preventing corrosion of the lower layer film, significantly improving reliability. Since this is a formation method of decomposing and depositing with plasma, gas may be taken into the film in an undecomposed form. For example, plasma using SiH 4 and N 2 as source gases
This is the Si—H bond in the SiN film. Since hydrogen, which has been taken into the film without being decomposed like Si-H, has a relatively small binding energy, hydrogen is released by heating, and at that time, bubbles and cracks are generated in the film, resulting in heat resistance. Cause problems. On the other hand, a silicon oxynitride film (SiON film) obtained by introducing oxygen into a SiN film is useful in improving crack resistance. This SiON film is usually formed by SiH 4 , N 2 , N 2 O-based or SiH 4 , NH 3 , N 2 O-based as a source gas, the latter is the amount of hydrogen present in the source gas. However, the heat resistance of the film is still inferior because it is accompanied by hydrogen bonds in the film. On the other hand, in the former, that is, SiH 4 , N 2 , N 2 O system, since the hydrogen content in the raw material gas is small, it is possible to reduce the amount of hydrogen present in the film, heat resistance is improved, thermal It can be said that it is suitable for a head protection film. However, this SiH 4 , N 2 ,
Even in the case of plasma SiOH film that depends on the source gas of N 2 O, the following matters still pose a problem. That is, the ionization voltage and dissociation energy of N 2 are large, so that the incident power must be increased. This means that particularly in a large-scale production apparatus, a very large amount of power must be input, which is a form that promotes the occurrence of abnormal discharge, and is not necessarily the preferred direction. , Si—H bond, O—H bond and the like that cause deterioration of heat resistance, and it is difficult to reduce the bond. On the other hand, in the use of an insulating film that requires ordinary heat resistance, it is possible to increase the N 2 O gas flow rate to reduce the amount of residual hydrogen and to extract hydrogen by the oxygen generated by this decomposition. Although the hydrogen amount is reduced, increasing the N 2 O gas flow rate inevitably increases the Si—O bond, resulting in a decrease in hardness. Therefore, it has been difficult to satisfy both the high hardness and the high heat resistance required for the wear-resistant protective film of the thermal head at the same time.

本発明は、かかる点に鑑みてなされたもので、比較的
低入射電力においても、高硬度化,高耐熱化の両者を達
成できるようにすることを目的としたものである。
The present invention has been made in view of the above points, and an object thereof is to achieve both high hardness and high heat resistance even at relatively low incident power.

課題を解決するための手段 この課題を解決するために、本発明は、原料ガスとし
てSiH4,N2,N2Oを用い、少なくともこの原料ガスのN2
量とSiH4流量比N2/SiH4を10以上60以下にして、プラズ
マCVD法で特に基板温度350℃以上で形成したシリコンオ
キシナイトライド(SiON)膜を耐摩耗保護膜として用い
た薄膜型サーマルヘッドおよび、その製造方法を提供し
たものである。
Means for Solving the Problems In order to solve this problem, the present invention uses SiH 4 , N 2 , N 2 O as a raw material gas, and at least the N 2 flow rate of this raw material gas and the SiH 4 flow rate ratio N 2 / Provide a thin film thermal head using a silicon oxynitride (SiON) film formed by plasma CVD at a substrate temperature of 350 ° C. or more as a wear-resistant protective film, and a method for manufacturing the same, with SiH 4 of 10 to 60. It was done.

作用 この構成における原料ガス中のN2/SiH4流量比を所定
の範囲、即ち、10以上60以下に押えることで、次の効果
が得られる。下限値10に関しては、N2量を増加すること
で、電子とN2との衝突頻度が増し、励起中性ラジカル
(▲N ▼)密度が増加し、従って、膜中に取り込ま
れる窒素量も増し、(窒素供給律速領域)これにより、
Si−HやO−Hの水素と、N−H結合を作りやすく、ま
たSi−N結合も増し、一方、Si−HやO−Hの数が減少
するが、この効果のためには、▲N ▼励起ラジカル
の数が必要となり、ある程度以上N2流量が必要であり、
そのための限界値である。また、上限値60に関しては、
N2流量も無制限に増加していくと、N2が、元々電離電
圧、解離エネルギーが大きいため、N2の数が増えすぎる
と、単位ガス分子当りに加わるエネルギーが減り励起効
率が低下し、▲N ▼励起ラジカル数が減少して、N
−H結合が生成し難くなり、従って、Si−H,O−Hを減
少させることができなくなる限界値を与える。(エネル
ギー供給律速領域) 従って、N2/SiH4流量を10以上60以下にすることによ
り、高耐熱なN−H結合を形成するのに十分なエネルギ
ーを有する▲N ▼励起ラジカルが供給され、Si−H,
O−H等、耐熱性の劣化原因である結合に配位する水素
と、N−H結合を形成し、Si−H,O−Hが減るため、膜
が高耐熱化し、気泡,クラック等の劣化が生じない。加
えて、同時に、Si−N結合も幾分形成され、硬度の低下
を招かない。従って、膜の高耐熱化と高硬度化を同時に
実現できるため、この方法を用いて形成したSiON膜を耐
摩耗保護膜として用いることで、信頼性の高い薄膜型サ
ーマルヘッドとすることが可能となる。
Action The following effects can be obtained by keeping the N 2 / SiH 4 flow rate ratio in the source gas in this configuration within a predetermined range, that is, 10 or more and 60 or less. Nitrogen regard to the lower limit 10, by increasing the N 2 amount, increases the frequency of collision between electrons and N 2, excitation neutral radicals (▲ N 2 ▼) density is increased, therefore, to be incorporated into the film The amount also increases (nitrogen supply rate-controlling region)
It is easy to form N—H bonds with hydrogen of Si—H and O—H, and Si—N bonds increase, while the number of Si—H and O—H decreases, but for this effect, ▲ N 2 ▼ The number of excited radicals is required, N 2 flow rate is required to some extent,
This is the limit value for that. Also, regarding the upper limit value 60,
When the N 2 flow rate also increases indefinitely, N 2 originally has a large ionization voltage and dissociation energy, so if the number of N 2 is too large, the energy added per unit gas molecule decreases and the excitation efficiency decreases, ▲ N 2 ▼ The number of excited radicals decreases and N
This gives a limit value in which the -H bond is hard to form, and therefore Si-H and OH cannot be reduced. (Energy supply rate-controlling region) Therefore, by setting the N 2 / SiH 4 flow rate to 10 or more and 60 or less, ▲ N * 2 ▼ excited radicals having sufficient energy to form a highly heat-resistant N—H bond are supplied. And Si-H,
Hydrogen, which coordinates to bonds that cause deterioration of heat resistance such as O-H, forms N-H bonds and reduces Si-H and O-H, resulting in high heat resistance of the film, such as bubbles and cracks. No deterioration occurs. In addition, at the same time, some Si-N bonds are formed, and the hardness is not lowered. Therefore, high heat resistance and high hardness of the film can be realized at the same time.By using the SiON film formed by this method as a wear-resistant protective film, it is possible to obtain a highly reliable thin film thermal head. Become.

実施例 本実施例では、成膜装置として、平行平板型(容量結
合型)プラズマCVD装置を用い、電極板形状600mm×600m
m角で、電極間距離20mmとし、RF周波数13.56MHz,RF電力
800W,ガス圧力125Pa基板温度350℃,SiH4:35sccm,N2O:35
sccm(一定)として、N2流量を、35Osccm〜2100sccm(N
2/SiH4流量比10〜60)で変化させ成膜した。
Example In this example, a parallel plate type (capacitive coupling type) plasma CVD apparatus was used as a film forming apparatus, and the electrode plate shape was 600 mm × 600 m.
In m square, distance between electrodes is 20mm, RF frequency 13.56MHz, RF power
800W, Gas pressure 125Pa Substrate temperature 350 ℃, SiH 4 : 35sccm, N 2 O: 35
As sccm (constant), N 2 flow rate is 35Osccm to 2100sccm (N
The film was formed by changing the flow rate ratio of 2 / SiH 4 of 10 to 60).

第1図に、N2流量を変化させ、グロー放電を立てた際
のプラズマ発光分光スペクトルの相対発光強度を示す。
ライン1は、337nmの▲N ▼(発光性中性ラジカ
ル),ライン2は392nmの▲N ▼(イオン)の各
々、相対発光強度を示す。
FIG. 1 shows the relative emission intensity of the plasma emission spectrum when the glow discharge is raised by changing the N 2 flow rate.
Line 1 shows relative emission intensities of ▲ N * 2 ▼ (luminous neutral radicals) at 337 nm and line 2 shows ▲ N + 2 ▼ (ions) at 392 nm.

同図、ライン1より、▲N ▼は、N2流量を350scc
mから増加するのに伴い増加し、1000sccm近くまでこの
傾向を呈し、以降、2100sccmまで、徐々に、▲N
が減少する様子がわかる。
From the figure, line 1, ▲ N * 2 ▼ shows N 2 flow rate of 350scc
It increases with the increase from m, and this tendency is exhibited up to about 1000 sccm, and thereafter, gradually up to 2100 sccm, ▲ N * 2
It can be seen that is decreasing.

一方、ライン2より▲N ▼に関しては、ほぼN2
量の増加に伴い、減少傾向を示す。これは、N2流量があ
る領域までは、N2流量を増せば、電子とN2の衝突が増
し、励起ラジカル数が増加するが、(流量供給律速領
域)ある程度以上N2を流すと、励起エネルギーを与えら
れなくなってくるため、励起ラジカル数が低下すること
を意味する。(パワー供給律速領域)同図のN2流量350s
ccm,1000sccmのときの膜の赤外吸収スペクトルを第2図
に示す。同図で、ライン3がN2流量350sccm,ライン4
が、N2流量1000sccmでの各々、膜の赤外吸収スペクトル
である。
On the other hand, from line 2, ▲ N + 2 ▼ shows a decreasing tendency as the N 2 flow rate increases. This is to a region where there is N 2 flow, if Maze the N 2 flow rate increases the collision of electrons and N 2, but the number of pumping radicals increases, the flow (flow supply rate-determining regions) somewhat more N 2, This means that the number of excited radicals decreases because the excitation energy cannot be applied. (Power supply rate-controlling region) N 2 flow rate 350s in the figure
The infrared absorption spectrum of the film at ccm and 1000 sccm is shown in FIG. In the figure, line 3 is N 2 flow rate 350 sccm, line 4
Are infrared absorption spectra of the films at a N 2 flow rate of 1000 sccm, respectively.

ライン3,4から明らかな様に、N2流量を350sccmから、
1000sccmに増加することで、2150cm-1近傍のSi−H結合
および、3680cm-1近傍のO−H結合に依る吸収が減り、
3350cm-1近傍のN−H結合に依る吸収が増加した。この
2つの条件において、実際にサーマルヘッド基板上に、
SiON膜を、5μm堆積し、その耐熱性について、連続パ
ルス通電して評価した際の、破壊状態モードを、第3図
に示す。尚、パルス通電時の表面最高温度は、600〜650
℃である。
As is clear from lines 3 and 4, the N 2 flow rate from 350 sccm,
By increasing the 1000 sccm, 2150 cm -1 vicinity Si-H bonds and reduces the absorption due to O-H bond 3680Cm -1 vicinity
The absorption due to the N—H bond near 3350 cm −1 increased. Under these two conditions, on the thermal head substrate,
FIG. 3 shows the breakdown state mode when a SiON film was deposited to a thickness of 5 μm and its heat resistance was evaluated by continuous pulse current application. The maximum surface temperature during pulse energization is 600 to 650.
° C.

第3図においてaは、N2流量350sccmの場合、bは、1
000sccmの場合を示すが、破壊状態モードが異なること
がわかる。同図aでは、発熱抵抗体部5の、最も高温と
なる領域に、6に示す様な気泡状(干渉縞あり)の異常
を生じた。一方、同図bでは7に示す様に繰り返しパル
ス加熱による下地基板ガラスの塑性変形に基づく盛り上
がり部分により、耐摩耗保護膜にクラックを生じた。
(気泡は、発生しない)通常の耐摩耗保護膜では、その
破壊モードは、上述した第3図bが支配的であり、同図
aの様に気泡が発生する場合の寿命劣化は、同図bに比
して、著しい。従って、同図aのモードは、回避しなけ
ればならない。この気泡発生の原因としては、第1図,
第2図で明らかであり、発生原因はSi−H,O−Hの様
に、結合エネルギーの小さい結合に配位した水素の加熱
に依る膜外放出である。即ち、第1図ライン1に示す様
にN2流量350sccmと、1000sccmとでは、明らかに、流量
の多い後者の方が、▲N ▼励起中性ラジカルの数が
多い。従って、N2流量が多い場合は、N2流量が少ない場
合に生じるSi−H,O−H等の水素と結びつき、結合エネ
ルギーが大きい(高耐熱な)N−H結合が生じ易くな
る。このN−H結合に配位する水素は、650℃程度の加
熱によっても、容易に膜中から放出されず、安定であ
る。このN−Hの生成に伴い、Si−H,O−Hは、減少す
る。この様子が第2図であり、耐熱性は、N2流量350scc
mから1000sccmと増加するのに伴い、向上する。
In FIG. 3, a is N 2 flow rate of 350 sccm, b is 1
The case of 000 sccm is shown, but it can be seen that the breakdown mode is different. In FIG. 6A, a bubble-like abnormality (with interference fringes) as shown by 6 occurs in the area of the heating resistor portion 5 where the temperature is the highest. On the other hand, in FIG. 7B, as shown by 7, cracks were generated in the wear-resistant protective film due to the bulging portion due to the plastic deformation of the underlying substrate glass due to repeated pulse heating.
(No bubbles are generated) In the normal wear-resistant protective film, the destruction mode is predominantly in FIG. 3b described above, and the life deterioration when bubbles are generated as shown in FIG. It is remarkable as compared with b. Therefore, the mode shown in FIG. The cause of this bubble generation is shown in FIG.
As is clear from FIG. 2, the cause of generation is extra-membrane release due to heating of hydrogen coordinated to a bond having a small bond energy such as Si-H and O-H. That is, as shown in line 1 in FIG. 1, when the N 2 flow rate is 350 sccm and 1000 sccm, the latter with a large flow rate has a larger number of ▲ N * 2 ▼ excited neutral radicals. Therefore, when the N 2 flow rate is high, it is bonded to hydrogen such as Si—H and O—H generated when the N 2 flow rate is low, and NH bond having a large bond energy (high heat resistance) is easily generated. Hydrogen coordinating to this N—H bond is stable because it is not easily released from the film even by heating at about 650 ° C. Si-H and O-H decrease with the generation of N-H. This is shown in Fig. 2, and the heat resistance is N 2 flow rate 350scc.
It improves with the increase from m to 1000 sccm.

尚、第3図aの気泡6は、同図の場合、パルス通電加
熱時表面最高温度600〜650℃のときのものであるが、こ
の気泡は、通電パルス電力を落し、表面温度を低下させ
るのに伴い、少なくなり、400℃以下の表面温度におい
ては、気泡は生じなかった。通常、一部の過酷な条件で
の使用を除き、一般的に用いられているサーマルヘッド
の表面最高温度はせいぜい350℃程度であり、第3図a
の条件、即ち、N2流量350sccmでも十分実用に耐え得
る。尚、N2流量を1000sccmから2100sccmへと増加させる
と、今度は、第1図に示す様に、次第に、▲N ▼励
起ラジカルが減少して、Si−H,O−Hの水素と窒素の結
びつきが減り、N−Hが生成されにくくなり、Si−H,O
−Hも減少しなくなり、耐熱性が劣化していく。しかし
ながらN2流量2100sccm程度では、パルス通電加熱時表面
最高温度500℃程度でも、気泡の発生は見られず(600〜
650℃では、若干観測される)十分使用に耐え得るもの
であった。
Incidentally, the bubble 6 in FIG. 3a is in the case of the maximum surface temperature of 600 to 650 ° C. in the case of pulse energization heating in the case of this figure, but this bubble lowers the energizing pulse power and lowers the surface temperature. The number of the bubbles decreased with the increase in temperature, and no bubbles were generated at a surface temperature of 400 ° C or lower. Normally, the maximum surface temperature of a thermal head that is generally used is about 350 ° C at most, except when used under some severe conditions.
Even under the condition of, that is, the N 2 flow rate of 350 sccm, it can be practically used. Incidentally, when the N 2 flow rate was increased from 1000 sccm to 2100 sccm, this time, as shown in FIG. 1, ▲ N * 2 ▼ excited radicals were gradually decreased to produce Si--H, OH hydrogen. The bond of nitrogen is reduced, NH is less likely to be generated, Si-H, O
-H also does not decrease and heat resistance deteriorates. However, at a N 2 flow rate of about 2100 sccm, no bubbles were observed even when the maximum surface temperature was about 500 ° C during pulsed current heating (600 ~
At 650 ° C, it was sufficiently observed (slightly observed).

尚、SiH4ガス流量を増減させた際、Si−H,O−Hも、
それに伴い増減するため、SiH4を増せば、N2流量も、そ
れに伴い増加させることが必要で、概ね、流量比で捕え
れば良く、本実施例でわかる通り、N2/SiH4流量比を少
なくとも350/35=10以上、2100/35=60以下に取れば、
膜の耐熱性が向上する。また、膜の耐熱性を向上させる
別の方法としては、基板温度を高くすることがある。本
実施例では、基板温度を350℃としているが、これをよ
り高温化すれば、元々膜中に存在するトータル水素量も
減少するため、元々のSi−H,O−Hも減り、更に高耐熱
化が可能である。
When the SiH 4 gas flow rate is increased or decreased, Si-H, OH also
As the SiH 4 increases, the N 2 flow rate also needs to increase with the increase in SiH 4 , which can be roughly captured by the flow rate ratio.As can be seen in this example, the N 2 / SiH 4 flow rate ratio If at least 350/35 = 10 or more and 2100/35 = 60 or less,
The heat resistance of the film is improved. Another method for improving the heat resistance of the film is to raise the substrate temperature. In this embodiment, the substrate temperature is set to 350 ° C., but if the temperature is raised to a higher temperature, the total amount of hydrogen originally present in the film is also reduced, so that the original Si—H and O—H are also reduced, and the temperature is further increased. Heat resistance is possible.

第4図は、N2流量と、ビッカース硬度の関係を示す。
同図では、N2O流量も、15sccmと35sccmで変化させてい
る。同図のライン8,9より本実施例の範囲内で、N2流量
を変化させても、硬度低下は、生じない。また、第5図
に、N2流量と、内部応力の関係をN2O流量15sccm,35sccm
の場合について、各々、ライン10,11に示す。膜の内部
応力は、N2流量の増加に伴い、緩和される。これは、第
1図の▲N ▼イオンとの間に大きな相関があり、N2
流量増加に伴い、▲N ▼イオンが減少し、従って膜
のイオン衝撃が減ることに依る。第5図を見てわかる通
り、概して内部応力は小さく、これは、サーマルヘッド
の耐摩耗保護膜の様に、5μm程度という厚い膜を、連
続的に成膜する必要がある生産装置においては、電極板
に堆積した膜の剥離が膜欠陥となるが、上述した様に膜
の内部応力が小さいため、数100μm電極板上に膜を堆
積しても、容易に剥離しないという副次的な効果をもた
らす。
FIG. 4 shows the relationship between N 2 flow rate and Vickers hardness.
In the figure, the N 2 O flow rate is also changed at 15 sccm and 35 sccm. Even if the N 2 flow rate is changed within the range of this embodiment from the lines 8 and 9 in the figure, the hardness does not decrease. In addition, Fig. 5 shows the relationship between the N 2 flow rate and the internal stress as the N 2 O flow rate of 15 sccm and 35 sccm.
The above cases are shown in lines 10 and 11, respectively. The internal stress of the film is relaxed as the N 2 flow rate increases. This has a large correlation with ▲ N + 2 ▼ ions in Fig. 1, and N 2
This is due to the decrease in the N + 2 ions and hence the ion bombardment of the membrane as the flow rate increases. As can be seen from FIG. 5, the internal stress is generally small, which is due to the fact that in a production apparatus in which it is necessary to continuously form a thick film of about 5 μm, such as a wear-resistant protective film of a thermal head, The peeling of the film deposited on the electrode plate causes a film defect, but as described above, the internal stress of the film is small, so even if the film is deposited on the electrode plate of several 100 μm, it is not easily peeled off. Bring

発明の効果 以上の様に、本発明に依れば、即ち、SiH4,N2,N2Oを
原料ガスとして、少なくとも原料ガスのN2流量とSiH4
量の比N2/SiH4を10以上60以下にして、プラズマCVD法に
より成膜したSiON膜は、高耐熱性と高硬度の両者を同時
に満足し、従って、このSiON膜を薄膜型サーマルヘッド
を耐摩耗保護膜とすることで、信頼性の高い薄膜型サー
マルヘッドの提供することが、可能となる。
As described above, according to the present, according to the present invention, i.e., SiH 4 as, N 2, N 2 O source gas, the N 2 flow rate and the flow rate of SiH 4 ratio N 2 / SiH 4 for at least material gas A SiON film formed by the plasma CVD method with a thickness of 10 or more and 60 or less simultaneously satisfies both high heat resistance and high hardness. Therefore, by using this SiON film as a wear resistant protective film for a thin film type thermal head. It is possible to provide a highly reliable thin film thermal head.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明における一実施例において、N2流量を変
化させた際の膜質に寄与する▲N ▼中性ラジカル1
と、▲N ▼イオン2の変化を示した特性図である。
第2図は各々、N2流量の違いに依る赤外吸収スペクトル
変化を示す特性図、第3図a,bは破壊モードの変化を示
す上面図、第4図,第5図は、各々、N2流量の違いに依
る膜の硬度内部応力の変化を示す特性図である。 ライン3……N2流量が少ないとき(350sccm)の赤外吸
収スペクトル、ライン4……N2流量が適度に多いとき
(1000sccm)の赤外吸収スペクトル。
Figure 1 in one embodiment of the present invention, contributes to the quality of when changing the N 2 flow rate ▲ N 2 ▼ neutral radicals 1
FIG. 4 is a characteristic diagram showing changes in ▲ N + 2 ▼ ion 2.
Fig. 2 is a characteristic diagram showing changes in infrared absorption spectra due to differences in N 2 flow rate, Figs. 3a and 3b are top views showing changes in breakdown mode, and Figs. 4 and 5 are, respectively, FIG. 6 is a characteristic diagram showing a change in hardness internal stress of a film due to a difference in N 2 flow rate. Line 3 ... infrared absorption spectrum when the N 2 flow rate is low (350 sccm), line 4 ... infrared absorption spectrum when the N 2 flow rate is moderately high (1000 sccm).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平尾 孝 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 北川 雅俊 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭53−65066(JP,A) 特開 昭58−118275(JP,A) 特開 昭58−163677(JP,A) 特開 昭62−167058(JP,A) 特開 昭50−62774(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Hirao 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Masatoshi Kitagawa 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-53-65066 (JP, A) JP-A-58-118275 (JP, A) JP-A-58-163677 (JP, A) JP-A-62-167058 (JP, A) Japanese Patent Laid-Open No. 50-62774 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性基板と、この基板上に設けた多数の
発熱抵抗体列と、この発熱抵抗体列の上に設けた耐摩耗
保護膜とを備え、上記耐摩耗保護膜は、SiH4,N2,N2Oを
原料ガスとし、少なくともこの原料ガスのN2流量とSiH4
流量比N2/SiH4を10以上60以下にして、プラズマCVD法に
より形成したシリコンオキシナイトライド膜である薄膜
型サーマルヘッド。
1. An insulating substrate, a large number of heating resistor arrays provided on the substrate, and a wear-resistant protective film provided on the heating resistor array, wherein the wear-resistant protective film is made of SiH. 4 , N 2 , N 2 O is used as the source gas, and at least the N 2 flow rate of this source gas and SiH 4
A thin film thermal head which is a silicon oxynitride film formed by a plasma CVD method with a flow rate ratio N 2 / SiH 4 of 10 or more and 60 or less.
【請求項2】絶縁性基板上に設けた多数の発熱抵抗体列
の上に、SiH4,N2,N2Oを原料ガスとし、少なくともこの
原料ガスのN2流量とSiH4流量比N2/SiH4を10以上60以下
にして、プラズマCVD法により、シリコンオキシナイト
ライド膜よりなる耐摩耗保護膜を形成する薄膜型サーマ
ルヘッドの製造方法。
2. SiH 4 , N 2 , N 2 O is used as a source gas on a large number of heating resistor arrays provided on an insulating substrate, and at least the N 2 flow rate of this source gas and the SiH 4 flow rate ratio N. A method for manufacturing a thin-film thermal head in which a wear-resistant protective film made of a silicon oxynitride film is formed by a plasma CVD method with 2 / SiH 4 set to 10 or more and 60 or less.
【請求項3】耐摩耗保護膜は、原料ガスを用い、少なく
とも基板温度を350℃以上とし、プラズマCVD法により形
成されたシリコンオキシナイトライド膜でなる特許請求
の範囲第2項に記載の薄膜型サーマルヘッドの製造方
法。
3. The thin film according to claim 2, wherein the wear-resistant protective film is a silicon oxynitride film formed by a plasma CVD method using a source gas and a substrate temperature of 350 ° C. or higher. Type thermal head manufacturing method.
JP14211488A 1988-06-09 1988-06-09 Thin film thermal head and manufacturing method thereof Expired - Fee Related JP2676787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14211488A JP2676787B2 (en) 1988-06-09 1988-06-09 Thin film thermal head and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14211488A JP2676787B2 (en) 1988-06-09 1988-06-09 Thin film thermal head and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH021342A JPH021342A (en) 1990-01-05
JP2676787B2 true JP2676787B2 (en) 1997-11-17

Family

ID=15307740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14211488A Expired - Fee Related JP2676787B2 (en) 1988-06-09 1988-06-09 Thin film thermal head and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2676787B2 (en)

Also Published As

Publication number Publication date
JPH021342A (en) 1990-01-05

Similar Documents

Publication Publication Date Title
CN1249793C (en) Forming method and device for barrier layer of semiconductor element
KR101135775B1 (en) Method to improve transmittance of an encapsulating film
TWI354032B (en) A method for depositing a material layer onto a su
TWI506162B (en) Method for depositing an encapsulating film
JP2004537847A5 (en)
JP2005166400A (en) Surface protection film
US4768072A (en) Multilayer semiconductor device having an amorphous carbon and silicon layer
JP2676787B2 (en) Thin film thermal head and manufacturing method thereof
JP2005203321A (en) Protective film and organic el device
KR980005364A (en) Uneven metal film and its formation method, uneven electrode and manufacturing method of capacitor using same
US4963893A (en) Heat-resistant insulating substrate, thermal printing head, and thermographic apparatus
JP2808765B2 (en) Manufacturing method of thin film type thermal head
JP2676786B2 (en) Thin film thermal head and manufacturing method thereof
JPH02137944A (en) Thin film type thermal head and manufacture thereof
JPH0449057A (en) Thin film type thermal head and manufacture thereof
JPH03155955A (en) Thin film type thermal head and manufacture thereof
US6846521B2 (en) Apparatus and method for forming deposited film
JPH0745610A (en) Manufacture of semiconductor device
JP2808769B2 (en) Thermal head and method of manufacturing the same
JP2834667B2 (en) Method for manufacturing semiconductor device
JPH07105516B2 (en) Amorphous semiconductor solar cell
KR940021758A (en) Deposition Method of Tungsten Thin Film
KR100459689B1 (en) Manufacturing method of FRAM device
JPH0393554A (en) Thermal head and its manufacture
Saenger et al. Electrodes and barriers for DRAM and FERAM: Processing, integration, and fundamentals

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees