JPH0815413A - Distance measuring apparatus - Google Patents
Distance measuring apparatusInfo
- Publication number
- JPH0815413A JPH0815413A JP14322094A JP14322094A JPH0815413A JP H0815413 A JPH0815413 A JP H0815413A JP 14322094 A JP14322094 A JP 14322094A JP 14322094 A JP14322094 A JP 14322094A JP H0815413 A JPH0815413 A JP H0815413A
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical system
- distance
- light receiving
- mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、光を用いて距離を測
定する距離測定装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring device for measuring a distance by using light.
【0002】[0002]
【従来の技術】図9は例えば実公平1−19112号公
報に示された第1の従来の距離測定装置を示す構成図、
図10はコントローラに出力される投光信号と入力され
る受光信号とを示す説明図である。これらの図におい
て、1は光を投光する投光部であり、この投光部1には
半導体レーザダイオード等の発光素子2とこの発光素子
2から出た光を集光する投光光学系としての投光レンズ
3とが設けられている。この投光レンズ3は凸レンズで
ある。4は投光部1から投光されて被測距体に反射され
た光を受光する受光部であり、この受光部4には半導体
の量子効果型受光素子等の受光素子5とこの受光部4に
入ってくる光を受光素子5へ集光する受光光学系として
の受光レンズ6とが設けられている。この受光レンズ6
は凸レンズである。投光レンズ3の光軸Aと受光レンズ
6の光軸Bとは一致していないが平行である。ここで、
光軸とはその周りでの光学系の回転が像に影響を与えな
い軸のことであり、一般的な凸レンズの場合にはレンズ
の中心と焦点とを結んだ線が光軸となる。7は発光素子
2が発光してから、受光素子5が受光するまでの時間を
算出し、光を反射した被測距体までの距離を測定するコ
ントローラである。2. Description of the Related Art FIG. 9 is a block diagram showing a first conventional distance measuring device disclosed in, for example, Japanese Utility Model Publication 1-19112.
FIG. 10 is an explanatory diagram showing a light projecting signal output to the controller and a light receiving signal input thereto. In these figures, reference numeral 1 denotes a light projecting unit for projecting light. The light projecting unit 1 has a light emitting element 2 such as a semiconductor laser diode and a light projecting optical system for condensing light emitted from the light emitting element 2. And a light projecting lens 3 is provided. The light projecting lens 3 is a convex lens. Reference numeral 4 denotes a light receiving portion for receiving the light emitted from the light emitting portion 1 and reflected by the distance measuring object. The light receiving portion 4 includes a light receiving element 5 such as a semiconductor quantum effect type light receiving element and the light receiving portion. There is provided a light receiving lens 6 as a light receiving optical system for collecting the light entering the light receiving element 4 on the light receiving element 5. This light receiving lens 6
Is a convex lens. The optical axis A of the light projecting lens 3 and the optical axis B of the light receiving lens 6 do not coincide but are parallel to each other. here,
The optical axis is an axis around which the rotation of the optical system does not affect the image. In the case of a general convex lens, the line connecting the center of the lens and the focal point is the optical axis. Reference numeral 7 denotes a controller that calculates the time from the light emitting element 2 emits light to the light receiving element 5 receives light, and measures the distance to the distance-measured object that reflects the light.
【0003】次に動作について述べる。コントローラ7
から発光素子2に発光信号が送られると発光素子2から
光が発光される。この発光素子2から発光された光は投
光レンズ3により集光されて光束密度を強められて投光
部1から被測距体に向かって投光される。この投光部1
から投光された光は被測距体によって反射され、受光部
4に戻ってくる。この受光部4に戻ってきた光は受光レ
ンズ6によって集光されて光束密度を強められて受光素
子5に入射される。受光素子5は光が入射されるとコン
トローラ7に受光信号を送る。コントローラ7は発光素
子2から光が発光されてから受光素子5に光が入射され
るまでの時間T(図10参照)を算出する。この時間T
から被測距体までの距離R(R=(光速)×T/2)を
算出する。Next, the operation will be described. Controller 7
When a light emission signal is sent from the light emitting element 2, the light emitting element 2 emits light. The light emitted from the light emitting element 2 is condensed by the light projecting lens 3, the luminous flux density is strengthened, and the light is projected from the light projecting unit 1 toward the object to be measured. This floodlight 1
The light projected from is reflected by the object to be measured and returns to the light receiving unit 4. The light returning to the light receiving section 4 is condensed by the light receiving lens 6, the luminous flux density is strengthened, and is incident on the light receiving element 5. The light receiving element 5 sends a light receiving signal to the controller 7 when light is incident. The controller 7 calculates the time T (see FIG. 10) from when the light is emitted from the light emitting element 2 to when the light is incident on the light receiving element 5. This time T
The distance R (R = (speed of light) × T / 2) from the distance to the object to be measured is calculated.
【0004】このような第1の従来の距離測定装置は投
光部1と受光部4とが別体に設けられているので装置が
大型化し、また、投光部1の投光レンズ3の光軸と受光
部4の受光レンズ6の光軸とが平行ではあるが一致せず
離れているため、被測距体が近距離にある場合には被測
距体によって反射された光が受光素子5に入射されない
ことがあった。さらに、距離を測定する方向を変えるた
めには、投光部1と受光部4との位置関係を変化させな
いように装置全体を回転させて投光部1と受光部4の方
向を変えることが必要であった。この様な問題点を解決
するために、投光光学系の光軸と受光光学系の光軸とを
一致させる必要があり、次に示すような第2の従来の距
離測定装置が一般に知られている。In such a first conventional distance measuring device, since the light projecting portion 1 and the light receiving portion 4 are separately provided, the device becomes large in size, and the light projecting lens 3 of the light projecting portion 1 is provided. Since the optical axis and the optical axis of the light-receiving lens 6 of the light-receiving unit 4 are parallel but are not coincident and are apart from each other, the light reflected by the distance-measured object is received when the distance-measured object is at a short distance. The light may not be incident on the element 5. Further, in order to change the direction in which the distance is measured, it is possible to rotate the entire device so as to change the directions of the light projecting unit 1 and the light receiving unit 4 so as not to change the positional relationship between the light projecting unit 1 and the light receiving unit 4. Was needed. In order to solve such a problem, it is necessary to match the optical axis of the light projecting optical system with the optical axis of the light receiving optical system, and the following second conventional distance measuring device is generally known. ing.
【0005】図11は例えば特開平2−10282号公
報もしくは特開平2−10283号公報に示された第2
の従来の距離測定装置を示す構成図である。この図にお
いて、11は占有する体積を小さくすることができる投
光光学系及び受光光学系としてのカセグレン焦点式反射
鏡である。このカセグレン焦点式反射鏡11には、中心
部に円孔を持つ内面放物面鏡である主鏡12と、外面放
物面鏡である副鏡13と、カセグレン焦点式反射鏡11
内への塵埃の侵入を防ぐ後方保護ガラス14と、前方保
護ガラス15とが設けられている。16はパルス光を発
光する発光素子であり、この発光素子16から発光され
たパルス光(図中矢印Cで示す)は凸レンズ17によっ
て平行光にされる。この平行光にされたパルス光はハー
フミラー18(後述)を通過して後方保護ガラス14か
らカセグレン焦点式反射鏡11内に入射され、副鏡13
と主鏡12とで反射された後に前方保護ガラス15を介
して被測距体に向かって投光される。投光されたパルス
光は被測距体によって反射され、反射されたパルス光は
図11中の矢印Cを逆方向に辿りながらカセグレン焦点
式反射鏡11に入射され、ハーフミラー18(後述)に
より反射される。18は入射光の半分は通過させ、半分
は反射する導光光学系としてのハーフミラーである。こ
のハーフミラー18によって、例えば投光時にはパルス
光の半分は図11中矢印Cのように直進して、残りの半
分は図11中矢印Eのように反射される。また、受光時
には被測距体で反射されたパルス光の半分が図11中矢
印Cを逆方向に直進して、残りの半分が図11中矢印D
のように反射される。FIG. 11 shows a second example disclosed in Japanese Patent Application Laid-Open No. 2-10282 or Japanese Patent Application Laid-Open No. 2-10283.
It is a block diagram which shows the conventional distance measuring device. In this figure, reference numeral 11 is a Cassegrain focusing mirror as a light projecting optical system and a light receiving optical system that can occupy a small volume. The Cassegrain focusing mirror 11 includes a primary mirror 12 which is an inner parabolic mirror having a circular hole in the center, a secondary mirror 13 which is an outer parabolic mirror, and a Cassegrain focusing mirror 11.
A rear protective glass 14 and a front protective glass 15 that prevent dust from entering the inside are provided. Reference numeral 16 denotes a light emitting element that emits pulsed light, and the pulsed light (indicated by arrow C in the figure) emitted from the light emitting element 16 is collimated by a convex lens 17. The pulsed light converted into parallel light passes through a half mirror 18 (described later) and enters the Cassegrain focusing mirror 11 from the rear protective glass 14, and the secondary mirror 13
After being reflected by the main mirror 12, the light is projected toward the object to be measured through the front protective glass 15. The projected pulsed light is reflected by the object to be measured, and the reflected pulsed light is incident on the Cassegrain focusing mirror 11 while following the arrow C in FIG. 11 in the opposite direction, and is reflected by the half mirror 18 (described later). Is reflected. Reference numeral 18 denotes a half mirror as a light guide optical system that allows half of the incident light to pass therethrough and reflects half of the incident light. By this half mirror 18, for example, during projection, half of the pulsed light goes straight as shown by arrow C in FIG. 11 and the other half is reflected as shown by arrow E in FIG. Further, when light is received, half of the pulsed light reflected by the distance-measuring object goes straight in the direction opposite to the arrow C in FIG. 11, and the other half is the arrow D in FIG.
Is reflected as.
【0006】ハーフミラー18で図11中矢印Dのよう
に反射された被測距体で反射されたパルス光は凸レンズ
19により集光され、受光素子20によって検出され
る。21は発光素子16がパルス光を発光する時間と受
光素子20がパルス光を受光する時間との差を算出する
コントローラである。また、図中一点鎖線Fは凸レンズ
17の光軸を示すものであり、この凸レンズ17の光軸
とカセグレン焦点式反射鏡11の光軸は同一であるので
一点鎖線Fはカセグレン焦点式反射鏡11の光軸も示す
ものである。このような第2の従来の距離測定装置では
投光時と受光時とにカセグレン焦点式反射鏡11を共用
するため、投光光学系と受光光学系との光軸は同じであ
るが、共用するカセグレン焦点式反射鏡11の口径が大
きいために、投光時にカセグレン焦点式反射鏡11によ
ってパルス光の光束が広がり、パルス光の光束密度は低
くなっていた。このことは、被測距体によって反射され
るパルス光を弱めることとなっていた。投光時における
パルス光の光束密度を大きくするためには投光光学系の
口径をより小さくする必要がある。また、投光光学系と
は違って、受光光学系の口径は大きいほど被測距体によ
って反射されるパルス光をより強く受光できるので、受
光光学系の口径はより大きくする必要がある。The pulsed light reflected by the object to be measured, which is reflected by the half mirror 18 as indicated by arrow D in FIG. 11, is condensed by the convex lens 19 and detected by the light receiving element 20. Reference numeral 21 is a controller for calculating the difference between the time when the light emitting element 16 emits pulsed light and the time when the light receiving element 20 receives pulsed light. Also, the alternate long and short dash line F in the figure shows the optical axis of the convex lens 17, and since the optical axis of this convex lens 17 and the optical axis of the Cassegrain focus type reflection mirror 11 are the same, the dashed dotted line F shows the Cassegrain focus type reflection mirror 11. The optical axis of is also shown. In such a second conventional distance measuring device, since the Cassegrain focus reflecting mirror 11 is shared during light projection and light reception, the light projecting optical system and the light receiving optical system have the same optical axis, but are commonly used. Since the aperture diameter of the Cassegrain focusing reflector 11 is large, the luminous flux of the pulsed light is spread by the Cassegrain focusing reflector 11 during light projection, and the luminous flux density of the pulsed light is low. This weakens the pulsed light reflected by the object to be measured. In order to increase the luminous flux density of pulsed light at the time of light projection, it is necessary to make the diameter of the light projection optical system smaller. Further, unlike the light projecting optical system, the larger the aperture of the light receiving optical system, the more strongly the pulsed light reflected by the object to be measured can be received, and therefore the aperture of the light receiving optical system needs to be larger.
【0007】図12は例えば特開平2−10283号公
報に示された第3の従来の距離測定装置を示す構成図で
ある。この図において、25はカセグレン焦点式反射鏡
11の副鏡であり、この副鏡25は中心部に円孔25a
が設けられている。発光素子16から発光されたパルス
光はハーフミラー18と後方保護ガラス14を通過し、
副鏡25の円孔25aを通過して、前方保護ガラス15
を通過して被測距体に向かって投光される。この第3の
従来例ではパルス光は副鏡25の円孔25aを通過して
投光されるので、パルス光の光束がカセグレン焦点式反
射鏡11によって広がることなく、パルス光の光束密度
が高くなる。その他構成及び動作は第2の従来例と同じ
であるので説明を省略する。FIG. 12 is a block diagram showing a third conventional distance measuring device disclosed in, for example, Japanese Patent Application Laid-Open No. 2-10283. In this figure, reference numeral 25 is a secondary mirror of the Cassegrain focusing mirror 11, and this secondary mirror 25 has a circular hole 25a at the center thereof.
Is provided. The pulsed light emitted from the light emitting element 16 passes through the half mirror 18 and the rear protective glass 14,
After passing through the circular hole 25a of the secondary mirror 25, the front protective glass 15
The light is projected toward the object to be measured after passing through. In the third conventional example, since the pulsed light passes through the circular hole 25a of the secondary mirror 25 and is projected, the luminous flux of the pulsed light does not spread by the Cassegrain focusing mirror 11 and the luminous flux density of the pulsed light is high. Become. The other structure and operation are the same as those of the second conventional example, and thus the description thereof is omitted.
【0008】[0008]
【発明が解決しようとする課題】上記のような従来の距
離測定装置は、投光時と受光時とでパルス光の光路を分
けるためにハーフミラー18を通過または反射させてい
るので、発光素子16から出力されるパルス光の1/4
以下の強度のパルス光しか受光素子20に入力されず、
受光素子20に入力されるパルス光の強度を上げるため
に主鏡12の口径を大きくする必要があり、装置が大型
化していた。In the conventional distance measuring device as described above, the half mirror 18 is passed through or reflected in order to divide the optical path of the pulsed light at the time of light projection and at the time of light reception. 1/4 of the pulsed light output from 16
Only pulsed light of the following intensities is input to the light receiving element 20,
In order to increase the intensity of the pulsed light input to the light receiving element 20, it is necessary to increase the diameter of the main mirror 12, resulting in an increase in size of the device.
【0009】また、副鏡25に円孔25aを設けている
ので、副鏡25の形状が複雑なものとなっていた。Further, since the secondary mirror 25 is provided with the circular hole 25a, the secondary mirror 25 has a complicated shape.
【0010】また、投光時にハーフミラー18によって
反射されたパルス光が被測距体以外の物で乱反射し、受
光素子20に入射して測定を誤ることがあった。Further, the pulsed light reflected by the half mirror 18 at the time of light projection may be irregularly reflected by an object other than the object to be measured, and may enter the light receiving element 20 to make an erroneous measurement.
【0011】さらに、投光時に前方保護ガラス15また
は後方保護ガラス14に反射されたパルス光が受光素子
20に入射して誤測定することがあった。Further, the pulsed light reflected by the front protective glass 15 or the rear protective glass 14 at the time of light projection may enter the light receiving element 20 and cause an erroneous measurement.
【0012】また、前方保護ガラス15に塵埃が付着し
た場合、パルス光が前方保護ガラス15を通過する際に
パルス光の強度が低下して受光素子20に入射するパル
ス光が減少し、受光素子20がパルス光を検出できず、
距離の測定を誤ることがあった。When dust adheres to the front protective glass 15, the intensity of the pulsed light when the pulsed light passes through the front protective glass 15 decreases and the pulsed light incident on the light receiving element 20 decreases. 20 cannot detect pulsed light,
I sometimes made a mistake in measuring the distance.
【0013】この発明は、小型で製作が容易で、距離の
誤測定が少ない距離測定装置を得ることを目的としてい
る。It is an object of the present invention to provide a distance measuring device which is small in size, easy to manufacture, and less in erroneous distance measurement.
【0014】[0014]
【課題を解決するための手段】この発明に係る距離測定
装置は発光素子が発した光を被測距体方向に投光する投
光光学系と、投光光学系と光軸が同一で被測距体が反射
した光を受光する受光光学系と、この受光光学系が受光
した光を受光素子へ導く導光光学系と、発光素子が発光
してから受光素子が光を検出するまでの時間を計測して
被測距体までの距離を算出する距離算出部と、受光光学
系及び導光光学系に設けられ投光光学系から投光された
光を被測距体方向に通過させる通過孔とを設けたもので
ある。A distance measuring apparatus according to the present invention has a projection optical system for projecting light emitted from a light emitting element toward a distance measuring object, and a projection optical system having the same optical axis. A light-receiving optical system that receives the light reflected by the rangefinder, a light-guiding optical system that guides the light received by this light-receiving optical system to the light-receiving element, and a period from when the light-emitting element emits light until the light-receiving element detects light. A distance calculation unit that measures time and calculates the distance to the object to be measured, and the light projected from the light projecting optical system provided in the light receiving optical system and the light guiding optical system to pass in the direction of the object to be measured. A through hole is provided.
【0015】また、発光素子が発した光を被測距体方向
に投光する投光光学系と、投光光学系と光軸が同一で被
測距体が反射した光を受光して凹面反射鏡である主鏡と
副鏡とを有する反射鏡式光学系と、この反射鏡式光学系
が受光した光を検出する受光素子と、発光素子が発光し
てから受光素子が光を検出するまでの時間を計測して被
測距体までの距離を算出する距離算出部とを設け、投光
光学系が副鏡と被測距体との間に配置されたものであ
る。Further, a projection optical system for projecting the light emitted from the light emitting element toward the distance measuring object, and a concave surface for receiving the light reflected by the distance measuring object having the same optical axis as the projection optical system. A reflecting mirror type optical system having a main mirror and a sub mirror which are reflecting mirrors, a light receiving element for detecting light received by the reflecting mirror type optical system, and a light receiving element for detecting light after the light emitting element emits light. And a distance calculation unit for calculating the distance to the distance-measuring object, and the projection optical system is arranged between the secondary mirror and the distance-measuring object.
【0016】また、発光素子が発した光を被測距体方向
に投光する投光光学系と、投光光学系の光軸と同一の主
光軸とこの主光軸と異なる副光軸とを有しこの副光軸上
に焦点を有する凹面反射鏡と、この凹面反射鏡が設けら
れて被測距体が反射した光を受光する反射鏡式光学系
と、この反射鏡式光学系により受光された光を検出する
受光素子と、発光素子が光を発光して受光素子が光を検
出するまでの時間を計測して被測距体までの距離を算出
する距離算出部とを設けたものである。Further, a light projecting optical system for projecting the light emitted from the light emitting element toward the object to be measured, a main optical axis which is the same as the optical axis of the light projecting optical system, and a sub optical axis which is different from this main optical axis. A concave reflecting mirror having a focal point on the sub optical axis, a reflecting mirror type optical system provided with the concave reflecting mirror and receiving light reflected by the object to be measured, and the reflecting mirror type optical system. A light-receiving element that detects the light received by the light-receiving element and a distance calculation unit that calculates the distance to the object to be measured by measuring the time until the light-emitting element emits light and the light-receiving element detects the light It is a thing.
【0017】また、副鏡と投光光学系とを一体にしたも
のである。Further, the sub-mirror and the projection optical system are integrated.
【0018】また、発光素子と投光光学系とを、もしく
は受光素子と受光光学系とを接続する光ファイバを設け
たものである。An optical fiber for connecting the light emitting element and the light projecting optical system or the light receiving element and the light receiving optical system is provided.
【0019】また、投光光学系の光軸上に回転軸を持つ
反射鏡を投光光学系と被測距体との間に設けたものであ
る。Further, a reflecting mirror having a rotation axis on the optical axis of the projection optical system is provided between the projection optical system and the object to be measured.
【0020】また、発光素子から発光された光を被測距
体方向に投光する投光光学系と、投光光学系と光軸が同
一で被測距体により反射された光を受光する受光光学系
と、この受光光学系により受光された光を検出する受光
素子と、発光素子が光を発光して受光素子が光を検出す
るまでの時間を計測して被測距体までの距離を算出する
距離算出部と、投光光学系から投光される光の光路上に
設けられて投光光学系から投光される光に対して垂直な
面に対して傾いている面により構成される保護ガラスを
設けたものである。Further, a light projecting optical system for projecting the light emitted from the light emitting element toward the range-finding object and a light reflected by the range-finding object having the same optical axis as the projection optical system. The light receiving optical system, the light receiving element that detects the light received by this light receiving optical system, and the distance to the object to be measured by measuring the time until the light emitting element emits light and the light receiving element detects the light. And a surface that is provided on the optical path of the light projected from the projection optical system and is inclined with respect to a plane perpendicular to the light projected from the projection optical system. The protective glass is provided.
【0021】また、外部側の面が鉛直面に対して下方向
に傾けて配置された保護ガラスを設けたものである。Further, a protective glass is provided in which the outer surface is inclined downward with respect to the vertical plane.
【0022】また、投光光学系から投光され保護ガラス
により反射された光を吸収する吸収部を設けたものであ
る。Further, an absorbing portion for absorbing the light projected from the projection optical system and reflected by the protective glass is provided.
【0023】また、保護ガラスからの光を検出する監視
用受光素子と、この監視用受光素子が検出する光の光量
により保護ガラスの汚染度を決定する汚染度決定手段と
を設けたものである。Further, a monitoring light receiving element for detecting light from the protective glass and a contamination degree determining means for determining the contamination degree of the protective glass according to the amount of light detected by the monitoring light receiving element are provided. .
【0024】[0024]
【作用】この発明に係る距離測定装置は発光素子が発し
た光を被測距体方向に投光する投光光学系と、投光光学
系と光軸が同一で被測距体が反射した光を受光する受光
光学系と、この受光光学系が受光した光を受光素子へ導
く導光光学系と、発光素子が発光してから受光素子が光
を検出するまでの時間を計測して被測距体までの距離を
算出する距離算出部と、受光光学系及び導光光学系に設
けられ投光光学系から投光された光を被測距体方向に通
過させる通過孔とを設けたものであるので、投光光学系
から投光された光は受光光学系及び導光光学系に設けら
れた通過孔を通過するものである。In the distance measuring device according to the present invention, the projection optical system for projecting the light emitted from the light emitting element in the direction of the object to be measured, and the object to be measured have the same optical axis as the light projecting optical system. A light receiving optical system that receives light, a light guiding optical system that guides the light received by this light receiving optical system to a light receiving element, and the time from when the light emitting element emits light to when the light receiving element detects light is measured. A distance calculating unit for calculating the distance to the distance measuring object and a passage hole provided in the light receiving optical system and the light guiding optical system for passing the light projected from the light projecting optical system in the direction of the distance measuring object are provided. Therefore, the light projected from the light projecting optical system passes through the through holes provided in the light receiving optical system and the light guiding optical system.
【0025】また、発光素子が発した光を被測距体方向
に投光する投光光学系と、投光光学系と光軸が同一で被
測距体が反射した光を受光して凹面反射鏡である主鏡と
副鏡とを有する反射鏡式光学系と、この反射鏡式光学系
が受光した光を検出する受光素子と、発光素子が発光し
てから受光素子が光を検出するまでの時間を計測して被
測距体までの距離を算出する距離算出部とを設け、投光
光学系は副鏡と被測距体との間に配置されているので、
投光光学系から被測距体へ投光された光は反射鏡式光学
系の副鏡を通過することがないものである。Further, a projection optical system for projecting the light emitted from the light emitting element toward the distance measuring object, and a concave surface for receiving the light reflected by the distance measuring object having the same optical axis as the projection optical system. A reflecting mirror type optical system having a main mirror and a sub mirror which are reflecting mirrors, a light receiving element for detecting light received by the reflecting mirror type optical system, and a light receiving element for detecting light after the light emitting element emits light. And a distance calculation unit that calculates the distance to the distance-measured object by measuring the time to
The light projected from the projection optical system to the object to be measured does not pass through the secondary mirror of the reflecting mirror type optical system.
【0026】また、発光素子が発した光を被測距体方向
に投光する投光光学系と、投光光学系の光軸と同一の主
光軸とこの主光軸と異なる副光軸とを有しこの副光軸上
に焦点を有する凹面反射鏡と、この凹面反射鏡が設けら
れて被測距体が反射した光を受光する反射鏡式光学系
と、この反射鏡式光学系により受光された光を検出する
受光素子と、発光素子が光を発光して受光素子が光を検
出するまでの時間を計測して被測距体までの距離を算出
する距離算出部とを設けたものであるので、投光光学系
と凹面反射鏡の焦点が重ならないものである。Further, a light projecting optical system for projecting the light emitted from the light emitting element toward the object to be measured, a main optical axis which is the same as the optical axis of the light projecting optical system, and a sub optical axis which is different from this main optical axis. A concave reflecting mirror having a focal point on the sub optical axis, a reflecting mirror type optical system provided with the concave reflecting mirror and receiving light reflected by the object to be measured, and the reflecting mirror type optical system. A light-receiving element that detects the light received by the light-receiving element and a distance calculation unit that calculates the distance to the object to be measured by measuring the time until the light-emitting element emits light and the light-receiving element detects the light The projection optical system and the concave reflecting mirror do not overlap each other.
【0027】また、副鏡と投光光学系とを一体に設けた
ものであるので、一体化した副鏡と投光光学系とを同時
に設置するものである。Further, since the secondary mirror and the projection optical system are integrally provided, the integrated secondary mirror and the projection optical system are installed at the same time.
【0028】また、発光素子と投光光学系とを、もしく
は受光素子と受光光学系とを接続する光ファイバを設け
たものであるので、投光光学系もしくは受光光学系を簡
略化することができる。Further, since the optical fiber for connecting the light emitting element and the light projecting optical system or the light receiving element and the light receiving optical system is provided, the light projecting optical system or the light receiving optical system can be simplified. it can.
【0029】また、投光光学系の光軸上に回転軸を持つ
反射鏡を投光光学系と被測距体との間に設けたものであ
り、反射鏡が回転して測距方向を変化させるものであ
る。Further, a reflecting mirror having a rotation axis on the optical axis of the projecting optical system is provided between the projecting optical system and the object to be measured, and the reflecting mirror rotates to change the distance measuring direction. It changes.
【0030】また、発光素子から発光された光を被測距
体方向に投光する投光光学系と、投光光学系と光軸が同
一で被測距体により反射された光を受光する受光光学系
と、この受光光学系により受光された光を検出する受光
素子と、発光素子が光を発光して受光素子が光を検出す
るまでの時間を計測して被測距体までの距離を算出する
距離算出部と、投光光学系から投光される光の光路上に
設けられて投光光学系から投光される光に対して垂直な
面に対して傾いている面により構成される保護ガラスを
設けたものであるので、投光光学系から投光された光が
保護ガラスの表面で反射されても投光光学系の光軸すな
わち受光光学系の光軸に対して傾いて反射される。Further, the projection optical system for projecting the light emitted from the light emitting element in the direction of the object to be measured, and the light having the same optical axis as the projection optical system and reflected by the object to be measured are received. The light receiving optical system, the light receiving element that detects the light received by this light receiving optical system, and the distance to the object to be measured by measuring the time until the light emitting element emits light and the light receiving element detects the light. And a surface that is provided on the optical path of the light projected from the projection optical system and is inclined with respect to a plane perpendicular to the light projected from the projection optical system. Since the protective glass is provided, even if the light projected from the projecting optical system is reflected on the surface of the protective glass, it is tilted with respect to the optical axis of the projecting optical system, that is, the optical axis of the receiving optical system. Is reflected.
【0031】また、外部側の面が鉛直面に対して下方向
に傾けて配置された保護ガラスを設けたものであるの
で、保護ガラスの外部側の面に雨滴等が付着し難い。Further, since the protective glass is provided such that the outer surface is inclined downward with respect to the vertical plane, raindrops and the like are unlikely to adhere to the outer surface of the protective glass.
【0032】また、投光光学系から投光され保護ガラス
により反射された光を吸収する吸収部を設けたものであ
るので、保護ガラスにより反射された光が受光素子に入
射し難い。Further, since the absorbing portion for absorbing the light projected from the light projecting optical system and reflected by the protective glass is provided, the light reflected by the protective glass is unlikely to enter the light receiving element.
【0033】また、保護ガラスからの光を検出する監視
用受光素子と、この監視用受光素子で検出した光の光量
により保護ガラスの汚染度を決定する汚染度決定手段と
を設けたものであるので、保護ガラスの汚れで散乱した
光を監視用受光素子で検出して、この監視用受光素子で
検出した光の光量から保護ガラスの汚染度を決定する。Further, there is provided a monitoring light receiving element for detecting light from the protective glass, and contamination degree determining means for determining the contamination degree of the protective glass on the basis of the amount of light detected by the monitoring light receiving element. Therefore, the light scattered by the dirt on the protective glass is detected by the monitoring light receiving element, and the degree of contamination of the protective glass is determined from the amount of light detected by the monitoring light receiving element.
【0034】[0034]
実施例1.図1はこの発明の実施例1を示す構成図であ
る。この図において、31は内面が黒色に塗られた円筒
状のケース31aと投光光学系としての凸レンズ32と
半導体レーザダイオード等の発光素子33により構成さ
れる投光部である。この投光部31から投光されるパル
ス光Pは図1中矢印Pで示すように被測距体に向かって
投光される。この被測距体方向に投光されたパルス光P
は被測距体により反射され、図1中矢印Qで経路が示さ
れるパルス光Qとなり戻ってくる。34はこのパルス光
Qが入射される受光部であり、この受光部34は放物面
を持つ凹面鏡の主鏡35aと双曲面を持つ凸面鏡の副鏡
35bとにより構成される受光光学系もしくは反射鏡式
光学系としてのカセグレン焦点式反射鏡部35と、フォ
トダイオード等の受光素子36とにより構成される。主
鏡35aの中心部には副鏡35bから受光素子36へパ
ルス光Qを通過させるための主鏡口35cが開けられて
いる。カセグレン焦点式反射鏡部35の光軸と凸レンズ
32の光軸はほぼ同一であって、図1中一点鎖線Rで示
すようになる。Example 1. 1 is a block diagram showing a first embodiment of the present invention. In this figure, reference numeral 31 is a light projecting portion which is composed of a cylindrical case 31a whose inner surface is painted black, a convex lens 32 as a light projecting optical system, and a light emitting element 33 such as a semiconductor laser diode. The pulsed light P projected from the light projecting unit 31 is projected toward the object to be measured as indicated by an arrow P in FIG. The pulsed light P emitted in the direction of the distance-measured object
Is reflected by the object to be measured and returns as pulsed light Q whose path is shown by an arrow Q in FIG. Reference numeral 34 denotes a light receiving portion on which the pulsed light Q is incident, and the light receiving portion 34 is a light receiving optical system or a reflection optical system composed of a primary mirror 35a of a concave mirror having a parabolic surface and a secondary mirror 35b of a convex mirror having a hyperbolic surface. It is composed of a Cassegrain focus type reflecting mirror section 35 as a mirror type optical system and a light receiving element 36 such as a photodiode. A main mirror opening 35c for passing the pulsed light Q from the sub mirror 35b to the light receiving element 36 is opened in the center of the main mirror 35a. The optical axis of the Cassegrain focus type reflecting mirror portion 35 and the optical axis of the convex lens 32 are substantially the same, as shown by the one-dot chain line R in FIG.
【0035】37は発光素子33にパルス光Pを発光さ
せる投光信号を接続線38を介して出力すると共に受光
素子36からパルス光Qの受光信号が接続線39を介し
て入力される距離算出部としてのコントローラであり、
このコントローラ37は投光信号を送ってから受光信号
を受け取るまでにかかった時間から被測距体までのパル
ス光の往復時間を算出して、被測距体までの距離をマイ
コン等を用いて演算する。40は投光部31と副鏡35
bとを一体化した投光及び副鏡部である。このように投
光部31と副鏡35bとを一体化することにより装置の
組み立てが容易になるとともに、光軸の調節も容易にな
る。また、投光部31の凸レンズ32の口径を小さく
し、受光部34のカセグレン焦点式反射鏡部35の口径
を大きくしているので、パルス光Pは被測距体への指向
性に優れた強いパルス光となり、受光部34はパルス光
Qを広い範囲で受光するので、より確実に検出すること
ができる。Reference numeral 37 is a distance calculation for outputting a light projection signal for causing the light emitting element 33 to emit the pulsed light P through the connection line 38 and at the same time receiving a light reception signal of the pulsed light Q from the light receiving element 36 through the connection line 39. A controller as a department,
This controller 37 calculates the round-trip time of the pulsed light to the distance-measuring object from the time it takes to receive the light-reception signal after transmitting the light-emission signal, and calculates the distance to the distance-measuring object using a microcomputer or the like. Calculate 40 is a light projecting section 31 and a secondary mirror 35.
It is a light projecting and sub-mirror unit that is integrated with b. By thus integrating the light projecting unit 31 and the secondary mirror 35b, the device can be easily assembled and the optical axis can be easily adjusted. Further, since the diameter of the convex lens 32 of the light projecting portion 31 is made small and the diameter of the Cassegrain focus type reflecting mirror portion 35 of the light receiving portion 34 is made large, the pulsed light P has excellent directivity to the object to be measured. Since the pulsed light becomes strong and the light receiving unit 34 receives the pulsed light Q in a wide range, it can be detected more reliably.
【0036】次に動作について述べる。コントローラ3
7から発光素子33に投光信号が送られると、発光素子
33からパルス光Pが発光される。このパルス光Pは凸
レンズ32によって集光され、被測距体に向かって投光
される。被測距体にパルス光Pは反射してパルス光Qと
して戻ってくる。このパルス光Qは受光部34に入射さ
れ、主鏡35aにより反射して集光され、副鏡35bに
よっても反射して集光されて受光素子36に入射され
る。受光素子36はパルス光Qが入射されると受光信号
をコントローラ37に出力する。コントローラ37は投
光信号を出力してから受光信号が入力されるまでにかか
った時間を計測し、この計測した時間から接続線38、
39内を信号が通過する時間やカセグレン焦点式反射鏡
35内をパルス光Qが通過する時間及び発光素子33と
受光素子36の位置の違いによる誤差時間を補正した時
間Tを算出し、この時間Tから被測距体までの距離R
(R=(光速)×T/2)を算出する。また、発光素子
33から発光されたパルス光Pは凸レンズ32の表面で
一部が反射されるが、ケース31aによって吸収され、
受光素子36に入射されることはない。Next, the operation will be described. Controller 3
When a light projection signal is sent from 7 to the light emitting element 33, the light emitting element 33 emits the pulsed light P. The pulsed light P is condensed by the convex lens 32 and is projected toward the object to be measured. The pulsed light P is reflected by the object to be measured and returns as pulsed light Q. The pulsed light Q is incident on the light receiving section 34, reflected by the main mirror 35a and condensed, and also reflected by the sub mirror 35b to be condensed and incident on the light receiving element 36. The light receiving element 36 outputs a light receiving signal to the controller 37 when the pulsed light Q is incident. The controller 37 measures the time taken from the output of the light emitting signal to the input of the light receiving signal, and from the measured time, the connecting line 38,
A time T in which a signal passes through 39, a time when the pulsed light Q passes through the Cassegrain focusing mirror 35, and an error time due to a difference in position between the light emitting element 33 and the light receiving element 36 are calculated, and this time is calculated. Distance R from T to the object to be measured
(R = (speed of light) × T / 2) is calculated. The pulsed light P emitted from the light emitting element 33 is partially reflected by the surface of the convex lens 32, but is absorbed by the case 31a,
It does not enter the light receiving element 36.
【0037】また、コントローラ37において、所定時
間(例えば0.5秒間)の間に所定回数(例えば100
回)投光信号を出力して、それぞれの投光信号を出力し
てから受光信号が入力されるまでの時間を計測し、この
計測結果の平均値を用いて被測距体までの距離をより正
確に算出することもできる。さらに、コントローラ37
において、投光信号を出力してから所定時間後の入力信
号の有無を検出するゲート式検出器を設け、このゲート
式検出器の所定時間を変化させて、入力信号が入力され
た時点の所定時間を用いて被測距体までの距離を算出す
ることによりコントローラ37における演算処理を簡略
化することができる。In the controller 37, a predetermined number of times (for example, 100 seconds) is performed during a predetermined time (for example, 0.5 seconds).
Times) Output the light emission signal, measure the time from the output of each light emission signal to the input of the light reception signal, and use the average value of this measurement result to determine the distance to the object to be measured. It can also be calculated more accurately. Furthermore, the controller 37
, A gate type detector is provided for detecting the presence or absence of an input signal after a predetermined time has elapsed from the output of the light projection signal, and the predetermined time of the gate type detector is changed to determine the predetermined time when the input signal is input. The calculation process in the controller 37 can be simplified by calculating the distance to the object to be measured using time.
【0038】実施例2.図2はこの発明の実施例2を示
す構成図である。この図において、51は主鏡51aに
より構成される凹面反射鏡としてのハーシェル焦点式反
射鏡部である。このハーシェル焦点式反射鏡部51は凸
レンズ32と同一の光軸R2(図2中一点鎖線R2で示
す)を持つが、この光軸R2に対して主鏡51aが傾け
られているので、主鏡51aによって反射されたパルス
光Q2(図2中矢印Q2で示す)は軸R3(図2中一点
鎖線R3で示す)上に焦点を結び、受光素子36はこの
軸R3上に設置される。このように、受光素子36は投
光部31が設置される光軸R2から傾いている光軸R3
上に設置されるので、実施例1で用いられているカセグ
レン焦点式反射鏡のように光軸R2上にある投光部31
と受光素子36とが重ならないので、副鏡35bを設け
てパルス光Qを折り返す必要がなく、主鏡51aに穴を
あける必要がないので、装置を簡略化することができ
る。その他の構成及び動作は実施例1と同様であるの
で、説明を省略する。Example 2. Second Embodiment FIG. 2 is a configuration diagram showing a second embodiment of the present invention. In this figure, reference numeral 51 is a Herschel focus type reflecting mirror section as a concave reflecting mirror constituted by a main mirror 51a. The Herschel focus type reflecting mirror unit 51 has the same optical axis R2 as the convex lens 32 (shown by the one-dot chain line R2 in FIG. 2), but since the main mirror 51a is inclined with respect to this optical axis R2, the main mirror 51a is inclined. The pulsed light Q2 reflected by 51a (indicated by an arrow Q2 in FIG. 2) is focused on an axis R3 (indicated by an alternate long and short dash line R3 in FIG. 2), and the light receiving element 36 is installed on this axis R3. Thus, the light receiving element 36 has the optical axis R3 inclined from the optical axis R2 on which the light projecting section 31 is installed.
Since it is installed above, the light projecting portion 31 located on the optical axis R2, like the Cassegrain focusing mirror used in the first embodiment.
Since the light receiving element 36 does not overlap with the light receiving element 36, it is not necessary to provide the sub mirror 35b to return the pulsed light Q and to make a hole in the main mirror 51a, so that the device can be simplified. The other configurations and operations are similar to those of the first embodiment, and therefore the description thereof is omitted.
【0039】実施例3.図3はこの発明の実施例3を示
す構成図である。この図において、61は発光素子33
の発光部分に接続された光ファイバである。62は光フ
ァイバ61を介して発光素子33からパルス光が入射さ
れる投光部であり、この投光部62には凸レンズ32が
設けられていて、この凸レンズ32によってパルス光P
は集光されて被測距体に向かって投光される。63は円
筒状のケースであり、このケース63には凸レンズ32
より前方に張り出した円筒状の遮光部63aが設けられ
ている。この遮光部63aは投光部62から投光される
パルス光Pの指向性を強めるものである。64は円盤状
の前方保護ガラスであり、この前方保護ガラス64の真
ん中には投光部62のケース63が入る円孔64aが開
いている。前方保護ガラス64はカセグレン焦点式反射
鏡部35への塵埃等の侵入を防ぎ、カセグレン焦点式反
射鏡部35内の空気の流れの発生を防ぐものである。Example 3. FIG. 3 is a configuration diagram showing a third embodiment of the present invention. In this figure, 61 is a light emitting element 33.
Is an optical fiber connected to the light emitting portion of the. Reference numeral 62 denotes a light projecting portion on which pulsed light is incident from the light emitting element 33 via the optical fiber 61. The light projecting portion 62 is provided with a convex lens 32.
Is condensed and projected toward the object to be measured. 63 is a cylindrical case, and the convex lens 32 is included in the case 63.
A cylindrical light-shielding portion 63a that projects further forward is provided. The light shielding portion 63a enhances the directivity of the pulsed light P emitted from the light emitting portion 62. Reference numeral 64 is a disk-shaped front protective glass, and a circular hole 64a in which the case 63 of the light projecting portion 62 is inserted is opened in the center of the front protective glass 64. The front protective glass 64 prevents dust and the like from entering the Cassegrain focusing reflector 35 and prevents the flow of air in the Cassegrain focusing reflector 35.
【0040】65は円筒状の鏡筒部であり、この鏡筒部
65はカセグレン焦点式反射鏡部35への塵芥等の侵入
を防ぐと共に鏡筒部65内の空気の流れの乱れを防ぎ、
カセグレン焦点式反射鏡部35へのノイズ光の侵入を防
ぐものである。また、鏡筒部65は前方保護ガラス64
を内周面に保持している。66は主鏡35aの主鏡口3
5cにはめられている円盤状の後方保護ガラスであり、
後方保護ガラス66はカセグレン焦点式反射鏡部35へ
の塵埃等の侵入を防ぎ、カセグレン焦点式反射鏡部35
内の空気の流れの乱れを防ぐものである。その他の構成
及び動作は実施例1と同様であるので説明を省略する。Reference numeral 65 denotes a cylindrical lens barrel portion, and this lens barrel portion 65 prevents dust and the like from entering the Cassegrain focus type reflecting mirror portion 35 and prevents turbulence of the air flow in the lens barrel portion 65.
It is intended to prevent noise light from entering the Cassegrain focusing mirror portion 35. Further, the lens barrel portion 65 is a front protective glass 64.
Is held on the inner peripheral surface. 66 is the main mirror opening 3 of the main mirror 35a
It is a disc-shaped rear protective glass fitted in 5c,
The rear protective glass 66 prevents dust and the like from entering the Cassegrain focusing reflector 35, and protects the Cassegrain focusing reflector 35.
It prevents the turbulence of the air flow inside. Other configurations and operations are the same as those in the first embodiment, and thus the description thereof will be omitted.
【0041】また、上記実施例3において、受光素子3
6のかわりに光ファイバの一端を設け、この光ファイバ
の他端に受光素子を設けてもよい。In the third embodiment, the light receiving element 3
Instead of 6, one end of the optical fiber may be provided, and the light receiving element may be provided at the other end of the optical fiber.
【0042】実施例4.図4はこの発明の実施例4を示
す構成図である。この図において、71は発光素子33
と凸レンズ32とケース71aとにより構成される投光
部である。72は平面を持った反射鏡であり、投光部7
1から投光されたパルス光P2はこの反射鏡72によっ
て反射されてその方向を変えて、パルス光Pとなる。こ
のように投光部71内には副鏡35bと反射鏡72との
みを設けるだけでよいので、投光部71内を簡略化する
事ができるとともに、パルス光P2の光路の長さを変化
させることにより、発光素子33から被測距体までの光
路の長さと受光素子36から被測距体までの光路の長さ
を合わせることができるので、コントローラ37におけ
る演算処理を簡略化することができる。その他の構成及
び動作は実施例1と同様であるので説明を省略する。Example 4. Fourth Embodiment FIG. 4 is a configuration diagram showing a fourth embodiment of the present invention. In this figure, 71 is a light emitting element 33.
And a convex lens 32 and a case 71a. Reference numeral 72 denotes a reflecting mirror having a flat surface, and the light projecting unit 7
The pulsed light P2 projected from No. 1 is reflected by the reflecting mirror 72 and changes its direction to become pulsed light P. Since only the sub mirror 35b and the reflecting mirror 72 need be provided in the light projecting unit 71 as described above, the interior of the light projecting unit 71 can be simplified and the length of the optical path of the pulsed light P2 can be changed. By doing so, the length of the optical path from the light emitting element 33 to the object to be measured and the length of the optical path from the light receiving element 36 to the object to be measured can be matched, so that the arithmetic processing in the controller 37 can be simplified. it can. Other configurations and operations are the same as those in the first embodiment, and thus the description thereof will be omitted.
【0043】実施例5.図5はこの発明の実施例5を示
す構成図であり、図6は保護ガラスと回転鏡とケースと
を示す説明図であり、図7は保護ガラスと回転鏡と吸収
板を示す説明図である。これらの図において、81は投
光部31から投光されるパルス光Pを反射する回転鏡で
ある平面鏡である。この平面鏡81は光軸R上の回転軸
81aを中心として回転可能であり、この平面鏡81に
よりパルス光Pは角度θの傾きを持って反射されてパル
ス光P3となる。82は回転鏡等への雨滴や雪、塵芥等
の侵入を防ぐ保護ガラス板であり、この保護ガラス板8
2は図6に示すように鉛直面に対して下向きに傾けて配
置されているので、雨滴83が保護ガラス板82に付着
しようとしても図6中の矢印G方向に重力を受けて保護
ガラス板82から離れていく。84は平面鏡81を保護
するケースである。85は光を吸収する黒色のスロット
85aを多数並列に並べた吸収板である。86は監視用
受光素子であり、87は監視用受光素子86で受光した
光の光量を算出する光量算出部である。Example 5. 5 is a configuration diagram showing a fifth embodiment of the present invention, FIG. 6 is an explanatory view showing a protective glass, a rotating mirror and a case, and FIG. 7 is an explanatory diagram showing a protective glass, a rotating mirror and an absorbing plate. is there. In these figures, reference numeral 81 is a plane mirror that is a rotating mirror that reflects the pulsed light P projected from the light projecting unit 31. The plane mirror 81 is rotatable around a rotation axis 81a on the optical axis R, and the plane mirror 81 reflects the pulsed light P with an inclination of an angle θ to become pulsed light P3. Reference numeral 82 denotes a protective glass plate that prevents raindrops, snow, dust, etc. from entering the rotating mirror.
6 is inclined downward with respect to the vertical plane as shown in FIG. 6, so that even if the raindrop 83 tries to adhere to the protective glass plate 82, it receives gravity in the direction of arrow G in FIG. Get away from 82. Reference numeral 84 is a case for protecting the plane mirror 81. Reference numeral 85 is an absorption plate in which a large number of black slots 85a for absorbing light are arranged in parallel. Reference numeral 86 is a monitoring light receiving element, and 87 is a light amount calculation unit for calculating the light amount of the light received by the monitoring light receiving element 86.
【0044】次に動作について述べる。投光部31から
投光されるパルス光Pと受光部34が受光するパルス光
Qとは共に光軸Rに平行である。この光軸Rに交わる回
転軸81aを持つ平面鏡81によりパルス光Pは角度θ
の傾きにより反射されてパルス光P3となり、このパル
ス光P3は被測距体によって反射されてパルス光Q3と
なる。このパルス光Q3は平面鏡81により角度θの傾
きにより反射されてパルス光Qとなる。平面鏡81を回
転させて角度θを変化させることにより簡単に様々な方
向の被測距体を測距することができる。また、コントロ
ーラ37で被測距体を検出した時の角度θから被測距体
の方向を検出することもできる。また、図7に示すよう
にパルス光P3は保護ガラス板82によって一部が反射
されてパルス光P4となる。このパルス光Q4を吸収す
るためにケース84に吸収板85を設けてパルス光P4
がケース84により反射されて受光素子36にノイズ光
として入射することを防いでいる。この吸収板85はス
ロット85aを多数ならべたものであり、このスロット
85aの間に入射した光は多重反射しながらスロット8
5aに吸収される。Next, the operation will be described. The pulsed light P projected from the light projecting unit 31 and the pulsed light Q received by the light receiving unit 34 are both parallel to the optical axis R. The plane mirror 81 having the rotation axis 81a intersecting the optical axis R causes the pulsed light P to have an angle θ.
Is reflected by the inclination of the pulse light P3 to be pulsed light P3, and this pulsed light P3 is reflected by the object to be measured to become pulsed light Q3. The pulsed light Q3 is reflected by the plane mirror 81 at an inclination of the angle θ to become pulsed light Q. By rotating the plane mirror 81 and changing the angle θ, it is possible to easily measure the distance to the object to be measured in various directions. Further, the direction of the object to be measured can be detected from the angle θ when the controller 37 detects the object to be measured. Further, as shown in FIG. 7, a part of the pulsed light P3 is reflected by the protective glass plate 82 to become pulsed light P4. In order to absorb the pulsed light Q4, the case 84 is provided with an absorption plate 85 to provide the pulsed light P4.
Are prevented from being reflected by the case 84 and entering the light receiving element 36 as noise light. This absorbing plate 85 is formed by arranging a large number of slots 85a, and the light incident between the slots 85a is reflected by the slots 8 while undergoing multiple reflection.
5a is absorbed.
【0045】監視用受光素子86はパルス光P4の光量
を検出するとともに、保護ガラス板83に雨滴等が付着
した際のパルス光P3もしくはパルス光Q3の散乱光を
検出する。したがって、装置の故障等によりパルス光P
3が投光されなかったり、パルス光P3の投光方向がず
れたりして、監視用受光素子86においてパルス光P4
が検出されなかったり、光量が下がると光量算出部87
において装置が故障していると判断する。また、保護ガ
ラス板83に雨滴等が付着してパルス光P3もしくはパ
ルス光Q3が散乱されると、この散乱光が監視用受光素
子86に入射して、監視用受光素子86で検出する光量
が増えるので保護ガラス板82に雨滴等が付着している
と判断することができる。このときの光量の変化量に応
じて汚れの程度を検出することもできる。The monitoring light receiving element 86 detects the light amount of the pulsed light P4 and also detects the scattered light of the pulsed light P3 or the pulsed light Q3 when raindrops or the like adhere to the protective glass plate 83. Therefore, the pulsed light P is generated due to a failure of the device.
3 is not projected or the projection direction of the pulsed light P3 is deviated, so that the pulsed light P4 is emitted in the monitoring light receiving element 86.
Is not detected or the light amount is decreased, the light amount calculation unit 87
It is determined that the device is faulty. Further, when raindrops or the like adhere to the protective glass plate 83 and the pulsed light P3 or the pulsed light Q3 is scattered, the scattered light enters the monitoring light receiving element 86, and the amount of light detected by the monitoring light receiving element 86 changes. Since it increases, it can be determined that raindrops or the like are attached to the protective glass plate 82. It is also possible to detect the degree of contamination according to the amount of change in the amount of light at this time.
【0046】また、上記実施例では回転鏡として平面鏡
を示したが、凹面鏡や凸面鏡もしくは多数の平面鏡を組
み合わせたポリゴンミラー等の回転鏡を用いてもよい。In the above embodiment, the plane mirror is shown as the rotary mirror, but a rotary mirror such as a concave mirror, a convex mirror or a polygon mirror in which a number of plane mirrors are combined may be used.
【0047】また、上記実施例において吸収板85のか
わりに黒色の布などを設けてもよい。Further, in the above embodiment, a black cloth or the like may be provided instead of the absorbing plate 85.
【0048】実施例6.図8はこの発明の実施例6を示
す構成図である。91は中央部に通過孔としての円孔9
1aを持つ反射鏡であり、92は投光素子16側の面9
2aが傾けられている後方保護ガラスであり、93は前
方保護ガラスであり、この前方保護ガラス93は鉛直下
方向(図8中矢印94で示す)に対して傾きを持って、
カセグレン焦点式反射鏡11のケースに嵌合されてい
る。また、副鏡25はアダプタ95を介して前方保護ガ
ラス93に接着されている。次に動作について説明す
る。発光素子16から発光されたパルス光は矢印Cのよ
うに凸レンズ17によって集光され、反射鏡91の通過
孔としての円孔91aと副鏡25の通過孔としての円孔
25aとを通過して被測距体方向に投光される。被測距
体によって反射されたパルス光はカセグレン焦点式反射
鏡11と通り、反射鏡91によって矢印Dのように反射
されて受光素子20に入射される。その他の構成及び動
作は第3の従来例と同様であるので説明を省略する。Example 6. FIG. 8 is a configuration diagram showing a sixth embodiment of the present invention. Reference numeral 91 is a circular hole 9 as a passage hole in the central portion.
Reference numeral 92 is a reflector having 1a, and 92 is a surface 9 on the side of the light projecting element 16.
2a is a rear protective glass that is inclined, 93 is a front protective glass, and this front protective glass 93 has an inclination with respect to the vertically downward direction (indicated by arrow 94 in FIG. 8),
It is fitted into the case of the Cassegrain focusing mirror 11. The secondary mirror 25 is bonded to the front protective glass 93 via the adapter 95. Next, the operation will be described. The pulsed light emitted from the light emitting element 16 is condensed by the convex lens 17 as shown by an arrow C, passes through the circular hole 91a as the passage hole of the reflecting mirror 91 and the circular hole 25a as the passage hole of the sub mirror 25. The light is projected toward the object to be measured. The pulsed light reflected by the object to be measured passes through the Cassegrain focus reflecting mirror 11, is reflected by the reflecting mirror 91 as indicated by an arrow D, and enters the light receiving element 20. The other configurations and operations are the same as those of the third conventional example, and thus the description thereof is omitted.
【0049】また、上記各実施例ではカセグレン焦点式
反射鏡を用いたが、副鏡として凹面反射鏡を用いたグレ
ゴリアン焦点式反射鏡や副鏡として平面鏡を用いたニュ
ートン焦点式反射鏡等を用いてもよい。Although the Cassegrain focusing mirror is used in each of the above embodiments, a Gregorian focusing mirror using a concave reflecting mirror as a secondary mirror or a Newton focusing mirror using a plane mirror as a secondary mirror is used. May be.
【0050】また、上記各実施例において、保護ガラス
板82、前方保護ガラス64、後方保護ガラス66、前
方保護ガラス93、後方保護ガラス92等の表面に反射
防止用のコーティング膜を設けて、反射光を減少させる
ことも可能である。さらに、コーティング膜の光の光路
長に対する膜厚を光の波長の4分の1にするとより反射
光を減少することができる。Further, in each of the above-mentioned embodiments, a coating film for antireflection is provided on the surface of the protective glass plate 82, the front protective glass 64, the rear protective glass 66, the front protective glass 93, the rear protective glass 92, etc. to reflect them. It is also possible to reduce the light. Further, if the film thickness of the coating film with respect to the optical path length of light is set to ¼ of the wavelength of light, the reflected light can be further reduced.
【0051】また、上記各実施例では受光素子として量
子効果型受光素子を用いたが、例えば熱効果型受光素子
等の他の受光素子を用いてもよいことは言うまでもな
い。Although the quantum effect type light receiving element is used as the light receiving element in each of the above-mentioned embodiments, it goes without saying that other light receiving elements such as a heat effect type light receiving element may be used.
【0052】また、上記各実施例では発光素子として半
導体レーザダイオードを用いたが、例えばエキシマレー
ザ等の他のレーザ光を用いることも可能である。Further, although the semiconductor laser diode is used as the light emitting element in each of the above-mentioned embodiments, it is also possible to use other laser light such as an excimer laser.
【0053】また、上記各実施例では保護ガラスとして
保護ガラス板を用いたが、例えば透明なプラスチック板
等の光を通過させるものであればガラス以外のものでも
よいことは言うまでもない。Although a protective glass plate is used as the protective glass in each of the above-mentioned embodiments, it is needless to say that a glass plate other than glass may be used as long as it can transmit light, such as a transparent plastic plate.
【0054】[0054]
【発明の効果】この発明に係る距離測定装置は、投光光
学系から投光された光が受光光学系及び導光光学系に設
けられた通過孔を通過するものであるので、投光光学系
から投光された光の光量が受光光学系及び導光光学系に
より減少することがない。In the distance measuring device according to the present invention, the light projected from the light projecting optical system passes through the through holes provided in the light receiving optical system and the light guiding optical system. The amount of light projected from the system is not reduced by the light receiving optical system and the light guiding optical system.
【0055】また、投光光学系は副鏡と被測距体との間
に設けられているので、投光光学系から被測距体へ投光
された光は反射鏡式光学系の副鏡を通過することがない
ものであるので、投光光学系から投光された光を通過さ
せるために副鏡を加工する必要がない。Since the projection optical system is provided between the secondary mirror and the distance-measuring object, the light projected from the projection optical system to the distance-measuring object is a sub-light of the reflecting mirror type optical system. Since it does not pass through the mirror, it is not necessary to process the secondary mirror to pass the light projected from the projection optical system.
【0056】また、投光光学系と凹面反射鏡の焦点が重
ならないものであるので、凹面反射鏡の焦点に副鏡を設
ける必要がないので、容易に装置の小型化が図れる。Further, since the projection optical system and the concave reflecting mirror do not overlap with each other, it is not necessary to provide a secondary mirror at the concave reflecting mirror, so that the apparatus can be easily miniaturized.
【0057】また、副鏡と投光光学系とを一体に設けた
ものであるので、一体化された副鏡と投光光学系とを同
時に装置に設置することができるものであるので、組み
立てが容易になる。Since the sub-mirror and the projection optical system are integrally provided, the integrated sub-mirror and projection optical system can be installed in the apparatus at the same time. Will be easier.
【0058】また、発光素子と投光光学系とを、もしく
は受光素子と受光光学系とを接続する光ファイバを設け
たものであるので、投光光学系もしくは受光光学系を小
型化するとともに発光素子と受光素子との配置を自由に
したので、装置の小型化が図れるとともに装置の組み立
てが容易になる。Further, since the optical fiber for connecting the light emitting element and the light projecting optical system or the light receiving element and the light receiving optical system is provided, the light projecting optical system or the light receiving optical system is miniaturized and light is emitted. Since the element and the light receiving element can be freely arranged, the device can be downsized and the device can be easily assembled.
【0059】また、投光光学系の光軸上に回転軸を持つ
反射鏡を投光光学系と被測距体との間に設けたものであ
り、反射鏡が回転して測距方向を変化させるものである
ので、容易に測距方向を変化させることができる。Further, a reflecting mirror having a rotation axis on the optical axis of the projecting optical system is provided between the projecting optical system and the object to be measured, and the reflecting mirror rotates to change the distance measuring direction. Since the distance is changed, the distance measuring direction can be easily changed.
【0060】また、投光光学系から投光された光が保護
ガラスの表面で反射されても投光光学系の光軸すなわち
受光光学系の光軸に対して傾いて反射されるので、保護
ガラスの表面で反射された光が受光素子に入射し難く、
装置の誤測定を減少することができる。Further, even if the light projected from the projecting optical system is reflected on the surface of the protective glass, it is reflected because it is tilted with respect to the optical axis of the projecting optical system, that is, the optical axis of the receiving optical system. Light reflected by the glass surface is hard to enter the light receiving element,
False measurements on the device can be reduced.
【0061】また、外部側の面が鉛直面に対して下方向
に傾けて配置された保護ガラスを設けたものであるの
で、保護ガラスの外部側の面に雨滴等が付着し難く、保
護ガラスが汚れることを防ぎ、保護ガラスを通過する光
の光量を減少することなく、保護ガラスにより投光光学
系を保護することができる。Further, since the protective glass is provided such that the outer surface is inclined downward with respect to the vertical plane, raindrops and the like are unlikely to adhere to the outer surface of the protective glass, and the protective glass is protected. It is possible to protect the floodlight optical system with the protective glass without preventing the stain from getting dirty and reducing the amount of light passing through the protective glass.
【0062】また、投光光学系から投光され保護ガラス
により反射された光を吸収する吸収部を設けたものであ
るので、保護ガラスにより反射された光が受光素子に入
射し難く、装置の誤測定を減少することができる。Further, since the absorbing portion for absorbing the light projected from the light projecting optical system and reflected by the protective glass is provided, the light reflected by the protective glass is hard to enter the light receiving element and the device False measurements can be reduced.
【0063】また、保護ガラスからの光を検出する監視
用受光素子を設けたものであるので、この監視用受光素
子で検出した光の光量により保護ガラスの汚染度を決定
することができるので、簡単に保護ガラスの汚染度を決
定することができる。Further, since the monitoring light receiving element for detecting the light from the protective glass is provided, the contamination degree of the protective glass can be determined by the light amount of the light detected by the monitoring light receiving element. The degree of contamination of the protective glass can be easily determined.
【図1】 この発明の実施例1を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
【図2】 この発明の実施例2を示す構成図である。FIG. 2 is a configuration diagram showing a second embodiment of the present invention.
【図3】 この発明の実施例3を示す構成図である。FIG. 3 is a configuration diagram showing a third embodiment of the present invention.
【図4】 この発明の実施例4を示す構成図である。FIG. 4 is a configuration diagram showing a fourth embodiment of the present invention.
【図5】 この発明の実施例5を示す構成図である。FIG. 5 is a configuration diagram showing a fifth embodiment of the present invention.
【図6】 この発明の実施例5における保護ガラスと回
転鏡とケースとを示す説明図である。FIG. 6 is an explanatory diagram showing a protective glass, a rotating mirror, and a case according to a fifth embodiment of the present invention.
【図7】 この発明の実施例5における保護ガラスと回
転鏡と吸収板と監視用受光素子とを示す説明図である。FIG. 7 is an explanatory diagram showing a protective glass, a rotating mirror, an absorbing plate, and a monitoring light receiving element according to a fifth embodiment of the present invention.
【図8】 この発明の実施例6を示す構成図である。FIG. 8 is a configuration diagram showing a sixth embodiment of the present invention.
【図9】 第1の従来の距離測定装置を示す構成図であ
る。FIG. 9 is a configuration diagram showing a first conventional distance measuring device.
【図10】 第1の従来の距離測定装置における送光信
号と受光信号とを示す説明図である。FIG. 10 is an explanatory diagram showing a light transmitting signal and a light receiving signal in the first conventional distance measuring device.
【図11】 第2の従来の距離測定装置を示す構成図で
ある。FIG. 11 is a configuration diagram showing a second conventional distance measuring device.
【図12】 第3の従来の距離測定装置を示す構成図で
ある。FIG. 12 is a configuration diagram showing a third conventional distance measuring device.
1…投光部、2…発光素子、3…投光レンズ、4…受光
部、5…受光素子、6…受光レンズ、7…コントロー
ラ、11…カセグレン焦点式反射鏡、12…主鏡、13
…副鏡、14…後方保護ガラス、15…前方保護ガラ
ス、16…発光素子、18…ハーフミラー、20…受光
素子、21…コントローラ、25…副鏡、25a…円
孔、32…凸レンズ、33…発光素子、35…カセグレ
ン焦点式反射鏡部、35a…主鏡、35b…副鏡、36
…受光素子、37…コントローラ、40…投光及び副鏡
部、51…ハーシェル焦点式反射鏡部、51a…主鏡、
61…光ファイバ、64…前方保護ガラス、66…後方
保護ガラス、72…反射鏡、81…平面鏡、81a…回
転軸、82…保護ガラス板、85…吸収板、86…監視
用受光素子、87…光量算出部、91…反射鏡、91a
…円孔、92…後方保護ガラス、92a…面、93…前
方保護ガラスDESCRIPTION OF SYMBOLS 1 ... Light emitting part, 2 ... Light emitting element, 3 ... Light emitting lens, 4 ... Light receiving part, 5 ... Light receiving element, 6 ... Light receiving lens, 7 ... Controller, 11 ... Cassegrain focusing mirror, 12 ... Main mirror, 13
... secondary mirror, 14 ... rear protective glass, 15 ... front protective glass, 16 ... light emitting element, 18 ... half mirror, 20 ... light receiving element, 21 ... controller, 25 ... secondary mirror, 25a ... circular hole, 32 ... convex lens, 33 ... Light emitting element, 35 ... Cassegrain focusing reflector section, 35a ... Primary mirror, 35b ... Secondary mirror, 36
... light receiving element, 37 ... controller, 40 ... light projecting and secondary mirror section, 51 ... Herschel focus type reflecting mirror section, 51a ... primary mirror,
61 ... Optical fiber, 64 ... Front protective glass, 66 ... Rear protective glass, 72 ... Reflecting mirror, 81 ... Plane mirror, 81a ... Rotating shaft, 82 ... Protective glass plate, 85 ... Absorbing plate, 86 ... Monitoring light receiving element, 87 ... Light intensity calculator, 91 ... Reflector, 91a
... Circular hole, 92 ... Rear protective glass, 92a ... Surface, 93 ... Front protective glass
Claims (10)
光する投光光学系、 前記投光光学系と光軸が同一であり、前記被測距体が反
射した光を受光する受光光学系、 この受光光学系が受光した光を受光素子へ導く導光光学
系、 前記発光素子が発光してから前記受光素子が光を検出す
るまでの時間を計測し、前記被測距体までの距離を算出
する距離算出部及び前記受光光学系及び前記導光光学系
に設けられ前記投光光学系から投光された光を前記被測
距体方向に通過させる通過孔を備えたことを特徴とする
距離測定装置。1. A light projecting optical system for projecting light emitted from a light emitting element in the direction of a distance-measuring object, an optical axis being the same as that of the light-projecting optical system, and receiving light reflected by the distance-measuring object. A light receiving optical system, a light guiding optical system that guides the light received by the light receiving optical system to a light receiving element, the time from the light emitting element emitting light until the light receiving element detects light, and the measured distance A distance calculator for calculating the distance to the body, and a through hole provided in the light receiving optical system and the light guiding optical system for passing the light projected from the light projecting optical system in the direction of the object to be measured. A distance measuring device characterized by the above.
光する投光光学系、 前記投光光学系と光軸が同一であり、前記被測距体が反
射した光を受光し、凹面反射鏡である主鏡とこの主鏡に
対向して配置された副鏡とを有する反射鏡式光学系、 この反射鏡式光学系が受光した光を検出する受光素子及
び前記発光素子が発光してから前記受光素子が光を検出
するまでの時間を計測し、前記被測距体までの距離を算
出する距離算出部を備え、 前記投光光学系は前記副鏡と前記被測距体との間に配置
されることを特徴とする距離測定装置。2. A light projecting optical system for projecting light emitted from a light emitting element in the direction of a distance-measuring object, an optical axis having the same optical axis as that of the light-projecting optical system, and receiving light reflected by the distance-measuring object. A reflecting mirror type optical system having a main mirror which is a concave reflecting mirror and a secondary mirror arranged facing the main mirror, a light receiving element for detecting light received by the reflecting mirror type optical system, and the light emitting element. A distance calculation unit that measures a time from when the light is emitted until the light receiving element detects light, and calculates a distance to the distance-measuring object, wherein the projection optical system includes the secondary mirror and the measured object. A distance measuring device, which is arranged between the distance measuring device and the distance measuring device.
光する投光光学系、 前記投光光学系の光軸と同一の光軸とこの光軸と異なる
軸上にある焦点とを持つ凹面反射鏡を有し、前記被測距
体が反射した光を受光する受光光学系、 この受光光学系により受光された光を検出する受光素子
及び前記発光素子が前記光を発光して前記受光素子が前
記光を検出するまでの時間を計測し、前記被測距体まで
の距離を算出する距離算出部を備えたことを特徴とする
距離測定装置。3. A light projecting optical system for projecting light emitted from a light emitting element toward a distance-measuring object, an optical axis which is the same as the optical axis of the light projecting optical system, and a focal point which is on an axis different from this optical axis. And a light receiving optical system for receiving the light reflected by the object to be measured, a light receiving element for detecting the light received by the light receiving optical system, and the light emitting element for emitting the light. A distance measuring device comprising: a distance calculating unit that measures a time until the light receiving element detects the light and calculates a distance to the distance-measuring object.
特徴とする請求項2記載の距離測定装置。4. The distance measuring device according to claim 2, wherein the secondary mirror and the projection optical system are integrated.
素子と受光光学系とを光ファイバで接続したことを特徴
とする請求項1ないし請求項4記載の距離測定装置。5. The distance measuring device according to claim 1, wherein the light emitting element and the light projecting optical system or the light receiving element and the light receiving optical system are connected by an optical fiber.
鏡を投光光学系と被測距体との間に配置し、この反射鏡
を回転させて測距方向を変化させることを特徴とする請
求項1ないし請求項5記載の距離測定装置。6. A reflecting mirror having a rotation axis on the optical axis of the projection optical system is arranged between the projection optical system and the object to be measured, and the reflecting mirror is rotated to change the distance measuring direction. The distance measuring device according to any one of claims 1 to 5, characterized in that:
向に投光する投光光学系、 前記投光光学系と光軸が同一であり、前記被測距体によ
り反射された光を受光する受光光学系、 この受光光学系により受光された光を検出する受光素
子、 前記発光素子が前記光を発光して前記受光素子が前記光
を検出するまでの時間を計測し、前記被測距体までの距
離を算出する距離算出部及び前記投光光学系から投光さ
れる光の光路上に設けられ、前記投光光学系から投光さ
れる光に対する垂直な面に対して傾いている面を有する
保護ガラスを備えたことを特徴とする距離測定装置。7. A light projecting optical system for projecting light emitted from a light emitting element toward a distance-measuring body, light having the same optical axis as the light-projecting optical system, and reflected by the distance-measuring body. A light receiving optical system for receiving the light, a light receiving element for detecting the light received by the light receiving optical system, a time period until the light emitting element emits the light and the light receiving element detects the light, and A distance calculator that calculates the distance to the distance measuring body and an optical path of the light projected from the projection optical system are provided, and the tilt is inclined with respect to a plane perpendicular to the light projected from the projection optical system. A distance measuring device comprising a protective glass having a curved surface.
して下方向に傾けて配置されていることを特徴とする請
求項7記載の距離測定装置。8. The distance measuring device according to claim 7, wherein the protective glass is arranged such that an outer surface thereof is inclined downward with respect to a vertical plane.
り反射された光を吸収する吸収部を設けたことを特徴と
する請求項7または請求項8記載の距離測定装置。9. The distance measuring device according to claim 7, further comprising an absorbing portion for absorbing the light projected from the projection optical system and reflected by the protective glass.
受光素子と、この監視用受光素子が検出する光の量によ
り保護ガラスの汚染度を決定する汚染度決定手段とを設
けたことを特徴とする請求項7ないし請求項9記載の距
離測定装置。10. A monitoring light receiving element for detecting light from the protective glass, and contamination degree determining means for determining the contamination degree of the protective glass according to the amount of light detected by the monitoring light receiving element. The distance measuring device according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14322094A JPH0815413A (en) | 1994-06-24 | 1994-06-24 | Distance measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14322094A JPH0815413A (en) | 1994-06-24 | 1994-06-24 | Distance measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0815413A true JPH0815413A (en) | 1996-01-19 |
Family
ID=15333691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14322094A Pending JPH0815413A (en) | 1994-06-24 | 1994-06-24 | Distance measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0815413A (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09304549A (en) * | 1996-05-15 | 1997-11-28 | Oputeikon:Kk | Reflection-type photosensor |
JPH1062548A (en) * | 1996-08-21 | 1998-03-06 | Mitsubishi Electric Corp | Optical radar apparatus |
JPH11183599A (en) * | 1997-12-18 | 1999-07-09 | Mitsubishi Electric Corp | Optical radar device |
JP2003177014A (en) * | 2001-08-30 | 2003-06-27 | Z & F Zzoller & Froehlich Gmbh | 3-d laser measuring system |
JP2005234224A (en) * | 2004-02-19 | 2005-09-02 | Yasushi Yagi | All azimuth imaging system |
JP2005257628A (en) * | 2004-03-15 | 2005-09-22 | Fujinon Corp | Light transmitter-receiver and automonitor equipped with the same |
JP2006053055A (en) * | 2004-08-12 | 2006-02-23 | Inc Engineering Co Ltd | Laser measuring apparatus |
JP2008275386A (en) * | 2007-04-26 | 2008-11-13 | Hamamatsu Photonics Kk | Light wave range finder |
WO2012144341A1 (en) * | 2011-04-20 | 2012-10-26 | 三洋電機株式会社 | Laser radar |
JP2013508693A (en) * | 2009-11-20 | 2013-03-07 | ファロ テクノロジーズ インコーポレーテッド | Equipment for optically scanning and measuring the environment |
US8699036B2 (en) | 2010-07-29 | 2014-04-15 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
US8830485B2 (en) | 2012-08-17 | 2014-09-09 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
US9113023B2 (en) | 2009-11-20 | 2015-08-18 | Faro Technologies, Inc. | Three-dimensional scanner with spectroscopic energy detector |
US9210288B2 (en) | 2009-11-20 | 2015-12-08 | Faro Technologies, Inc. | Three-dimensional scanner with dichroic beam splitters to capture a variety of signals |
US9329271B2 (en) | 2010-05-10 | 2016-05-03 | Faro Technologies, Inc. | Method for optically scanning and measuring an environment |
US9529083B2 (en) | 2009-11-20 | 2016-12-27 | Faro Technologies, Inc. | Three-dimensional scanner with enhanced spectroscopic energy detector |
US9607239B2 (en) | 2010-01-20 | 2017-03-28 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations |
US9618620B2 (en) | 2012-10-05 | 2017-04-11 | Faro Technologies, Inc. | Using depth-camera images to speed registration of three-dimensional scans |
US20170102233A1 (en) * | 2015-10-07 | 2017-04-13 | Topcon Corporation | Image-Forming Optical Component And Optical System Of Surveying Instrument |
US9628775B2 (en) | 2010-01-20 | 2017-04-18 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations |
JP2017194424A (en) * | 2016-04-22 | 2017-10-26 | アイシン精機株式会社 | Light emitting/receiving device and distance measuring device |
US10067231B2 (en) | 2012-10-05 | 2018-09-04 | Faro Technologies, Inc. | Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner |
US10175037B2 (en) | 2015-12-27 | 2019-01-08 | Faro Technologies, Inc. | 3-D measuring device with battery pack |
US10281259B2 (en) | 2010-01-20 | 2019-05-07 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features |
KR20190130228A (en) * | 2018-05-14 | 2019-11-22 | 한국철도기술연구원 | Hyper-Tube System Using Vehicle Position Detection |
KR20200052557A (en) * | 2018-11-07 | 2020-05-15 | 한국철도기술연구원 | Hyper-Tube System Using Vehicle Position Detection |
JP2021012136A (en) * | 2019-07-08 | 2021-02-04 | 株式会社リコー | Three-dimensional information acquisition device and three-dimensional information acquisition method |
-
1994
- 1994-06-24 JP JP14322094A patent/JPH0815413A/en active Pending
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09304549A (en) * | 1996-05-15 | 1997-11-28 | Oputeikon:Kk | Reflection-type photosensor |
JPH1062548A (en) * | 1996-08-21 | 1998-03-06 | Mitsubishi Electric Corp | Optical radar apparatus |
JPH11183599A (en) * | 1997-12-18 | 1999-07-09 | Mitsubishi Electric Corp | Optical radar device |
JP2003177014A (en) * | 2001-08-30 | 2003-06-27 | Z & F Zzoller & Froehlich Gmbh | 3-d laser measuring system |
JP4554954B2 (en) * | 2004-02-19 | 2010-09-29 | 康史 八木 | Omnidirectional imaging system |
JP2005234224A (en) * | 2004-02-19 | 2005-09-02 | Yasushi Yagi | All azimuth imaging system |
JP2005257628A (en) * | 2004-03-15 | 2005-09-22 | Fujinon Corp | Light transmitter-receiver and automonitor equipped with the same |
JP4588339B2 (en) * | 2004-03-15 | 2010-12-01 | 日本信号株式会社 | Light transmitting / receiving device and automatic monitoring device having the light transmitting / receiving device |
JP2006053055A (en) * | 2004-08-12 | 2006-02-23 | Inc Engineering Co Ltd | Laser measuring apparatus |
JP2008275386A (en) * | 2007-04-26 | 2008-11-13 | Hamamatsu Photonics Kk | Light wave range finder |
US8896819B2 (en) | 2009-11-20 | 2014-11-25 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
JP2013508693A (en) * | 2009-11-20 | 2013-03-07 | ファロ テクノロジーズ インコーポレーテッド | Equipment for optically scanning and measuring the environment |
US9529083B2 (en) | 2009-11-20 | 2016-12-27 | Faro Technologies, Inc. | Three-dimensional scanner with enhanced spectroscopic energy detector |
US9210288B2 (en) | 2009-11-20 | 2015-12-08 | Faro Technologies, Inc. | Three-dimensional scanner with dichroic beam splitters to capture a variety of signals |
US9113023B2 (en) | 2009-11-20 | 2015-08-18 | Faro Technologies, Inc. | Three-dimensional scanner with spectroscopic energy detector |
US9628775B2 (en) | 2010-01-20 | 2017-04-18 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations |
US10060722B2 (en) | 2010-01-20 | 2018-08-28 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations |
US10281259B2 (en) | 2010-01-20 | 2019-05-07 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features |
US9607239B2 (en) | 2010-01-20 | 2017-03-28 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations |
US9684078B2 (en) | 2010-05-10 | 2017-06-20 | Faro Technologies, Inc. | Method for optically scanning and measuring an environment |
US9329271B2 (en) | 2010-05-10 | 2016-05-03 | Faro Technologies, Inc. | Method for optically scanning and measuring an environment |
US8699036B2 (en) | 2010-07-29 | 2014-04-15 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
WO2012144341A1 (en) * | 2011-04-20 | 2012-10-26 | 三洋電機株式会社 | Laser radar |
CN103415781A (en) * | 2011-04-20 | 2013-11-27 | 三洋电机株式会社 | Laser radar |
JPWO2012144341A1 (en) * | 2011-04-20 | 2014-07-28 | 三洋電機株式会社 | Laser radar |
US8830485B2 (en) | 2012-08-17 | 2014-09-09 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
US10739458B2 (en) | 2012-10-05 | 2020-08-11 | Faro Technologies, Inc. | Using two-dimensional camera images to speed registration of three-dimensional scans |
US9618620B2 (en) | 2012-10-05 | 2017-04-11 | Faro Technologies, Inc. | Using depth-camera images to speed registration of three-dimensional scans |
US9739886B2 (en) | 2012-10-05 | 2017-08-22 | Faro Technologies, Inc. | Using a two-dimensional scanner to speed registration of three-dimensional scan data |
US9746559B2 (en) | 2012-10-05 | 2017-08-29 | Faro Technologies, Inc. | Using two-dimensional camera images to speed registration of three-dimensional scans |
US11815600B2 (en) | 2012-10-05 | 2023-11-14 | Faro Technologies, Inc. | Using a two-dimensional scanner to speed registration of three-dimensional scan data |
US11112501B2 (en) | 2012-10-05 | 2021-09-07 | Faro Technologies, Inc. | Using a two-dimensional scanner to speed registration of three-dimensional scan data |
US10067231B2 (en) | 2012-10-05 | 2018-09-04 | Faro Technologies, Inc. | Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner |
US11035955B2 (en) | 2012-10-05 | 2021-06-15 | Faro Technologies, Inc. | Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner |
US10203413B2 (en) | 2012-10-05 | 2019-02-12 | Faro Technologies, Inc. | Using a two-dimensional scanner to speed registration of three-dimensional scan data |
EP3153905A3 (en) * | 2015-10-07 | 2017-06-07 | Topcon Corporation | Image-forming optical component and optical system of surveying instrument |
US20170102233A1 (en) * | 2015-10-07 | 2017-04-13 | Topcon Corporation | Image-Forming Optical Component And Optical System Of Surveying Instrument |
CN106990504A (en) * | 2015-10-07 | 2017-07-28 | 株式会社拓普康 | The optical system of image optics component and measuring machine |
US10175037B2 (en) | 2015-12-27 | 2019-01-08 | Faro Technologies, Inc. | 3-D measuring device with battery pack |
JP2017194424A (en) * | 2016-04-22 | 2017-10-26 | アイシン精機株式会社 | Light emitting/receiving device and distance measuring device |
KR20190130228A (en) * | 2018-05-14 | 2019-11-22 | 한국철도기술연구원 | Hyper-Tube System Using Vehicle Position Detection |
KR20200052557A (en) * | 2018-11-07 | 2020-05-15 | 한국철도기술연구원 | Hyper-Tube System Using Vehicle Position Detection |
JP2021012136A (en) * | 2019-07-08 | 2021-02-04 | 株式会社リコー | Three-dimensional information acquisition device and three-dimensional information acquisition method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0815413A (en) | Distance measuring apparatus | |
US5886777A (en) | Electronic distance measuring device | |
JPH10213661A (en) | Laser distance measuring equipment | |
JPS58100840A (en) | Finder of camera | |
JP3151595B2 (en) | Coaxial lightwave distance meter | |
JP2589278Y2 (en) | Apparatus for detecting an object in sheet form | |
EP1054233A2 (en) | Distance measuring system | |
JP5452245B2 (en) | Lightwave distance measuring device | |
JP2000193586A (en) | Optical raindrop detector | |
JP4127579B2 (en) | Light wave distance meter | |
JP5251641B2 (en) | Photoelectric sensor | |
JP6540388B2 (en) | Laser radar device | |
US5159378A (en) | Light projector for range finding device | |
JP3135194B2 (en) | Distance measuring device and protective cover for distance measuring device | |
JPH0921874A (en) | Reflection measuring device | |
CN114779267A (en) | Laser ranging system and laser ranging device | |
JP2000193440A (en) | Laser angle measuring device | |
JP4277458B2 (en) | Wafer detection sensor | |
JP2000121725A (en) | Distance measuring apparatus | |
JP2019023650A (en) | Light wave ranging device | |
JP2002350554A (en) | Transmission type photoelectric sensor | |
JPH08114671A (en) | Laser rangefinding apparatus | |
JP3451525B2 (en) | Optical sensor, lens unit and fiber unit | |
JP7336695B2 (en) | optical device | |
KR20180003988A (en) | A one-body type ridar |