JPH0410569B2 - - Google Patents

Info

Publication number
JPH0410569B2
JPH0410569B2 JP24960483A JP24960483A JPH0410569B2 JP H0410569 B2 JPH0410569 B2 JP H0410569B2 JP 24960483 A JP24960483 A JP 24960483A JP 24960483 A JP24960483 A JP 24960483A JP H0410569 B2 JPH0410569 B2 JP H0410569B2
Authority
JP
Japan
Prior art keywords
light
lens
measured
light receiving
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24960483A
Other languages
Japanese (ja)
Other versions
JPS60135714A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP24960483A priority Critical patent/JPS60135714A/en
Publication of JPS60135714A publication Critical patent/JPS60135714A/en
Publication of JPH0410569B2 publication Critical patent/JPH0410569B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、産業用高精度視覚センサとして用い
る光学的三角測距方式の距離センサに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an optical triangulation distance sensor used as an industrial high-precision visual sensor.

〔背景技術〕[Background technology]

一般に、この種の光学的三角測距方式の距離セ
ンサは第1図に示すように、LED、半導体レー
ザなどよりなる光源1から放射される光を投光ビ
ームPとして被測定物体Xに投光する投光用レン
ズ2と、被測定物体Xからの反射光Rを受光して
受光素子4上に投光スポツト像Sを結像させる受
光用レンズ3とを所定距離l0だけ離して配設し、
受光素子4上に結像された投光スポツト像Sの位
置を検出することにより被測定物体Xまでの距離
lを測定するようになつている。ここに、受光素
子4は位置検知素子PSDあるいは複数のホトダ
イオードにて形成され、被測定物体Xの距離lの
変化に応じて矢印A方向に移動する投光スポツト
像Sの位置を検出し、この検出出力に基いて被測
定物体Xまでの距離lが演算されるようになつて
いる。ところで、この測距方式においては、被測
定物体Xの表面に投光ビームPを照射し、その拡
散反射光Pを受光用レンズ3で集光して、受光素
子4上に結像した投光スポツト像の位置を検出し
ているが、被測定物体Xの表面の反射状態によつ
て測距誤差が生じるという問題があつた。すなわ
ち、物体の表面反射には、第2図に示すように、
紙、木材表面などの完全拡散面に近いもの(同図
a)、金属、アクリル表面などの正反射成分の強
いもの(同図b)、完全鏡面のように正反射成分
のみのもの(同図c)などがあり、その正反射成
分によつて測距不能あるいは測距誤差が大きくな
つてしまうわけである。例えば、第2図cに示す
ように拡散反射成分が全くない完全鏡面は測距が
不可能となり、一方、第2図bのように正反射成
分の強いものにあつては正反射成分を受光しない
ようにすれば測定が可能であるがが、第3図に示
すように被測定物体Xが傾いて投受光軸が反射面
に対して正反射位置になつてしまうと、測距不能
あるいは測距誤差が大きくなるという問題が発生
する。そこで、このような問題点を解決するため
には、投光用レンズ2と受光用レンズ3との間の
距離l0すなわち基線長を長く取れば良いことにな
るが、距離l0を長くとると、距離センサの全体形
状が大きくなつてしまうという欠点があつた。す
なわち、第4図は正反射成分Rbが受光されるか
否かを示す動作説明図であり、投、受光用レンズ
2,3の位置にて設定される角度γよりも被測定
物体Xの傾き角αによる正反射角β(=2α)が小
さい場合には、正反射成分による影響を受けない
ようにすることができるわけである。ここに、被
測定物体Xの傾き角αの許容範囲を大きくするに
は投、受光用レンズ2,3間の距離l0を長くして
角度γを大きくすれば良いことになる。しかしな
がら、投、受光用レンズ2,3間の距離l0を長く
すると投、受光用レンズ2,3および他の部品を
収納するケースが大形化してしまうという欠点が
あつた。
In general, this type of optical triangulation type distance sensor projects light emitted from a light source 1 made of an LED, semiconductor laser, etc. onto an object to be measured X as a projection beam P, as shown in Fig. 1. A light projecting lens 2 that receives the reflected light R from the object to be measured X and a light receiving lens 3 that forms a projected light spot image S on the light receiving element 4 are arranged at a predetermined distance l0 . death,
By detecting the position of the projected spot image S formed on the light receiving element 4, the distance l to the object to be measured X is measured. Here, the light receiving element 4 is formed by a position detection element PSD or a plurality of photodiodes, and detects the position of the projected spot image S that moves in the direction of the arrow A according to a change in the distance l of the object to be measured. The distance l to the object to be measured X is calculated based on the detection output. By the way, in this distance measurement method, the surface of the object to be measured Although the position of the spot image is detected, there is a problem in that a distance measurement error occurs depending on the reflection state of the surface of the object to be measured. In other words, as shown in Figure 2, for surface reflection of an object,
Surfaces that are close to perfect diffusion, such as paper and wood surfaces (a), surfaces with strong specular reflection components, such as metal and acrylic surfaces (b), and surfaces with only specular reflection components, such as perfect mirror surfaces (a). c), and the specular reflection component makes distance measurement impossible or increases the distance measurement error. For example, a perfect mirror surface with no diffuse reflection component as shown in Figure 2c will make distance measurement impossible, while a mirror surface with a strong specular reflection component as shown in Figure 2b will receive the specular reflection component. However, as shown in Figure 3, if the object to be measured A problem arises in that the distance error increases. Therefore, in order to solve this problem, it is sufficient to increase the distance l 0 between the light emitting lens 2 and the light receiving lens 3, that is, the base line length . However, there was a drawback that the overall shape of the distance sensor became large. That is, FIG. 4 is an operation explanatory diagram showing whether or not the specular reflection component R b is received. If the specular reflection angle β (=2α) due to the inclination angle α is small, it is possible to avoid the influence of the specular reflection component. Here, in order to increase the permissible range of the inclination angle α of the object to be measured X, it is sufficient to increase the angle γ by increasing the distance l 0 between the projection and reception lenses 2 and 3. However, if the distance l 0 between the projection and light reception lenses 2 and 3 is increased, the case that houses the projection and light reception lenses 2 and 3 and other parts becomes larger.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みて為されたものであ
り、その目的とするところは、被測定物体の傾き
角の許容範囲が大きくかつ小型の距離センサを提
供することにある。
The present invention has been made in view of the above points, and its object is to provide a compact distance sensor that has a wide allowable range of the inclination angle of an object to be measured.

〔発明の開示〕[Disclosure of the invention]

実施例 1 第5図は、本発明一実施例を示すもので、図中
5は角孔よりなるアパーチヤ6a,6bを有する
遮光板であり、凸レンズよりなる投、受光レンズ
2,3の内側半部2a,3a、すなわち、投光用
レンズ2の受光用レンズ3側の半部および受光用
レンズ3の投光用レンズ2側の半部を遮蔽すると
ともに、外側部2b,3bを用いて投、受光を行
なうようにしたものであり、他の構成は従来例と
全く同一である。なお、第6図aは投、受光レン
ズ2,3として丸形の凸レンズを用いた場合、第
6図b,cは角形の凸レンズを用いた場合を示し
ており、第6図cは投光手段の両側にそれぞれ受
光手段を設けて被測定物体Xの投光ビームPと直
交する方向の移動方向を検出するようにした場合
を示している。
Embodiment 1 FIG. 5 shows an embodiment of the present invention. In the figure, 5 is a light shielding plate having apertures 6a and 6b made of square holes, and the inner half of the projecting and receiving lenses 2 and 3 made of convex lenses. The parts 2a and 3a, that is, the half part of the light-emitting lens 2 on the light-receiving lens 3 side and the half part of the light-receiving lens 3 on the light-emitting lens 2 side are shielded, and the outer parts 2b and 3b are used to shield the light-emitting lens 3 side. , and is adapted to receive light, and the other configurations are exactly the same as the conventional example. Note that Fig. 6a shows the case where round convex lenses are used as the projection and reception lenses 2 and 3, Fig. 6b and c show the case when square convex lenses are used, and Fig. 6c shows the case when the projection and reception lenses 2 and 3 are used. A case is shown in which light receiving means are provided on both sides of the means to detect the moving direction of the object to be measured X in a direction perpendicular to the projected light beam P.

いま、光源1からの光は投光用レンズ2の外側
部2bおよび遮光板5のアパーチヤ6aを介して
投光され、この投光ビームPの被測定物体Xによ
つて反射光Rは遮光板5のアパーチヤ6bおよび
受光用レンズ3の外側部3bを介して受光され、
受光素子4上に結像される。この際、投、受光用
レンズ2,3の内側部2a,3aが遮光板5によ
つてマスクされるので、正反射成分が受光用レン
ズ3を介して入射する角度(すなわちγに相当)
が大きくなる。したがつて、投、受光用レンズ
2,3間の距離l0を変えることなく被測定物体X
の傾き角αの許容範囲を大きくすることができる
ことになる。この場合、遮光板5によつてマスク
される分だけ投受光量が少なくなるが、第6図
b,cに示すように角形の凸レンズを用いること
により、投受光量の減少を少なくすることができ
る。なお、第5図において、発光素子1から投光
用レンズ2を介して投光される光の投光用レンズ
2の光軸に平行でない成分は、光学系のホルダや
光源の取付部等に反射して発生する理想光線とは
異なる迷光成分であり、被測定物体が鏡面に近い
物体の場合においては、この迷光成分が僅かであ
つても測定誤差の原因となる。本発明は、このよ
うな迷光成分による測定誤差を少なくすることが
できるようにしたものである。
Now, the light from the light source 1 is projected through the outer part 2b of the projection lens 2 and the aperture 6a of the light shielding plate 5, and the reflected light R of the projected beam P is reflected by the object to be measured X through the light shielding plate 5. The light is received through the aperture 6b of No. 5 and the outer portion 3b of the light receiving lens 3,
An image is formed on the light receiving element 4. At this time, since the inner parts 2a and 3a of the projection and reception lenses 2 and 3 are masked by the light shielding plate 5, the angle at which the regular reflection component enters through the light reception lens 3 (i.e., corresponds to γ)
becomes larger. Therefore, the object to be measured
This means that the allowable range of the inclination angle α can be increased. In this case, the amount of light emitted and received is reduced by the amount masked by the light shielding plate 5, but by using a rectangular convex lens as shown in FIGS. can. In addition, in FIG. 5, the component of the light projected from the light emitting element 1 through the light projecting lens 2 that is not parallel to the optical axis of the light projecting lens 2 is caused by the holder of the optical system, the mounting part of the light source, etc. This is a stray light component that is different from the ideal light beam that is generated by reflection, and if the object to be measured is close to a mirror surface, even if this stray light component is small, it will cause a measurement error. The present invention makes it possible to reduce measurement errors caused by such stray light components.

実施例 2 第7図は他の実施例を示すもので、7は遮光板
5を兼ねるケースであり、ケース7内に発光素子
1、受光素子4が配設されている。2′,3′は凸
レンズの内側半部を切除した凸レンズ半体よりな
る投、受光用レンズであり、それぞれアパーチヤ
6a,6bに嵌め込まれている。第8図a〜cは
投、受光用レンズ2′,3′の例を示すものであ
る。なお、動作については前記実施例と同一なの
で説明を省略する。
Embodiment 2 FIG. 7 shows another embodiment, in which 7 is a case which also serves as a light shielding plate 5, and a light emitting element 1 and a light receiving element 4 are arranged inside the case 7. Reference numerals 2' and 3' designate projecting and light-receiving lenses made of convex lens halves obtained by cutting out the inner half of the convex lenses, and are fitted into apertures 6a and 6b, respectively. 8a to 8c show examples of the projecting and receiving lenses 2' and 3'. Note that the operation is the same as that of the previous embodiment, so a description thereof will be omitted.

〔発明の効果〕〔Effect of the invention〕

本発明は上述のように、光源から放射される光
を投光ビームとして被測定物体に投光する投光用
レンズと、被測定物体からの反射光を受光して受
光素子上に投光スポツト像を結像させる受光用レ
ンズとを所定距離だけ離して配設し、受光素子上
に結像された投光スポツト像の位置を検出するこ
とにより被測定物体までの距離を測定するように
して成る距離センサにおいて、投光用レンズとし
て受光用レンズ側の一部を除いた凸レンズを用い
るとともに、受光用レンズとして投光用レンズ側
の一部を除いた凸レンズを用いるようにしたもの
であり、投、受光用レンズ間の距離すなわち基線
長を変えることなく被測定物体の傾き角の許容範
囲を大きくすることができ、小型の距離センサを
提供することができるという効果がある。
As described above, the present invention includes a light projecting lens that projects light emitted from a light source as a projecting beam onto an object to be measured, and a light projecting spot that receives reflected light from the object to be measured and projects the light onto a light receiving element. A light-receiving lens for forming an image is placed a predetermined distance apart, and the distance to the object to be measured is measured by detecting the position of the projected light spot image formed on the light-receiving element. In the distance sensor, a convex lens with a part removed from the light receiving lens side is used as the light emitting lens, and a convex lens with a part removed from the light emitting lens side is used as the light receiving lens, This has the advantage that the allowable range of the tilt angle of the object to be measured can be increased without changing the distance between the projection and reception lenses, that is, the base line length, and a compact distance sensor can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは従来例の概略構成図、第1図bは同
上の要部正面図、第2図乃至第4図は同上の動作
説明図、第5図は本発明一実施例の概略構成図、
第6図a,b,cは同上の要部正面図、第7図は
他の実施例の概略構成図、第8図a,b,cは同
上の要部正面図である。 1は光源、2は投光用レンズ、3は受光用レン
ズ、4は受光素子である。
FIG. 1a is a schematic configuration diagram of a conventional example, FIG. 1b is a front view of the main parts of the same as above, FIGS. 2 to 4 are explanatory diagrams of the same as above, and FIG. figure,
FIGS. 6a, b, and c are front views of essential parts of the same as above, FIG. 7 is a schematic configuration diagram of another embodiment, and FIGS. 8a, b, and c are front views of essential parts of the same as above. 1 is a light source, 2 is a light projecting lens, 3 is a light receiving lens, and 4 is a light receiving element.

Claims (1)

【特許請求の範囲】[Claims] 1 光源から放射される光を投光ビームとして被
測定物体に投光する投光用レンズと、被測定物体
からの反射光を受光して受光素子上に投光スポツ
ト像を結像させる受光用レンズとを所定距離だけ
離して配設し、受光素子上に結像された投光スポ
ツト像の位置を検出することにより被測定物体ま
での距離を測定するようにして成る距離センサに
おいて、投光用レンズとして受光用レンズ側の一
部を除いた凸レンズを用いるとともに、受光用レ
ンズとして投光用レンズ側の一部を除いた凸レン
ズを用いるようにしたことを特徴とする距離セン
サ。
1. A light projecting lens that projects the light emitted from the light source as a projecting beam onto the object to be measured, and a light receiving lens that receives the reflected light from the object to be measured and forms a projected light spot image on the light receiving element. A distance sensor that measures the distance to an object by disposing a lens at a predetermined distance and detecting the position of a projected light spot image formed on a light receiving element. A distance sensor characterized in that a convex lens with a part on the light receiving lens side removed is used as the light receiving lens, and a convex lens with a part on the light projecting lens side removed as the light receiving lens.
JP24960483A 1983-12-23 1983-12-23 Distance sensor Granted JPS60135714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24960483A JPS60135714A (en) 1983-12-23 1983-12-23 Distance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24960483A JPS60135714A (en) 1983-12-23 1983-12-23 Distance sensor

Publications (2)

Publication Number Publication Date
JPS60135714A JPS60135714A (en) 1985-07-19
JPH0410569B2 true JPH0410569B2 (en) 1992-02-25

Family

ID=17195488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24960483A Granted JPS60135714A (en) 1983-12-23 1983-12-23 Distance sensor

Country Status (1)

Country Link
JP (1) JPS60135714A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225116A (en) * 1987-03-14 1988-09-20 Matsushita Electric Works Ltd Optical displacement measuring instrument
JPH0729452Y2 (en) * 1988-03-30 1995-07-05 アンリツ株式会社 Displacement measuring device
JP2532730Y2 (en) * 1990-10-29 1997-04-16 和泉電気株式会社 Distance sensor

Also Published As

Publication number Publication date
JPS60135714A (en) 1985-07-19

Similar Documents

Publication Publication Date Title
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
US6392247B1 (en) Sensor and detection system having wide diverging beam optics
JPH0815413A (en) Distance measuring apparatus
JPH10221064A (en) Optical distance-measuring device
JP5336029B2 (en) Retroreflective photoelectric switch
JPH0410569B2 (en)
JP2613655B2 (en) Photoelectric switch
US5159378A (en) Light projector for range finding device
JPS62140418A (en) Position detector of surface
JPH0230643B2 (en)
JP2717250B2 (en) Optical measuring method
JP3297968B2 (en) Limited reflection type photoelectric sensor
JPS57210308A (en) Focus detecting device
JP4277458B2 (en) Wafer detection sensor
JP2544789B2 (en) Optical displacement measuring device
JPS6266112A (en) Position detector
JPH0345192Y2 (en)
JPH0520989A (en) Photoelectric sensor
JPH06102016A (en) Photoelectric height detecting system
JPH0714810Y2 (en) Rangefinder
JPH0743450A (en) Target detecting sensor
JPH0415884B2 (en)
JPH0520988A (en) Photoelectric sensor
JPH0533008U (en) Non-contact measuring device
JPH09257470A (en) Optical displacement sensor