JPH0520989A - Photoelectric sensor - Google Patents

Photoelectric sensor

Info

Publication number
JPH0520989A
JPH0520989A JP3201218A JP20121891A JPH0520989A JP H0520989 A JPH0520989 A JP H0520989A JP 3201218 A JP3201218 A JP 3201218A JP 20121891 A JP20121891 A JP 20121891A JP H0520989 A JPH0520989 A JP H0520989A
Authority
JP
Japan
Prior art keywords
light
lens
distance
reflection mirror
multiple reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3201218A
Other languages
Japanese (ja)
Inventor
Norisada Horie
教禎 堀江
Junichi Takagi
潤一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP3201218A priority Critical patent/JPH0520989A/en
Publication of JPH0520989A publication Critical patent/JPH0520989A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To detect a substance position with high accuracy, without any need to enlarge a device by providing a multiple reflection mirror between the components of a two-piece detector working as a light receiving lens and a light receiving element, and moving one of constitutional mirrors for keeping the differential output of the detector at zero level. CONSTITUTION:A beam 6 from a luminous element 1 is projected to a substance 5 via a projection lens 2. Diffused reflection light 7 from the substance 5 is caused to be incident upon a multiple reflection mirror 12 via a light receiving lens 3. The light is thereby subjected to multiple reflection, and then introduced to a two-piece PD 11. In this case, a mirror 16 is moved highly accurately with a piezoelectric element 17, thereby keeping the differential output of the PD 11 at zero level. According to this construction, a distance L from the lens 2 to the substance 5 can be detected. Also, the use of a mirror 12 becomes equivalent to the case where a distance from the lens 3 to the PD 11 is made considerably longer than conventional. Consequently, distance resolution for substance detection, or detection accuracy can be improved without enlarging a device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、三角測量法に基づいた
測距式光電センサンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring photoelectric sensor based on the triangulation method.

【0002】[0002]

【従来の技術】従来の測距式光電センサンサとしては、
図3に示すように発光素子 1、投光用レンズ2、受光用
レンズ 3および位置センサ(PSD)4を基本要素と
し、三角測量法により物体5を検知するものがある。
2. Description of the Related Art As a conventional distance measuring photoelectric sensor,
As shown in FIG. 3, a light emitting element 1, a light projecting lens 2, a light receiving lens 3 and a position sensor (PSD) 4 are used as basic elements to detect an object 5 by a triangulation method.

【0003】この場合、発光素子 1より出射される光ビ
ーム 6が投光用レンズ2により物体面 5aで微小スポッ
トに集光され、その拡散反射光 7が受光用レンズ 3を介
して位置センサ4上に集光される。そして、位置センサ
4上に集光されるスポットの位置により三角測量法の原
理に従って投光用レンズ2から検知物体 5までの距離L
が検出される。すなわち、投光用レンズ2から検知物体
5までの距離Lは、発光素子 1と投光用レンズ2との間
の距離をl、投光用レンズ2の光軸と受光用レンズ 3の
光軸との間の距離をD、発光素子 1と位置センサ 4上に
集光されるスポットの位置間の距離をxとすると、 L=Dl/(x−D) で与えられる。したがって、位置センサ 4上に集光され
るスポットの位置におけるxが位置センサ 4により検出
されるので、Lを検出することができる。
In this case, the light beam 6 emitted from the light emitting element 1 is focused by the light projecting lens 2 into a minute spot on the object surface 5a, and the diffuse reflected light 7 is passed through the light receiving lens 3 to the position sensor 4 Focused on top. And position sensor
According to the principle of the triangulation method, the distance L from the projection lens 2 to the detection object 5 depends on the position of the spot focused on the surface 4.
Is detected. That is, from the projection lens 2 to the detected object
The distance L up to 5 is 1, the distance between the light emitting element 1 and the light projecting lens 2 is l, the distance between the light axis of the light projecting lens 2 and the light receiving lens 3 is D, and the light emitting element is When the distance between 1 and the position of the spot focused on the position sensor 4 is x, it is given by L = Dl / (x−D). Therefore, since x at the position of the spot focused on the position sensor 4 is detected by the position sensor 4, L can be detected.

【0004】なお、物体 5が△Lだけ変位し物体面 5a
が鎖線の位置にあると、図示鎖線の如く物体面 5aでの
拡散反射光 7が受光用レンズ 3を介して位置センサ 4上
に集光される。
The object 5 is displaced by ΔL and the object surface 5a
Is at the position of the chain line, the diffuse reflection light 7 on the object surface 5a is focused on the position sensor 4 via the light receiving lens 3 as shown by the chain line in the figure.

【0005】[0005]

【発明が解決しょうとする課題】しかしながら、上述し
た従来の光電センサでは、発光素子1に発光ダイオード
(LED)を用いた場合、距離分解能が、測定される距
離Lの10%しかとれず、物体位置に対する検出精度が悪
いという問題点があった。
However, in the above-mentioned conventional photoelectric sensor, when the light emitting diode (LED) is used as the light emitting element 1, the distance resolution is only 10% of the measured distance L, and There is a problem that the detection accuracy for the position is poor.

【0006】また、位置センサ 4の位置を受光用レンズ
3より離せば、距離分解能が向上し物体位置に対する検
出精度が上がるが、装置が大型化してしまうという問題
があった。
Further, the position of the position sensor 4 is set to the light receiving lens.
If the distance is more than 3, the distance resolution is improved and the detection accuracy for the object position is increased, but there is a problem that the device becomes large.

【0007】本発明の目的は、このような従来の問題点
に鑑み、装置全体を大型化させることなく距離分解能を
向上させ物体位置に対する検出精度の向上を図ることが
できる光電センサを提供することにある。
In view of such conventional problems, an object of the present invention is to provide a photoelectric sensor capable of improving the distance resolution and improving the detection accuracy for an object position without increasing the size of the entire apparatus. It is in.

【0008】[0008]

【課題を解決するための手段】本発明の光電センサは、
光源と、光源からの光を物体に投射する投光用レンズ
と、物体からの反射光あるいは拡散光を集光する受光用
レンズと、受光用レンズからの光を受光する受光素子を
有する、三角測量法に基づいた測距式光電センサにおい
て、前記受光用素子として用いた、かつ光スポットの位
置に対応した差動出力を送出する2分割光検出器と、前
記受光用レンズと前記2分割光検出器との間に配設さ
れ、前記物体からの反射光あるいは拡散光を多重反射さ
せて前記2分割光検出器に導くための、一対のミラーか
らなる多重反射ミラーと、前記2分割光検出器の差動出
力が零となるよう多重反射ミラーの一方のミラーを動か
す圧電素子とを備えたことを特徴とする。
The photoelectric sensor of the present invention comprises:
A triangle having a light source, a light projecting lens for projecting light from the light source onto an object, a light receiving lens for collecting reflected light or diffused light from the object, and a light receiving element for receiving light from the light receiving lens. A distance-measuring photoelectric sensor based on a survey method, which is used as the light-receiving element and which outputs a differential output corresponding to the position of a light spot, a two-division photodetector, the light-receiving lens, and the two-division light. A multi-reflection mirror formed of a pair of mirrors, arranged between the detector and the detector, for reflecting the reflected light or diffused light from the object and guiding it to the two-division photo detector, and the two-division light detection. And a piezoelectric element for moving one of the multiple reflection mirrors so that the differential output of the container becomes zero.

【0009】[0009]

【作用】上記構成の光電センサにおいては、光源からの
光を投光用レンズを介して物体に投射し、物体からの反
射光あるいは拡散光を受光用レンズを介して多重反射ミ
ラーに入射させる。多重反射ミラーで物体からの反射光
あるいは拡散光を多重反射させた後、2分割光検出器へ
導く。この場合、圧電素子にて多重反射ミラーの一方の
ミラーを制御して(動かして)、2分割光検出器の差動
出力が零となるようにする。これにより、投光用レンズ
から物体までの距離を検出できる。しかも多重反射ミラ
ーを用いたことにより、受光用レンズと2分割光検出器
間の光路長を従来に比べ大きくとることができ、実質的
に受光用レンズと2分割光検出器間の距離を従来に比べ
大きく離間させたことと等価となる。したがって、光電
センサ全体を従来に比べ大型化させることなく、光電セ
ンサによる物体位置検出の距離分解能を従来に比べ向上
させることができ、物体位置に対する検出精度を向上さ
せることができる。
In the photoelectric sensor having the above structure, the light from the light source is projected onto the object through the light projecting lens, and the reflected light or the diffused light from the object is incident on the multiple reflection mirror through the light receiving lens. The reflected light or diffused light from the object is multiply reflected by the multiple reflection mirror and then guided to the two-division photodetector. In this case, one of the multiple reflection mirrors is controlled (moved) by the piezoelectric element so that the differential output of the two-division photodetector becomes zero. Thereby, the distance from the projection lens to the object can be detected. Moreover, by using the multiple reflection mirror, the optical path length between the light receiving lens and the two-divided photodetector can be made larger than that of the conventional one, and the distance between the light receiving lens and the two-divided photodetector can be substantially reduced. It is equivalent to a large separation compared to. Therefore, the distance resolution of the object position detection by the photoelectric sensor can be improved as compared with the related art without increasing the size of the entire photoelectric sensor as compared with the related art, and the detection accuracy for the object position can be improved.

【0010】[0010]

【実施例】次ぎに本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図 1は、本発明よる光電センサの一実施例
を示す簡略構成図である。同図において、図 3と同一又
は相当部分には同符号を用いている。図1において、1
1は、フォトダイオードを用いて構成された2分割光検
出器(2分割PD)であって、この2分割PD11は、
光スポットがフォトダイオードで構成される2つの分割
部分双方に等しくまたがるように当たったとき、その差
動出力が零になるようになっている。2分割PD11の
差動出力が零のとき、投光用レンズ2から物体までの距
離Lが検出することができる。この距離Lの検出の仕方
については後述する。
FIG. 1 is a simplified block diagram showing an embodiment of a photoelectric sensor according to the present invention. In the figure, the same reference numerals are used for the same or corresponding parts in FIG. In FIG. 1, 1
Reference numeral 1 is a two-division photodetector (two-division PD) configured by using a photodiode, and the two-division PD 11 is
When the light spot strikes both of the two divided portions formed by the photodiodes equally, the differential output thereof becomes zero. When the differential output of the two-division PD 11 is zero, the distance L from the light projecting lens 2 to the object can be detected. How to detect the distance L will be described later.

【0012】また、12は、受光用レンズ3と受光素子
としての2分割PD11との間に配設された一対の反射
ミラー15と反射ミラー16からなる多重反射ミラーで
あって、この多重反射ミラー12は、平行に対向して配
設された二枚の透明板13、14の内側に多重反射が行
なえるように、反射ミラー15、16を取付けたもので
ある。多重反射ミラー12においては、物体面5aでの
拡散反射光(拡散光または反射光)7が受光用レンズ3
を介して多重反射ミラー12に入力され、多重反射の
後、2分割PD11へ出力できるように反射ミラー15
と反射ミラー16は、位置をずらしてある。
Reference numeral 12 denotes a multiple reflection mirror composed of a pair of reflection mirror 15 and reflection mirror 16 disposed between the light receiving lens 3 and the two-divided PD 11 as a light receiving element. Reference numeral 12 is a mirror in which reflecting mirrors 15 and 16 are attached so that multiple reflection can be performed inside two transparent plates 13 and 14 arranged in parallel and facing each other. In the multiple reflection mirror 12, the diffuse reflected light (diffused light or reflected light) 7 on the object surface 5 a is received by the light receiving lens 3
It is input to the multiple reflection mirror 12 via the, and after multiple reflection, it is output to the two-division PD 11 so that the reflection mirror 15
The reflection mirror 16 is displaced in position.

【0013】また、17は、二枚の透明板13、14の
いずれか一方、ここでは、例えば透明板14の外側に取
付けられた圧電素子である。この圧電素子は、2分割P
D11の差動出力が零となるように透明板14を高精度
に制御して、透明板14、従って反射ミラー16を矢印
18方向に高精度に動かすことができるようになってい
る。
Reference numeral 17 denotes a piezoelectric element attached to either one of the two transparent plates 13 and 14, here, for example, outside the transparent plate 14. This piezoelectric element is divided into two
The transparent plate 14 is controlled with high accuracy so that the differential output of D11 becomes zero, and the transparent plate 14, and thus the reflection mirror 16 can be moved with high accuracy in the direction of the arrow 18.

【0014】次に、光電センサの投光用レンズ2から検
知物体5までの距離Lの検出方法について述べる。電圧
源19により圧電素子17にある電圧を加えると、2分
割PD11の2分割部分に等しくまたがって当たり、2
分割PD11の差動出力が零となる。この時の、投光用
レンズ2から検知物体5までの距離Lを求める。光電セ
ンサに対して検知物体5が移動する場合において、2分
割PD11の差動出力が零となるときにおける、圧電素
子17ヘの印加電圧Vと投光用レンズ2から検知物体5
までの距離Lとの関係を上記のようにして予め用意して
おく。従って、いま検知物体5が動いたときにおける検
知物体5の位置、即ち投光用レンズ2から検知物体5ま
での距離Lを検出するには、圧電素子17へ電圧源19
により電圧を印加し、これにより透明板14を矢印18
方向に動かす。そして、2分割PD11の差動出力が零
になるときの圧電素子17への印加電圧Vを求めれば、
前述した、圧電素子17ヘの印加電圧Vと投光用レンズ
2から検知物体5までの距離Lとの関係より前記距離L
を検出することができる。
Next, a method of detecting the distance L from the projection lens 2 of the photoelectric sensor to the detection object 5 will be described. When a certain voltage is applied to the piezoelectric element 17 by the voltage source 19, the piezoelectric element 17 straddles the two-divided portion of the two-divided PD 11 equally.
The differential output of the divided PD 11 becomes zero. At this time, the distance L from the projection lens 2 to the detection object 5 is obtained. When the detection object 5 moves with respect to the photoelectric sensor, the applied voltage V to the piezoelectric element 17 and the detection object 5 from the light projecting lens 2 when the differential output of the two-divided PD 11 becomes zero.
The relationship with the distance L up to is prepared in advance as described above. Therefore, in order to detect the position of the detected object 5 when the detected object 5 is moving, that is, the distance L from the projection lens 2 to the detected object 5, the voltage source 19 is applied to the piezoelectric element 17.
Voltage is applied to the transparent plate 14 by the arrow 18
Move in the direction. Then, if the applied voltage V to the piezoelectric element 17 when the differential output of the two-division PD 11 becomes zero is obtained,
From the relationship between the voltage V applied to the piezoelectric element 17 and the distance L from the projection lens 2 to the detection object 5 described above, the distance L is obtained.
Can be detected.

【0015】このような構成のもとに、発光素子1より
出射される光ビーム6が投光レンズ2により物体面5a
で微小スポットに集光される。物体面5aでの拡散反射
光7は、受光用レンズ3で集光され多重反射ミラー12
に入射する。多重反射ミラー12の透明板13を透過し
た拡散反射光7は、反射ミラー16で反射し、更に対向
する反射ミラー15で反射する。このように拡散反射光
7は、反射ミラー16と反射ミラー15間で反射を繰返
して(多重反射をして)、図示の如く反射ミラー16が
ない部分の透明板14より出射し、2分割PD11に導
かれる。
Under such a structure, the light beam 6 emitted from the light emitting element 1 is projected by the light projecting lens 2 onto the object plane 5a.
Focuses on a small spot with. Diffuse reflected light 7 on the object surface 5a is condensed by the light receiving lens 3 and is reflected by the multiple reflection mirror 12
Incident on. The diffuse reflection light 7 transmitted through the transparent plate 13 of the multiple reflection mirror 12 is reflected by the reflection mirror 16 and further reflected by the opposing reflection mirror 15. In this way, the diffuse reflection light 7 is repeatedly reflected between the reflection mirror 16 and the reflection mirror 15 (multiple reflection), and is emitted from the transparent plate 14 in the portion where the reflection mirror 16 is absent, as shown in the figure, and is divided into two PDs 11. Be led to.

【0016】この場合、2分割PD11の2分割部分を
等しくまたいで集光された光スポットが当たるように、
従って、2分割PD11の差動出力が零となるように、
圧電素子17へ電圧源19により電圧を印加し、圧電素
子17にて透明板14を矢印18方向に高精度に制御す
る。この時の圧電素子17への印加電圧を電圧計(図省
略してある。)にて読取ることにより、投光用レンズ2
から検知物体5までの距離Lを検出することができる。
In this case, the focused light spot is striking equally over the two-divided portion of the two-divided PD 11.
Therefore, so that the differential output of the two-division PD 11 becomes zero,
A voltage source 19 applies a voltage to the piezoelectric element 17, and the piezoelectric element 17 controls the transparent plate 14 in the direction of arrow 18 with high accuracy. The voltage applied to the piezoelectric element 17 at this time is read by a voltmeter (not shown), so that the projection lens 2
The distance L from to the detection object 5 can be detected.

【0017】また、多重反射ミラー12を用いたことに
より、受光用レンズ3と2分割PD11間の光路長を従
来に比べ大きくとることができ、実質的に受光用レンズ
3と2分割PD11間の距離を従来に比べ大きく離間さ
せたことと等価となる。従って、装置(光電センサ)全
体を従来に比べ大型化させることなく、光電センサによ
る物体位置検出の距離分解能を従来に比べ向上させるこ
とができ、物体位置に対する検出精度を上げることがで
きる。
Further, by using the multiple reflection mirror 12, the optical path length between the light-receiving lens 3 and the two-divided PD 11 can be made larger than that of the conventional one, and substantially between the light-receiving lens 3 and the two-divided PD 11. This is equivalent to making the distance larger than in the past. Therefore, the distance resolution of the object position detection by the photoelectric sensor can be improved as compared with the related art without increasing the size of the entire device (photoelectric sensor) as compared with the related art, and the detection accuracy for the object position can be increased.

【0018】図2は、本発明の他の実施例を示す簡略構
成図である。同図において、図1および図3と同一また
は相当部分には同符号を用いている。図2は、図 1の受
光用レンズ3と多重反射ミラー12の透明板13間に光路
を曲げるためのプリズム21を配設したことにあり、そ
の他の構成については図 1と同様である。光電センサに
て近距離の物体 5を検出する場合には、物体面 5aから
の拡散反射光 7の、多重反射ミラー12の透明板13への
入射角を大きくなるのを防止するために、プリズム21
を受光用レンズ3と多重反射ミラー12の透明板13間に
挿入して(介在させて)、光路を曲げて透明板13への入
射角を小さくしている。これにより、反射ミラー15、
16における図示の横方向の長さを長くしなくても、多
重反射ミラー12による光路長を大きく確保するに必要
なな多重反射をすることができ、2分割PD11も透明板
14の下側近傍に図示の如く配置できるので、装置を大型
化することがない。
FIG. 2 is a simplified block diagram showing another embodiment of the present invention. In the figure, the same reference numerals are used for the same or corresponding parts as in FIGS. In FIG. 2, a prism 21 for bending an optical path is arranged between the light-receiving lens 3 and the transparent plate 13 of the multiple reflection mirror 12 in FIG. 1, and other configurations are the same as in FIG. When detecting a short-distance object 5 with a photoelectric sensor, in order to prevent the incident angle of the diffuse reflection light 7 from the object surface 5a on the transparent plate 13 of the multiple reflection mirror 12 from increasing, 21
Is inserted (interposed) between the light receiving lens 3 and the transparent plate 13 of the multiple reflection mirror 12, and the optical path is bent to reduce the incident angle to the transparent plate 13. Thereby, the reflection mirror 15,
It is possible to perform the multiple reflection necessary to secure a large optical path length by the multiple reflection mirror 12 without increasing the length in the lateral direction shown in FIG.
Since it can be arranged near the lower side of 14 as shown in the figure, the size of the device is not increased.

【0019】図2においては、プリズム21で光路を曲
げるようにしたことを除いては、図1の場合と同様であ
るので説明を省略する。なお、本発明は、本実施例に限
定されることなく本発明の要旨を逸脱しない範囲で種々
の応用が考えられる。例えば、図 1、図2の実施例にお
いては、圧電素子17を透明板14側に設けているけれど
も、本発明は、これに限定されることなく他方の透明板
13側に設けるようにしてもよい。
2 is the same as that of FIG. 1 except that the prism 21 is used to bend the optical path, and therefore the description thereof is omitted. The present invention is not limited to this embodiment, and various applications can be considered without departing from the gist of the present invention. For example, in the embodiment of FIGS. 1 and 2, the piezoelectric element 17 is provided on the transparent plate 14 side, but the present invention is not limited to this, and the other transparent plate is used.
It may be provided on the 13 side.

【0020】[0020]

【発明の効果】上述したように本発明によれば、受光用
レンズと受光素子としての2分割光検出器間に多重反射
ミラーを配設し、多重反射ミラーを構成する一方の反射
ミラーを圧電素子により高精度に動かして、2分割光検
出器の差動出力を零とすることで、物体の位置、即ち光
電センサの投光用レンズから物体までの距離を検出する
ことができる。しかも、多重反射ミラーを用いたことに
より、受光用レンズと2分割光検出器間の光路長を従来
に比べ大きく取ることができるので、装置全体を大型化
させることなく光電センサによる物体位置検出の距離分
解能を従来に比べ向上させることができ、物体位置に対
する検出精度を上げることができる。
As described above, according to the present invention, a multiple reflection mirror is disposed between the light receiving lens and the two-divided photodetector as a light receiving element, and one reflection mirror constituting the multiple reflection mirror is piezoelectric. The position of the object, that is, the distance from the light projecting lens of the photoelectric sensor to the object can be detected by moving the element with high accuracy to make the differential output of the two-division photodetector zero. Moreover, since the multiple reflection mirror is used, the optical path length between the light-receiving lens and the two-divided photodetector can be made larger than in the conventional case, so that the object position can be detected by the photoelectric sensor without increasing the size of the entire device. The range resolution can be improved as compared with the conventional one, and the detection accuracy for the object position can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明よる光電センサの一実施例を示す簡略構
成図
FIG. 1 is a simplified configuration diagram showing an embodiment of a photoelectric sensor according to the present invention.

【図2】本発明の他の実施例を示す簡略構成図FIG. 2 is a simplified configuration diagram showing another embodiment of the present invention.

【図3】従来の光電センサの一例を示す簡略構成図FIG. 3 is a simplified configuration diagram showing an example of a conventional photoelectric sensor.

【符号の説明】 1 発光素子 2 投光用レンズ 3 受光用レンズ 5 物体 6 光ビーム 7 拡散反射光 11 2分割PD 12 多重反射ミラー 13、14 透明板 15、16 反射ミラー 17 圧電素子 19 電圧源 21 プリズム[Description of Reference Signs] 1 light emitting element 2 light emitting lens 3 light receiving lens 5 object 6 light beam 7 diffuse reflected light 11 two-split PD 12 multiple reflection mirror 13, 14 transparent plate 15, 16 reflection mirror 17 piezoelectric element 19 voltage source 21 prism

Claims (1)

【特許請求の範囲】 【請求項1】 光源と、前記光源からの光を物体に投射
する投光用レンズと、 前記物体からの反射光あるいは拡散光を集光する受光用
レンズと、前記受光用レンズからの光を受光する受光素
子を有する、三角測量法に基づいた測距式光電センサに
おいて、 前記受光用素子として用いた、かつ光スポットの位置に
対応した差動出力を送出する2分割光検出器と、 前記受光用レンズと前記2分割光検出器との間に配設さ
れ、前記物体からの反射光あるいは拡散光を多重反射さ
せて前記2分割光検出器に導くための、一対のミラーか
らなる多重反射ミラーと、 前記2分割光検出器の差動出力が零となるよう多重反射
ミラーの一方のミラーを動かす圧電素子とを備えたこと
を特徴とする光電センサ。
Claim: What is claimed is: 1. A light source, a light projecting lens for projecting light from the light source onto an object, a light receiving lens for collecting reflected light or diffused light from the object, and the light receiving. In a distance-measuring photoelectric sensor based on a triangulation method, which has a light receiving element for receiving light from a lens for use, and which is used as the light receiving element and which outputs a differential output corresponding to the position of a light spot A pair of a photodetector, which is arranged between the light-receiving lens and the two-division photodetector, and which multiple-reflects reflected light or diffused light from the object and guides it to the two-division photodetector. And a piezoelectric element for moving one of the multiple reflection mirrors so that the differential output of the two-divided photodetector becomes zero.
JP3201218A 1991-07-16 1991-07-16 Photoelectric sensor Withdrawn JPH0520989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3201218A JPH0520989A (en) 1991-07-16 1991-07-16 Photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3201218A JPH0520989A (en) 1991-07-16 1991-07-16 Photoelectric sensor

Publications (1)

Publication Number Publication Date
JPH0520989A true JPH0520989A (en) 1993-01-29

Family

ID=16437304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3201218A Withdrawn JPH0520989A (en) 1991-07-16 1991-07-16 Photoelectric sensor

Country Status (1)

Country Link
JP (1) JPH0520989A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10347898A1 (en) * 2003-10-15 2005-05-19 Carl Zeiss Light source beam guiding system, e.g. for sensor, has variable spacing and/or angle of two mirrors for varying deflection of outgoing light beam
JP2006226853A (en) * 2005-02-18 2006-08-31 Keyence Corp Distance setting type photoelectric sensor
JP2006226854A (en) * 2005-02-18 2006-08-31 Keyence Corp Distance setting type photoelectric sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298941A (en) * 2000-04-11 2001-10-26 Sodick Co Ltd Shaft feeder for driving linear motor
US20040090126A1 (en) * 2002-11-07 2004-05-13 Chin-Mou Hsu Structure for symmetrically disposed linear motor operated tool machine
JP2010041889A (en) * 2008-08-07 2010-02-18 Sinfonia Technology Co Ltd Transfer apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298941A (en) * 2000-04-11 2001-10-26 Sodick Co Ltd Shaft feeder for driving linear motor
US20040090126A1 (en) * 2002-11-07 2004-05-13 Chin-Mou Hsu Structure for symmetrically disposed linear motor operated tool machine
JP2010041889A (en) * 2008-08-07 2010-02-18 Sinfonia Technology Co Ltd Transfer apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10347898A1 (en) * 2003-10-15 2005-05-19 Carl Zeiss Light source beam guiding system, e.g. for sensor, has variable spacing and/or angle of two mirrors for varying deflection of outgoing light beam
JP2006226853A (en) * 2005-02-18 2006-08-31 Keyence Corp Distance setting type photoelectric sensor
JP2006226854A (en) * 2005-02-18 2006-08-31 Keyence Corp Distance setting type photoelectric sensor

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
US20070030474A1 (en) Optical range finder
US7330278B2 (en) Optical displacement measurement device
JPH0762614B2 (en) Optical sensor
JPH0743110A (en) Two-stage detecting type non-contact positioning device
JP3947159B2 (en) Sensor device for quick optical distance measurement according to the confocal optical imaging principle
KR890002841A (en) Optical pickup
JPH0520989A (en) Photoelectric sensor
JP2018040748A (en) Laser range measuring device
WO2018193499A1 (en) Fourier transformation-type infrared spectrophotometer
JPH11201718A (en) Sensor device and distance measuring equipment
CN209027459U (en) The displacement sensor that amplification factor can be improved with refracting telescope
JP2018028484A (en) Laser distance measurement device
CN111121983A (en) Real-time wavelength detection device adopting laser interference principle and use method thereof
CN211317545U (en) Real-time wavelength detection device adopting laser interference principle
CN210802701U (en) Laser wavelength measuring device based on interference mode
JP2002005617A (en) Optical measurement device
JPS5837506A (en) Optical device for electrooptic range finder
JPH0520988A (en) Photoelectric sensor
CN109141257A (en) The displacement sensor and its measurement method that amplification factor can be improved with refracting telescope
JPH0219403B2 (en)
CN110779629A (en) Laser wavelength measuring device and method based on interference mode
JP2789414B2 (en) Small tilt angle detector
JP2544789B2 (en) Optical displacement measuring device
JPH10176927A (en) Inclination sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008