JPH10221064A - Optical distance-measuring device - Google Patents

Optical distance-measuring device

Info

Publication number
JPH10221064A
JPH10221064A JP2532997A JP2532997A JPH10221064A JP H10221064 A JPH10221064 A JP H10221064A JP 2532997 A JP2532997 A JP 2532997A JP 2532997 A JP2532997 A JP 2532997A JP H10221064 A JPH10221064 A JP H10221064A
Authority
JP
Japan
Prior art keywords
light
lens
light receiving
hologram
hologram lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2532997A
Other languages
Japanese (ja)
Inventor
Koji Mitsuishi
康志 三石
Ikuyasu Katou
育康 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP2532997A priority Critical patent/JPH10221064A/en
Publication of JPH10221064A publication Critical patent/JPH10221064A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical distance-measuring device which can be miniaturized and by which a distance can be measured with high accuracy and in a wide range by effectively making use of a characteristic that a hologram lens can be endowed with an angle-dependent property and with a radiation-angle amplifying property. SOLUTION: A hologram lens 70 is fitted to, and mounted on, the opening part of a casing 31 in a light-receiving system R. A semiconductor position sensor (PSD) 40 is constituted in such a way that it is fixed in parallel with both an optical axis I1 and an optical axis R1 between a light-projecting system I and a light-receiving system R inside the casing 31. The hologram lens 70 is formed in such a way that the radiation angle of light from the hologram lens 70 becomes larger than the angle of incidence of light on the hologram lens 70.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両、船舶、航空
機やカメラ等の各種の産業機器に採用するに適した光学
式測距装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical distance measuring apparatus suitable for use in various industrial equipment such as vehicles, ships, aircraft, cameras and the like.

【0002】[0002]

【従来の技術】従来、測定対象物までの距離を測定する
装置としては、図5にて示すような三角測距装置があ
る。この三角測距装置は、投光系Iと、受光系Rと、電
気回路Eとにより構成されている。
2. Description of the Related Art Conventionally, as a device for measuring a distance to an object to be measured, there is a triangulation device as shown in FIG. The triangulation device includes a light projecting system I, a light receiving system R, and an electric circuit E.

【0003】投光系Iは、発光ダイオードからなる発光
素子10と、この発光素子10の前側に配置した投光レ
ンズ20とを備えており、発光素子10は、投光レンズ
20に向けて発光する。投光レンズ20は、発光素子1
0からの光を集光しビーム光として被測定対象物Mに向
けて投光する。なお、発光素子10及び投光レンズ20
の各光軸(以下、投光系Iの光軸I1という)は同一直
線上にある。また、投光レンズ20は凸レンズからな
る。また、投光レンズ20は、ケーシング11の開口部
に嵌着されており、発光素子10は、ケーシング11内
にてその底壁に位置している。
The light projecting system I includes a light emitting element 10 composed of a light emitting diode and a light projecting lens 20 disposed in front of the light emitting element 10. The light emitting element 10 emits light toward the light projecting lens 20. I do. The light projecting lens 20 includes the light emitting element 1
Light from 0 is condensed and projected as a beam light toward the object M to be measured. The light emitting element 10 and the light projecting lens 20
(Hereinafter referred to as the optical axis I1 of the light projecting system I) are on the same straight line. The light projecting lens 20 is formed of a convex lens. The light projecting lens 20 is fitted in an opening of the casing 11, and the light emitting element 10 is located on the bottom wall in the casing 11.

【0004】受光系Rは、受光レンズ30と、この受光
レンズ30の後側に配置した位置センサ40とを備えて
いる。受光レンズ30は、凸レンズからなるもので、こ
の受光レンズ30は、測定対象物により反射される投光
レンズ20からのビーム光を位置センサ40の一次元状
受光部上に結像させる。位置センサ40は、半導体位置
センサ(以下、PSDという)からなるもので、このP
SD40は、その一次元状受光部にて受光レンズ30の
光軸に直交するように配置されている。なお、PSD4
0の受光部中央位置41(受光部の図5にて図示左右方
向中央位置)が、受光レンズ30の光軸(以下、受光系
Rの光軸R1という)上にある。
The light receiving system R includes a light receiving lens 30 and a position sensor 40 disposed behind the light receiving lens 30. The light receiving lens 30 is formed of a convex lens. The light receiving lens 30 forms an image of the light beam from the light projecting lens 20 reflected by the measurement object on the one-dimensional light receiving portion of the position sensor 40. The position sensor 40 includes a semiconductor position sensor (hereinafter, referred to as PSD).
The SD 40 is disposed so as to be orthogonal to the optical axis of the light receiving lens 30 at the one-dimensional light receiving portion. Note that PSD4
The center position 41 of the light-receiving portion 0 (the center position of the light-receiving portion in the horizontal direction in FIG. 5) is on the optical axis of the light-receiving lens 30 (hereinafter, referred to as the optical axis R1 of the light-receiving system R).

【0005】しかして、受光レンズ30からの光がPS
D40の受光部上に結像する位置(以下、結像位置42
という)及びこの結像位置42の受光部中央位置41か
らの位置に応じた検出電流がPSD40から電気回路E
に出力される。なお、受光レンズ30は、ケーシング3
1の開口部に嵌着されており、PSD40は、ケーシン
グ31内にてその底壁に位置している。
[0005] When the light from the light receiving lens 30 is PS
A position where an image is formed on the light receiving unit of D40 (hereinafter, an image forming position 42)
And the detected current corresponding to the position of the image forming position 42 from the light receiving unit center position 41 is output from the PSD 40 to the electric circuit E
Is output to Note that the light receiving lens 30 is
1, the PSD 40 is located on the bottom wall in the casing 31.

【0006】電気回路Eは、発光駆動回路50及び距離
算出回路60を備えており、発光駆動回路50は、発光
素子10を発光駆動する。距離算出回路60は、PSD
40の検出電流に基づき、三角測距法にて投光レンズ2
0と被測定対象物Mとの間の距離を算出する。なお、上
記三角測距法では、投光レンズ20の中心点、被測定対
象物Mへの投光レンズ20からのビーム光の入射点及び
受光レンズ30の中心点を結ぶ三角形と、受光レンズ3
0の中心点、PSD40の受光部中央位置41及び結像
位置42を結ぶ三角形とが互いに相似になることを利用
して、投光レンズ20と被測定対象物Mとの間の距離を
算出するものである。
The electric circuit E includes a light emission drive circuit 50 and a distance calculation circuit 60. The light emission drive circuit 50 drives the light emitting element 10 to emit light. The distance calculation circuit 60 uses the PSD
Based on the detected current of 40, the projection lens 2 is formed by triangulation.
The distance between 0 and the object to be measured M is calculated. In the triangulation method, a triangle connecting the center point of the light projecting lens 20, the point of incidence of the light beam from the light projecting lens 20 to the object M to be measured, and the center point of the light receiving lens 30, and the light receiving lens 3
The distance between the light projecting lens 20 and the object to be measured M is calculated by making use of the fact that the center point of 0 and the triangle connecting the light receiving unit center position 41 and the image forming position 42 of the PSD 40 are similar to each other. Things.

【0007】[0007]

【発明が解決しようとする課題】ところで、上記三角測
距装置に対しては小型化が要請されている。この小型化
には、投光レンズ20の光軸と受光レンズ30の光軸と
の間隔、即ち、基線長S(図5参照)を短くする必要が
ある。しかし、基線長Sを短くすると、PSD40の受
光部上における結像位置42の受光部中央位置41から
の移動量が極端に小さくなって、PSD40の分解能が
低下する。このため、PSD40の検出精度が低下す
る。このようなことは、被測定対象物Mと投光レンズ2
0との距離が長い程著しい。
By the way, there is a demand for downsizing of the triangulation device. To reduce the size, it is necessary to reduce the distance between the optical axis of the light projecting lens 20 and the optical axis of the light receiving lens 30, that is, the base length S (see FIG. 5). However, when the base line length S is reduced, the amount of movement of the imaging position 42 on the light receiving unit of the PSD 40 from the light receiving unit center position 41 becomes extremely small, and the resolution of the PSD 40 decreases. For this reason, the detection accuracy of the PSD 40 decreases. This is because the object to be measured M and the projection lens 2
This is remarkable as the distance from 0 is longer.

【0008】また、三角測距装置に対しては、その測定
距離範囲を広くすることが要請されている。しかし、例
えば1m付近の測距精度が良好になるように設定された
三角測距装置では、測定距離が非常に短くなると、受光
レンズ30を通る被測定対象物Mの反射光がPSD40
の受光部上に結像しにくい。従って、至近距離の測距は
困難といえる。
[0008] Further, there is a demand for a triangular distance measuring device to widen its measuring distance range. However, for example, in a triangular distance measuring apparatus set so that the distance measuring accuracy in the vicinity of 1 m becomes good, when the measuring distance becomes very short, the reflected light of the object M to be measured passing through the light receiving lens 30 becomes the PSD 40.
It is difficult to form an image on the light receiving section of Therefore, it can be said that distance measurement at a close distance is difficult.

【0009】そこで、本発明は、以上のようなことに対
処するため、ホログラムレンズに角度依存性及び出射角
度増幅性をもたせ得るという特性を有効に活用して、小
型化及び広範囲に亘る高精度の測距を可能とする光学式
測距装置を提供することを目的とする。
In order to cope with the above problems, the present invention makes effective use of the characteristic that the hologram lens can have an angle dependency and an output angle amplifying property. It is an object of the present invention to provide an optical distance measuring device capable of measuring distance.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明によれば、受光系の受光レン
ズが透過型ホログラムレンズであって、このホログラム
レンズは、当該ホログラムレンズからの光の出射角度が
当該ホログラムレンズへの光の入射角度よりも大きくな
るように形成されている。また、位置センサがその受光
部にホログラムレンズからの光を入射させるように配置
されている。
To achieve the above object, according to the first aspect of the present invention, the light receiving lens of the light receiving system is a transmission type hologram lens, and the hologram lens is formed from the hologram lens. Is formed so that the light emission angle is larger than the light incidence angle on the hologram lens. Further, the position sensor is arranged so that light from the hologram lens is incident on the light receiving section.

【0011】これにより、位置センサの受光部がホログ
ラムレンズの光軸にほぼ並行となるように位置した状態
にて、ホログラムレンズからの光が位置センサの受光部
に入射することとなる。この場合、ホログラムレンズの
光の出射角はその入射角よりも大きくなるように当該ホ
ログラムレンズが形成されている。従って、被測定対象
物との距離が短くても長くても、ホログラムレンズの出
射光は確実に位置センサの受光部に入射できるのは勿論
のこと、位置センサの受光部上における入射光の移動量
も適正に確保できる。その結果、受光系と投光系との間
の基線長を短縮して小型化を確保し、かつ、位置センサ
の分解能を適正に維持しつつ広い距離範囲に亘る高精度
の測距が可能となる。
Thus, the light from the hologram lens enters the light receiving section of the position sensor in a state where the light receiving section of the position sensor is positioned so as to be substantially parallel to the optical axis of the hologram lens. In this case, the hologram lens is formed such that the light emission angle of the hologram lens is larger than the incident angle. Therefore, regardless of whether the distance to the object to be measured is short or long, the light emitted from the hologram lens can be surely incident on the light receiving portion of the position sensor, and the movement of the incident light on the light receiving portion of the position sensor can be ensured. The amount can be secured appropriately. As a result, it is possible to shorten the base line length between the light receiving system and the light projecting system, secure miniaturization, and perform high-precision ranging over a wide distance range while properly maintaining the resolution of the position sensor. Become.

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施形態を図面
に基づいて説明する。図1は、本発明に係る測距装置の
概略を示している。この測距装置は、図5の三角測距装
置において、受光レンズ30に代えて透過型ホログラム
レンズ70を採用するとともに、PSD40を、ケーシ
ング31内にてその図1にて図示左壁(投光系Iと受光
系Rとの間にて両光軸I1、R1に平行となっている)
に固定した構成となっている。なお、ホログラムレンズ
70は、ケーシング31の開口部に嵌着されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 schematically shows a distance measuring apparatus according to the present invention. This distance measuring device employs a transmission type hologram lens 70 instead of the light receiving lens 30 in the triangular distance measuring device of FIG. (Between the system I and the light receiving system R, it is parallel to both optical axes I1, R1.)
The configuration is fixed to. Note that the hologram lens 70 is fitted in the opening of the casing 31.

【0013】ここで、ホログラムレンズ70の製法につ
いて説明する。このホログラムレンズ70は、図2にて
示すホログラム撮影光学系80を利用して製作されてい
る。この製作にあたり、ホログラムレンズ70の原板で
あるホログラム乾板70Aを準備する。そして、このホ
ログラム乾板70Aをホログラム撮影光学系80内に図
2にて示す位置に配置する。
Here, a method of manufacturing the hologram lens 70 will be described. The hologram lens 70 is manufactured using a hologram photographing optical system 80 shown in FIG. In this production, a hologram dry plate 70A as an original plate of the hologram lens 70 is prepared. Then, the hologram dry plate 70A is arranged in the hologram photographing optical system 80 at the position shown in FIG.

【0014】このような状態にて、ホログラム撮影光学
系80のレーザ光源81が、波長λのレーザ光を出射す
ると、このレーザ光の一部が、ハーフミラー82により
反射されて拡散レンズ83に入射する。すると、この拡
散レンズ83が、その入射光を拡散してホログラム乾板
70Aにその裏面側から入射する。一方、レーザ光の残
部が、ハーフミラー82を透過して反射ミラー84に入
射する。この反射ミラー84による反射光が拡散レンズ
85に入射すると、この拡散レンズ85がその入射光を
拡散して反射ミラー86に入射させる。この反射ミラー
86が、その入射光を、凸レンズ87に入射すると、こ
の凸レンズ87は、その入射光を平行光に変換してホロ
グラム乾板70Aにその表面側から入射する。
In this state, when the laser light source 81 of the hologram photographing optical system 80 emits a laser beam having a wavelength λ, a part of the laser beam is reflected by the half mirror 82 and enters the diffusion lens 83. I do. Then, the diffusion lens 83 diffuses the incident light and enters the hologram dry plate 70A from the back side. On the other hand, the remaining portion of the laser beam passes through the half mirror 82 and enters the reflection mirror 84. When the light reflected by the reflection mirror 84 enters the diffusion lens 85, the diffusion lens 85 diffuses the incident light and causes the light to enter the reflection mirror 86. When this reflection mirror 86 makes the incident light incident on the convex lens 87, the convex lens 87 converts the incident light into parallel light and makes it incident on the hologram dry plate 70A from the surface side.

【0015】ここで、ホログラム乾板70Aの光軸をP
とする。また、凸レンズ87からの光のホログラムレン
ズ70への入射方向と光軸Pとのなす角度をθ1 とす
る。さらに、ホログラム乾板70Aの光軸P上の位置
(ホログラムレンズ70の受光部中央位置41に相当す
る)への拡散レンズ83からの光の入射方向と光軸Pと
のなす角度をθ2 とする。また、角度θ2 を角度θ1
りも大きくし、レーザ光の波長λを、ホログラム撮影波
長(例えば、633nm)とする。
Here, the optical axis of the hologram dry plate 70A is P
And The angle between the direction of incidence of light from the convex lens 87 on the hologram lens 70 and the optical axis P is θ 1 . Further, the angle between the optical axis P and the incident direction of the light from the diffusion lens 83 to the position on the optical axis P of the hologram dry plate 70A (corresponding to the central position 41 of the light receiving portion of the hologram lens 70) is defined as θ 2 . . Further, the angle theta 2 larger than the angle theta 1, the wavelength of the laser beam lambda, the hologram photographing wavelength (e.g., 633 nm).

【0016】このような条件のもと、ホログラム乾板7
0Aの表面及び裏面に上述のごとく光を入射すれば、こ
のホログラム乾板70Aが上記ホログラムレンズ70と
して形成される。これにより、ホログラム撮影波長λ及
び両角度θ1 、θ2 に基づく干渉縞ホログラムデータが
記録される。このように形成したホログラムレンズ70
では、その表面側へ入射する光の中心波長をλoとすれ
ば、次の数1の式により表される関係が成立する。
Under these conditions, the hologram dry plate 7
When light is incident on the front surface and the back surface of 0A as described above, the hologram dry plate 70A is formed as the hologram lens 70. Thereby, interference fringe hologram data based on the hologram imaging wavelength λ and both angles θ 1 and θ 2 are recorded. The hologram lens 70 thus formed
Assuming that the central wavelength of light incident on the surface side is λo, the relationship expressed by the following equation 1 holds.

【0017】[0017]

【数1】 λo/sin(θ1 /2)=λ/sin(θ2 /2) この式によれば、λo=470nmとすれば、(λ/λ
o)=(633/470)に比例して、θ1 がθ2 に略
角度増幅されることが分かる。その他の構成につき、図
5の三角測距装置にて示す構成素子と同一の構成素子に
関しては図5と同一符号を付してその説明は省略する。
[Number 1] λo / sin (θ 1/2 ) = λ / sin (θ 2/2) According to this equation, if λo = 470nm, (λ / λ
o) It can be seen that θ 1 is substantially angularly amplified to θ 2 in proportion to (633/470). Regarding the other components, the same components as those shown in the triangular distance measuring apparatus in FIG. 5 are denoted by the same reference numerals as those in FIG. 5 and the description thereof is omitted.

【0018】このように構成した本実施形態において、
図1にて示すごとく、被測定対象物Mの反射光がホログ
ラムレンズ70の表面に入射すれば、この入射光はPS
D40の受光部に向けて屈折されて入射する。ここで、
発光素子10の発光中心波長をλo=470nmとし、
ホログラムレンズ70への入射光方向と光軸R1(光軸
Pに相当)とのなす角度を上記角度θ 1 とすれば、ホロ
グラムレンズ70の出射光方向は、数1の式でλo=4
70nmを前提に、上記干渉縞ホログラムデータに基づ
き、光軸R1に対し上記角度θ 2 の方向となる。
In this embodiment configured as described above,
As shown in FIG. 1, the reflected light of the object to be measured M is a hologram.
If the light enters the surface of the ram lens 70, this incident light is PS
The light is refracted and incident on the light receiving unit of D40. here,
The light emission center wavelength of the light emitting element 10 is λo = 470 nm,
The direction of light incident on the hologram lens 70 and the optical axis R1 (optical axis
P)) is the angle θ 1If so, Jolo
The outgoing light direction of the Gram lens 70 is λo = 4 in the equation (1).
Based on the above interference fringe hologram data,
The angle θ with respect to the optical axis R1. TwoDirection.

【0019】この場合、角度θ2 は数1の式に基づき角
度θ1 から角度増幅されるから、基線長Sが短くても、
広い測距範囲に亘り、ホログラムレンズ70の出射光が
PSD40の受光部に入射し易くなるのは勿論のこと、
PSD40の受光部上における入射結像光の移動量を大
きくできる。このことは、PSD40の分解能を、広い
測距範囲に亘り高く維持できることを意味する。
In this case, since the angle θ 2 is amplified from the angle θ 1 based on the equation 1, even if the base line length S is short,
It goes without saying that the light emitted from the hologram lens 70 easily enters the light receiving unit of the PSD 40 over a wide ranging range.
The amount of movement of incident imaging light on the light receiving section of the PSD 40 can be increased. This means that the resolution of the PSD 40 can be maintained high over a wide ranging range.

【0020】その結果、基線長Sを短くすることで測距
装置の小型化を確保しつつ、被測定対象物Mとの距離
を、至近距離から遠方まで含む広い測距範囲に亘り高精
度にて測距可能をし得る。次に、上記実施形態の変形例
を図3に基づいて説明する。この変形例では、受光系R
のケーシング31内にて、屈折率可変素子90が、ホロ
グラムレンズ70及びPSD40の双方に対向するよう
に配置されている。その他の構成は上記実施形態と同様
である。
As a result, by shortening the base line length S, the distance measuring device can be miniaturized, and the distance from the object to be measured M can be accurately measured over a wide ranging range including a very short distance to a long distance. Distance can be measured. Next, a modification of the above embodiment will be described with reference to FIG. In this modification, the light receiving system R
In the casing 31, a variable refractive index element 90 is disposed so as to face both the hologram lens 70 and the PSD 40. Other configurations are the same as those of the above embodiment.

【0021】このように構成した本変形例では、測距装
置と被測定対象物Mとの距離が通常の場合には、ホログ
ラムレンズ70を透過する光は、図4(a)にて示すよ
うに、屈折率可変素子90により屈折されてPSD40
に入射する。このとき、屈折率可変素子90の屈折率は
n=n1=1に小さく維持されている。測距装置と被測
定対象物Mとの距離が非常に短くなって、ホログラムレ
ンズ70を透過する光が、図4(b)にて示すように、
PSD40の端部に達したとき、屈折率可変素子90の
屈折率nをn2(>1)に増大する。すると、ホログラ
ムレンズ70を透過する光は、図4(c)にて示すよう
に、屈折率可変素子90により逆方向に屈折されてPS
D40に入射する。
In this modified example, when the distance between the distance measuring device and the object to be measured M is normal, the light transmitted through the hologram lens 70 is as shown in FIG. The PSD 40 is refracted by the refractive index variable element 90 and
Incident on. At this time, the refractive index of the variable refractive index element 90 is kept small at n = n1 = 1. Since the distance between the distance measuring device and the object to be measured M is very short, light transmitted through the hologram lens 70 is, as shown in FIG.
When reaching the end of the PSD 40, the refractive index n of the variable refractive index element 90 is increased to n2 (> 1). Then, the light transmitted through the hologram lens 70 is refracted in the opposite direction by the variable refractive index element 90 as shown in FIG.
It is incident on D40.

【0022】これにより、測距装置と被測定対象物Mと
の距離が非常に短くても、測距が可能となる。なお、本
発明の実施にあたっては、PSDセンサ40に代えて、
CCDセンサを採用して実施してもよい。
Thus, even if the distance between the distance measuring device and the object to be measured M is very short, the distance can be measured. In implementing the present invention, instead of the PSD sensor 40,
It may be implemented by adopting a CCD sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

【図2】図1のホログラムレンズを作製するためのホロ
グラム撮影光学系を示す図である。
FIG. 2 is a diagram showing a hologram photographing optical system for producing the hologram lens of FIG.

【図3】上記実施形態の変形例を示す要部構成図であ
る。
FIG. 3 is a main part configuration diagram showing a modification of the embodiment.

【図4】(a)乃至(c)は、測距装置と測定対象物と
の距離の短縮に伴う屈折率可変素子の屈折率の増大に応
じてホログラムレンズから受光素子に入射する光の屈折
状況の変化を示す図である。
FIGS. 4A to 4C show refraction of light incident on the light receiving element from the hologram lens in accordance with an increase in the refractive index of the variable refractive index element as the distance between the distance measuring device and the object to be measured is reduced. It is a figure showing a change of a situation.

【図5】従来の測距装置の概略構成図である。FIG. 5 is a schematic configuration diagram of a conventional distance measuring device.

【符号の説明】[Explanation of symbols]

I…投光系、R…受光系、40…PSD、70…ホログ
ラムレンズ、60…距離算出回路。
I: light projecting system, R: light receiving system, 40: PSD, 70: hologram lens, 60: distance calculation circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 投光系(I)と、 被測定対象物(M)により反射される前記投光系からの
光を受けて集光する受光レンズと、この受光レンズの集
光光を一次元状受光部にて受光しその受光位置に基づき
検出信号を発生する位置センサ(40)とを備え、前記
投光系に隣接して配置された受光系(R)と、 前記位置センサの検出信号に応じて前記被測定対象物と
の間の距離を算出する距離算出手段(60)とを設けた
光学式測距装置において、 前記受光レンズが、透過型ホログラムレンズ(70)で
あって、 このホログラムレンズからの光の出射角度が当該ホログ
ラムレンズへの光の入射角度よりも大きくなるように前
記ホログラムレンズが形成されており、 前記位置センサがその受光部に前記ホログラムレンズか
らの光を入射させるように配置されていることを特徴と
する光学式測距装置。
1. A light projecting system (I), a light receiving lens for receiving and condensing light from the light projecting system reflected by an object to be measured (M), A position sensor (40) that receives light at the original light receiving unit and generates a detection signal based on the light receiving position, a light receiving system (R) disposed adjacent to the light projecting system, and detection of the position sensor An optical distance measuring device provided with a distance calculating means (60) for calculating a distance from the object to be measured in accordance with a signal, wherein the light receiving lens is a transmission type hologram lens (70); The hologram lens is formed such that an emission angle of light from the hologram lens is larger than an incidence angle of light to the hologram lens, and the position sensor makes light from the hologram lens incident on a light receiving unit thereof. To let Optical distance measuring apparatus characterized by being location.
JP2532997A 1997-02-07 1997-02-07 Optical distance-measuring device Withdrawn JPH10221064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2532997A JPH10221064A (en) 1997-02-07 1997-02-07 Optical distance-measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2532997A JPH10221064A (en) 1997-02-07 1997-02-07 Optical distance-measuring device

Publications (1)

Publication Number Publication Date
JPH10221064A true JPH10221064A (en) 1998-08-21

Family

ID=12162913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2532997A Withdrawn JPH10221064A (en) 1997-02-07 1997-02-07 Optical distance-measuring device

Country Status (1)

Country Link
JP (1) JPH10221064A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010556A (en) * 2005-07-01 2007-01-18 Sharp Corp Optical range finding sensor, and equipment provided therewith
WO2012110924A1 (en) * 2011-02-15 2012-08-23 Basf Se Detector for optically detecting at least one object
US9001029B2 (en) 2011-02-15 2015-04-07 Basf Se Detector for optically detecting at least one object
US9389315B2 (en) 2012-12-19 2016-07-12 Basf Se Detector comprising a transversal optical sensor for detecting a transversal position of a light beam from an object and a longitudinal optical sensor sensing a beam cross-section of the light beam in a sensor region
US9557856B2 (en) 2013-08-19 2017-01-31 Basf Se Optical detector
US9665182B2 (en) 2013-08-19 2017-05-30 Basf Se Detector for determining a position of at least one object
US9741954B2 (en) 2013-06-13 2017-08-22 Basf Se Optical detector and method for manufacturing the same
US9829564B2 (en) 2013-06-13 2017-11-28 Basf Se Detector for optically detecting at least one longitudinal coordinate of one object by determining a number of illuminated pixels
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010556A (en) * 2005-07-01 2007-01-18 Sharp Corp Optical range finding sensor, and equipment provided therewith
WO2012110924A1 (en) * 2011-02-15 2012-08-23 Basf Se Detector for optically detecting at least one object
US9001029B2 (en) 2011-02-15 2015-04-07 Basf Se Detector for optically detecting at least one object
US9389315B2 (en) 2012-12-19 2016-07-12 Basf Se Detector comprising a transversal optical sensor for detecting a transversal position of a light beam from an object and a longitudinal optical sensor sensing a beam cross-section of the light beam in a sensor region
US10120078B2 (en) 2012-12-19 2018-11-06 Basf Se Detector having a transversal optical sensor and a longitudinal optical sensor
US9741954B2 (en) 2013-06-13 2017-08-22 Basf Se Optical detector and method for manufacturing the same
US10823818B2 (en) 2013-06-13 2020-11-03 Basf Se Detector for optically detecting at least one object
US9829564B2 (en) 2013-06-13 2017-11-28 Basf Se Detector for optically detecting at least one longitudinal coordinate of one object by determining a number of illuminated pixels
US9989623B2 (en) 2013-06-13 2018-06-05 Basf Se Detector for determining a longitudinal coordinate of an object via an intensity distribution of illuminated pixels
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10845459B2 (en) 2013-06-13 2020-11-24 Basf Se Detector for optically detecting at least one object
US9958535B2 (en) 2013-08-19 2018-05-01 Basf Se Detector for determining a position of at least one object
US10012532B2 (en) 2013-08-19 2018-07-03 Basf Se Optical detector
US9665182B2 (en) 2013-08-19 2017-05-30 Basf Se Detector for determining a position of at least one object
US9557856B2 (en) 2013-08-19 2017-01-31 Basf Se Optical detector
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US11415661B2 (en) 2016-11-17 2022-08-16 Trinamix Gmbh Detector for optically detecting at least one object
US11635486B2 (en) 2016-11-17 2023-04-25 Trinamix Gmbh Detector for optically detecting at least one object
US11698435B2 (en) 2016-11-17 2023-07-11 Trinamix Gmbh Detector for optically detecting at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object

Similar Documents

Publication Publication Date Title
JPH10221064A (en) Optical distance-measuring device
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
US4534637A (en) Camera with active optical range finder
US20070030474A1 (en) Optical range finder
JP2000193748A (en) Laser distance-measuring device for large measurement range
JPH0533366B2 (en)
JPH07120253A (en) Active autofocus device
WO2019163210A1 (en) Scanning optical system and lidar
JPH04248509A (en) Multipoint range finder
JP4561091B2 (en) Emitter / receiver
US20220291391A1 (en) Projector for a solid-state lidar system
JPS6120808A (en) Range measuring instrument
JP3939028B2 (en) Oblique incidence interferometer
US5719663A (en) Range finder apparatus
JP3228574B2 (en) camera
JP3348908B2 (en) Distance measuring device
JPH06229756A (en) Range finder
JP3501500B2 (en) Distance measuring device and camera
JPH095618A (en) Auto-focusing device
JPS6167012A (en) Focus detecting device
JP3222295B2 (en) Optical displacement sensor
JPH0521490B2 (en)
JPH07280550A (en) Multi-point distance measuring apparatus
JPH03252519A (en) Micron displacement gauge
JPH09257470A (en) Optical displacement sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511