JPH04101454A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04101454A
JPH04101454A JP2218821A JP21882190A JPH04101454A JP H04101454 A JPH04101454 A JP H04101454A JP 2218821 A JP2218821 A JP 2218821A JP 21882190 A JP21882190 A JP 21882190A JP H04101454 A JPH04101454 A JP H04101454A
Authority
JP
Japan
Prior art keywords
amorphous silicon
layer
polysilicon layer
polysilicon
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2218821A
Other languages
Japanese (ja)
Other versions
JP2699625B2 (en
Inventor
Masanobu Yoshiie
善家 昌伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2218821A priority Critical patent/JP2699625B2/en
Publication of JPH04101454A publication Critical patent/JPH04101454A/en
Application granted granted Critical
Publication of JP2699625B2 publication Critical patent/JP2699625B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance high reliability by growing amorphous silicon based on a CVD process which uses a gas group including disilane, ion-implanting impuri ties, such as silicon into amorphous silicon, crystallizing through heat treatment, and, forming an electrode made of polysilicon. CONSTITUTION:After a silicon oxide film 2 is formed on a silicon substrate 1, an amorphous silicon layer 3 is arranged to grow based on an CVD process which uses disilane. After P is introduced into the amorphous silicon layer based on an ion implantation process, heat treatment is carried out in a nitrogen atmosphere, an amorphous silicon layer 31, which contains P, is crystallized so that a polysilicon layer 32 with P may be formed. Then, the layer is etched with a photoresist where the polysilicon layer 32 is patterned, thereby forming a lower electrode 33. After the formation of the electrode 33, a capacity insula tion film 4, such as a silicon nitride film or a silicon oxide film is formed there on. The polysilicon layer is adapted to further grow thereon. After P is diffused, the layer is patterned so as to form an upper electrode 5. This construction makes it possible to enhance the pressure distribution and manufacture a capac ity section whose reliability is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に容量部の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a capacitor.

〔従来の技術〕[Conventional technology]

従来、ポリシリコンからなる下部電極と容量絶縁膜と上
部電極とからなる容量部を備えている半導体装置の製造
は次のように行なわれている。半導体基板上にシラン(
SiH4)を含むカス系からポリシリコン層を成長させ
、拡散あるいはイオン注入等でリンやヒ素等の不純物を
このポリシリコン層中に入れ、900°C程度の熱処理
を行って不純物の活性化を行い、次でフォトレジストを
用いるエツチングでパターニングを行って下部電極を形
成し、その上に容量絶縁膜としてのシリコン酸化膜やシ
リコン窒化膜を形成する。次に、この容量絶縁膜上に再
びポリシリコン層を成長させ、リン等の不純物を拡散し
てパターニングを行い、上部電極を形成する。
Conventionally, a semiconductor device including a capacitor section including a lower electrode made of polysilicon, a capacitor insulating film, and an upper electrode has been manufactured as follows. Silane (
A polysilicon layer is grown from a scum system containing SiH4), impurities such as phosphorus and arsenic are introduced into this polysilicon layer by diffusion or ion implantation, and heat treatment is performed at approximately 900°C to activate the impurities. Next, patterning is performed by etching using a photoresist to form a lower electrode, and a silicon oxide film or silicon nitride film as a capacitor insulating film is formed thereon. Next, a polysilicon layer is grown again on this capacitive insulating film, and patterned by diffusing impurities such as phosphorus to form an upper electrode.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置の製造方法では、下部電極の
ポリシリコン層をシラン系のガスを用いて600〜65
0℃の成長温度で形成するために、下部電極のポリシリ
コン層の表面の凹凸が大きくなり、下部電極」二に形成
した容量絶縁膜のす−ク電流特性や信顆性が劣化すると
いう問題がある。
In the conventional semiconductor device manufacturing method described above, the polysilicon layer of the lower electrode is heated to 600 to 65% by using a silane-based gas.
Since the polysilicon layer of the lower electrode is formed at a growth temperature of 0 degrees Celsius, the surface irregularities of the polysilicon layer become large, which deteriorates the leak current characteristics and reliability of the capacitive insulating film formed on the lower electrode. There is.

また、シランカスを用い、550°C以下の低温では非
晶質のシリコン層を成長して熱処理を行うことにより、
表面の凹凸が小さいポリシリコン層か得られるか、この
場合非晶質シリコン層の成長速度が10人/分以下と非
常に遅いため、半導体装置の量産に用いるのには実用的
でない。
In addition, by using Silancus and growing an amorphous silicon layer at a low temperature of 550°C or less and performing heat treatment,
Although it is possible to obtain a polysilicon layer with small surface irregularities, the growth rate of the amorphous silicon layer in this case is very slow at less than 10 people/min, so it is not practical for use in mass production of semiconductor devices.

上述した従来の容量部の製造方法は、シランを含むカス
系からポリシリコン層を成長させ、リン(P)等の不純
物を導入して下部電極を形成するのに対し本発明では、
ジシラン(Si2H6)を含むカス系から非晶質のシリ
コン層を成長させ、次にリンをイオン注入法により非晶
質シリコン層中に導入さぜ、さらに熱処理を行って非晶
質シリコン層を結晶化させてポリシリコン層にしたのち
、下部電極を形成するという相違点を有する。
In the conventional manufacturing method of the capacitor section described above, a polysilicon layer is grown from a scum system containing silane, and an impurity such as phosphorus (P) is introduced to form a lower electrode.
An amorphous silicon layer is grown from a scum system containing disilane (Si2H6), then phosphorus is introduced into the amorphous silicon layer by ion implantation, and then heat treatment is performed to crystallize the amorphous silicon layer. The difference is that the lower electrode is formed after the polysilicon layer is formed by chemical conversion.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、半導体基板上にジシ
ランを用いるCVD法により非晶質のシリコン層を成長
させる工程と、イオン注入法により前記非晶質のシリコ
ン層中に不純物を導入する工程と、不純物を含む前記非
晶質のシリコン層を熱処理し結晶化させポリシリコン層
とする工程と、前記ポリシリコン層をパターニングし電
極を形成する工程とを含んて構成される。
The method for manufacturing a semiconductor device of the present invention includes a step of growing an amorphous silicon layer on a semiconductor substrate by a CVD method using disilane, and a step of introducing impurities into the amorphous silicon layer by an ion implantation method. , a step of heat-treating the amorphous silicon layer containing impurities to crystallize it into a polysilicon layer, and a step of patterning the polysilicon layer to form an electrode.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(g)は本発明の第1の実施例を説明す
るための半導体チップの断面図である。
FIGS. 1(a) to 1(g) are cross-sectional views of a semiconductor chip for explaining a first embodiment of the present invention.

図においては、1はシリコン基板、2はシリコン酸化膜
、3は非晶質シリコン層、31はリン(P)をイオン注
入した非晶質シリコン層、32はPを含むポリシリコン
層、33は下部電極、4は容量絶縁膜、5は上部電極で
ある。
In the figure, 1 is a silicon substrate, 2 is a silicon oxide film, 3 is an amorphous silicon layer, 31 is an amorphous silicon layer into which phosphorus (P) is ion-implanted, 32 is a polysilicon layer containing P, and 33 is a polysilicon layer containing P. 4 is a lower electrode, 4 is a capacitive insulating film, and 5 is an upper electrode.

まず第1図(a)に示すように、シリコン基板1上に酸
化等でシリコン酸化膜2を形成する。
First, as shown in FIG. 1(a), a silicon oxide film 2 is formed on a silicon substrate 1 by oxidation or the like.

次に第1図(b)に示すように、ジシラン(Si2H6
)を含むガス系を用いるCVD法により非晶質シリコン
層3を厚さ2000〜8000Å成長させる。この場合
の成長条件例は、成長温度500〜550℃、圧力0.
4〜1Torrジシラン流量100〜1000cc/分
で、成長速度は50〜100人/分である。
Next, as shown in Figure 1(b), disilane (Si2H6
) The amorphous silicon layer 3 is grown to a thickness of 2000 to 8000 Å by a CVD method using a gas system containing . Examples of growth conditions in this case are a growth temperature of 500 to 550°C and a pressure of 0.
The growth rate is 50-100 people/min with a 4-1 Torr disilane flow rate of 100-1000 cc/min.

次に第1図(c)に示すように、イオン注入法によりP
を非晶質シリコン層3中に導入する。イオン注入するP
は非晶質シリコン層中で1017〜10”cm−’の濃
度になるぐらいである。
Next, as shown in FIG. 1(c), P
is introduced into the amorphous silicon layer 3. P for ion implantation
The concentration in the amorphous silicon layer is about 1017 to 10 cm-'.

次に第1図(d)に示すように、窒素雰囲気中で800
〜900℃の熱処理を5分〜1時間行い、Pを含む非晶
質シリコン層3]を結晶化させてPを含むポリシリコン
層32を形成する。この時のPを含むポリシリコン32
の比抵抗は10−4〜10弓Ω−cmである。
Next, as shown in FIG. 1(d), 800
Heat treatment at ~900° C. is performed for 5 minutes to 1 hour to crystallize the P-containing amorphous silicon layer 3 to form a P-containing polysilicon layer 32. At this time, polysilicon 32 containing P
The resistivity of is 10-4 to 10 Ω-cm.

次に第14?](e)に示すように、フォトレジストを
用いてエツチングを行い、Pを含むポリシリコン層32
をパターニングして下部電極33を形成する。
Next is the 14th? ] As shown in (e), etching is performed using a photoresist to form a polysilicon layer 32 containing P.
The lower electrode 33 is formed by patterning.

次に第1図(f)に示すように、シリコン窒化膜やシリ
コン酸化膜等の容量絶縁膜4を下部電極33上に形成す
る。
Next, as shown in FIG. 1(f), a capacitor insulating film 4 such as a silicon nitride film or a silicon oxide film is formed on the lower electrode 33.

さらに第1図(g)に示すように、この上にポリシリコ
ン層を成長させ、Pを拡散後パターニングを行って上部
電極5を形成し容量部を完成させる。
Further, as shown in FIG. 1(g), a polysilicon layer is grown on this layer, P is diffused and patterned to form an upper electrode 5 and complete the capacitor section.

シリコン窒化膜を容量絶縁膜として容量部を形成し電流
密度J = 10−5A / cm2時の容量絶縁膜の
耐圧分布を第2図に示す。第2図での横軸は容量絶縁膜
に印加される電界強度(M V / cm )であり、
縦軸は故障率、つまり破壊した割合(%)を示す、第3
図に示す従来例に比較して、本実施例を用いると、約1
 、M V / cmはど耐圧が向上していることが分
る。また、従来例でみられる低電界強度(〜3 M V
 / cm )での破壊がみられなくなる。
FIG. 2 shows the breakdown voltage distribution of the capacitive insulating film when the capacitive part is formed using a silicon nitride film as the capacitive insulating film and the current density is J = 10-5 A/cm2. The horizontal axis in Figure 2 is the electric field strength (MV/cm) applied to the capacitive insulating film,
The vertical axis shows the failure rate, that is, the percentage of broken parts (%).
Compared to the conventional example shown in the figure, when this example is used, approximately 1
, MV/cm, it can be seen that the breakdown voltage is improved. In addition, the low electric field strength seen in the conventional example (~3 MV
/cm) is no longer observed.

これは、実施例の様に下部電極のポリシリコン層を形成
すると、従来のポリシリコン層に比較してポリシリコン
層表面の凹凸は非常に小さく、凹凸に起因する容量絶縁
膜のウィークスポットやピンホールがなくなるためと考
えられる。
This is because when the polysilicon layer of the lower electrode is formed as in the example, the unevenness on the surface of the polysilicon layer is very small compared to the conventional polysilicon layer, and the unevenness causes weak spots and pins in the capacitor insulating film. This is thought to be due to the lack of holes.

このように第1の実施例によれば、耐圧分布にすくれ、
かつ信頼性の向上した容量部を備えた半導体装置を製造
できる。また、ジシランを用いて非晶質シリコン層を成
長させる速度は50〜100人/分あるのて、従来のポ
リシリコン層の成長速度はほぼ同しで、実用的に問題は
ない。
In this way, according to the first embodiment, there is a gap in the breakdown voltage distribution.
In addition, a semiconductor device including a capacitor portion with improved reliability can be manufactured. Furthermore, since the growth rate of an amorphous silicon layer using disilane is 50 to 100 people/min, the growth rate of a conventional polysilicon layer is approximately the same, and there is no practical problem.

第4図(a)〜(h)は本発明の第2の実施例を説明す
るための半導体チップの断面図である。
FIGS. 4(a) to 4(h) are cross-sectional views of a semiconductor chip for explaining a second embodiment of the present invention.

水弟2の実施例では、Pをイオン注入した非晶質シリコ
ン層を結晶化させる熱処理を2段階に分けて行うもので
ある。
In the embodiment of Mizui 2, heat treatment for crystallizing an amorphous silicon layer into which P ions are implanted is performed in two stages.

まず第4図(a)に示すように、シリコン基板1上に溝
を形成し、この溝の内部にシリコン酸化膜2を形成しパ
ターニングする。
First, as shown in FIG. 4(a), a groove is formed on a silicon substrate 1, and a silicon oxide film 2 is formed inside the groove and patterned.

次に第4図(1つ)に示すように、ジシランを含むガス
系を用いるCVD法により全面に非晶質シリコン層3を
300〜2000人の厚さに成長する。この場合の成長
条件例は、成長温度500〜550℃、圧力0.1〜l
To r r、ジシラン流量100〜]、0OOcc/
分で、成長速度は50〜100人/分である。
Next, as shown in FIG. 4 (one), an amorphous silicon layer 3 is grown over the entire surface to a thickness of 300 to 2,000 layers by CVD using a gas system containing disilane. Examples of growth conditions in this case are a growth temperature of 500 to 550°C and a pressure of 0.1 to 1
To r r, disilane flow rate 100~], 0OOcc/
minutes, and the growth rate is 50-100 people/minute.

次に第4図(C)に示すように、イオン注入法によりP
を非晶質シリコン層3中に入れる。イオン注入するPは
、非晶質シリコン層中で1017〜1019cm−3の
濃度になるぐらいである。
Next, as shown in FIG. 4(C), P
is placed in the amorphous silicon layer 3. The concentration of P to be ion-implanted in the amorphous silicon layer is about 1017 to 1019 cm-3.

次に第4図(d)に示すように、600〜650℃で熱
処理を2〜12時間行い、Pを含む非晶質シリコン層3
1を結晶化さぜPを含むポリシリコン層32を形成する
。さらに、第4図(e)に示すように、窒素雰囲気中で
800〜900 ’Cの熱処理を5分〜1時間行い、P
を活性化させる。この時のPを含むポリシリコン層32
を比抵抗は10−4〜10−1Ω−cmである。
Next, as shown in FIG. 4(d), heat treatment is performed at 600 to 650°C for 2 to 12 hours, and the P-containing amorphous silicon layer 3
A polysilicon layer 32 containing P1 is crystallized. Furthermore, as shown in FIG. 4(e), heat treatment at 800 to 900'C in a nitrogen atmosphere was performed for 5 minutes to 1 hour.
Activate. At this time, polysilicon layer 32 containing P
The specific resistance is 10-4 to 10-1 Ω-cm.

次に第4図(f>に示すように、フォトレジストを用い
てエツチングを行い、Pを含むポリシリコン7132を
パターニングして下部電極33を形成する。
Next, as shown in FIG. 4(f), etching is performed using a photoresist to pattern the P-containing polysilicon 7132 to form the lower electrode 33.

次に第4図(g)に示すように、シリコン窒化膜やシリ
コン酸化膜等の容量絶縁膜4を下部電極33上に形成す
る。次に第4図(h)に示すように、全面にポリシリコ
ン層を成長させ、Pを拡散後パターニングを行って上部
電極5を形成する。
Next, as shown in FIG. 4(g), a capacitor insulating film 4 such as a silicon nitride film or a silicon oxide film is formed on the lower electrode 33. Next, as shown in FIG. 4(h), a polysilicon layer is grown over the entire surface, and after P is diffused, patterning is performed to form the upper electrode 5.

水弟2の実施例のように、Pを含む非晶質シリコン層を
結晶化させるための熱処理を低温(600〜700°C
)で行うと、結晶化したPを含むポリシリコン層の結晶
粒の大きさが数μmとなり、第1の実施例に比較して大
きな結晶粒が得られ、下部電極表面の凹凸がさらに小さ
くなる。水弟2の実施例の容量絶縁膜も第1の実施例と
同様に耐圧分布がよく、信頼性もよい。
As in the example of Mizui 2, the heat treatment to crystallize the amorphous silicon layer containing P is carried out at a low temperature (600 to 700°C).
), the size of the crystal grains in the polysilicon layer containing crystallized P becomes several μm, and larger crystal grains are obtained compared to the first example, and the unevenness on the surface of the lower electrode is further reduced. . Similarly to the first embodiment, the capacitive insulating film of the second embodiment has good breakdown voltage distribution and good reliability.

なお、容量絶縁膜として上記実施例では、シリコン窒化
膜やシリコン酸化膜を用いた場合について説明したか、
シリコン窒化膜とシリコン酸化膜の多層膜を用いたり、
酸化タンタル等の高誘電率の金属酸化膜を用いてもよく
、その効果は変わらない。また、上部電極としてポリシ
リコン層を用いたが、タングステンシリサイド等のシリ
サイド電極、ポリシリコン及びシリサイドを組み合ぜな
ポリサイド電極、タングステン、モリブデン等の高融点
金属電極や、これらの電極を組み合せたものを用いるの
も自由である。また、上部電極も下部電極と同じように
非晶質シリコンから形成してもよい。更に非晶質シリコ
ン層に導入する不純物としてPを用いた場合について説
明したが、AsやBを用いてもよい。
In addition, in the above embodiment, the case where a silicon nitride film or a silicon oxide film is used as the capacitive insulating film is explained.
Using a multilayer film of silicon nitride film and silicon oxide film,
A metal oxide film with a high dielectric constant such as tantalum oxide may also be used, and the effect will not change. In addition, although a polysilicon layer was used as the upper electrode, silicide electrodes such as tungsten silicide, polycide electrodes that combine polysilicon and silicide, high-melting point metal electrodes such as tungsten and molybdenum, and combinations of these electrodes may also be used. You are also free to use Further, the upper electrode may also be formed from amorphous silicon like the lower electrode. Furthermore, although the case has been described in which P is used as an impurity introduced into the amorphous silicon layer, As or B may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ジシランを含むガス系を
用いるCVD法により非晶質シリコンを成長させ、次に
リン等の不純物をイオン注入で非晶質シリコン中に入れ
、更に熱処理を行って結晶化させてポリシリコンからな
る下部電極を形成させることにより、下部電極表面の凹
凸が小さくなめらかになる。そのためウィークスポット
やピンホール等がない容量絶縁膜か形成でき、耐圧分布
がよく信頼性の良い容量部を有する半導体装置を得るこ
とができるという効果がある。
As explained above, the present invention involves growing amorphous silicon by CVD using a gas system containing disilane, then implanting impurities such as phosphorus into the amorphous silicon by ion implantation, and then performing heat treatment. By crystallizing and forming the lower electrode made of polysilicon, the unevenness on the surface of the lower electrode becomes smaller and smoother. Therefore, it is possible to form a capacitor insulating film without weak spots or pinholes, etc., and it is possible to obtain a semiconductor device having a capacitor portion with good breakdown voltage distribution and high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(g)は本発明の第1の実施例を説明す
るための半導体チップの断面図、第2図及び第3図は実
施例及び従来例による容量絶縁膜の耐圧分布を示す図、
第4図(a)〜(h)は本発明の第2の実施例を説明す
るための半導体チップの断面図である。 1・・・シリコン基板、2・・シリコン酸化膜、3・非
晶質シリコン層、31・・Pを含む非晶質シリコン層、
32・・・Pを含むポリシリコン層、33・・・下部電
極、4・・・容量絶縁膜、5・・・上部電極。
FIGS. 1(a) to (g) are cross-sectional views of a semiconductor chip for explaining the first embodiment of the present invention, and FIGS. 2 and 3 are breakdown voltage distributions of capacitive insulating films according to the embodiment and the conventional example. A diagram showing
FIGS. 4(a) to 4(h) are cross-sectional views of a semiconductor chip for explaining a second embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Silicon oxide film, 3... Amorphous silicon layer, 31... Amorphous silicon layer containing P,
32... Polysilicon layer containing P, 33... Lower electrode, 4... Capacitive insulating film, 5... Upper electrode.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上にジシランを用いるCVD法により非晶質
のシリコン層を成長させる工程と、イオン注入法により
前記非晶質のシリコン層中に不純物を導入する工程と、
不純物を含む前記非晶質のシリコン層を熱処理し結晶化
させポリシリコン層とする工程と、前記ポリシリコン層
をパターニングし電極を形成する工程とを含むことを特
徴とする半導体装置の製造方法。
a step of growing an amorphous silicon layer on a semiconductor substrate by a CVD method using disilane; a step of introducing impurities into the amorphous silicon layer by an ion implantation method;
A method for manufacturing a semiconductor device, comprising the steps of heat-treating the amorphous silicon layer containing impurities to crystallize it into a polysilicon layer, and patterning the polysilicon layer to form an electrode.
JP2218821A 1990-08-20 1990-08-20 Method for manufacturing semiconductor device Expired - Lifetime JP2699625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2218821A JP2699625B2 (en) 1990-08-20 1990-08-20 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2218821A JP2699625B2 (en) 1990-08-20 1990-08-20 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04101454A true JPH04101454A (en) 1992-04-02
JP2699625B2 JP2699625B2 (en) 1998-01-19

Family

ID=16725876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2218821A Expired - Lifetime JP2699625B2 (en) 1990-08-20 1990-08-20 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2699625B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217956A (en) * 1988-02-26 1989-08-31 Fujitsu Ltd Conductor layer, capacitor using conductor layer and manufacture thereof
JPH01266743A (en) * 1988-04-18 1989-10-24 Nippon Telegr & Teleph Corp <Ntt> Manufacture of silicon conductor
JPH0282565A (en) * 1988-09-19 1990-03-23 Sanyo Electric Co Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217956A (en) * 1988-02-26 1989-08-31 Fujitsu Ltd Conductor layer, capacitor using conductor layer and manufacture thereof
JPH01266743A (en) * 1988-04-18 1989-10-24 Nippon Telegr & Teleph Corp <Ntt> Manufacture of silicon conductor
JPH0282565A (en) * 1988-09-19 1990-03-23 Sanyo Electric Co Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JP2699625B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
JP2761685B2 (en) Method for manufacturing semiconductor device
JP2671833B2 (en) Semiconductor device and manufacturing method thereof
JP3565993B2 (en) Method for manufacturing semiconductor device
JP2830705B2 (en) Method for manufacturing semiconductor device
JPH04101454A (en) Manufacture of semiconductor device
JPH03234051A (en) Manufacture of capacitive element
JP3078109B2 (en) Method for manufacturing semiconductor device
KR950011644B1 (en) Method of fabricating a storage node of a capacitor
JPH11176959A (en) Manufacture of semiconductor device
JPH01112755A (en) Manufacture of semiconductor device
JP2814962B2 (en) Method for manufacturing semiconductor device
JPH01260857A (en) Semiconductor device and manufacture thereof
KR100268124B1 (en) Method for manufacturing charge storage electrode of semiconductor device
JP2880892B2 (en) Method for manufacturing semiconductor device
JPH05102145A (en) Method for forming polysilicon wiring
JPH03200319A (en) Formation of poly-crystalline silicon
JP2570760B2 (en) Wiring formation method
JPH02181918A (en) Manufacture of semiconductor device
KR970000975B1 (en) Storage electrode manufacture method of capacitor
JPH0810765B2 (en) Method for manufacturing semiconductor device
JP2830295B2 (en) Method for manufacturing semiconductor device
JP3157194B2 (en) Method for manufacturing semiconductor device
JPH10303418A (en) Manufacture of semiconductor device
JPH03220763A (en) Manufacture of semiconductor device
JPH04106982A (en) Manufacture of semiconductor device