JPH04100275A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04100275A
JPH04100275A JP2218422A JP21842290A JPH04100275A JP H04100275 A JPH04100275 A JP H04100275A JP 2218422 A JP2218422 A JP 2218422A JP 21842290 A JP21842290 A JP 21842290A JP H04100275 A JPH04100275 A JP H04100275A
Authority
JP
Japan
Prior art keywords
film
forming
polysilicon
conductive film
whole surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2218422A
Other languages
Japanese (ja)
Inventor
Izumi Kobayashi
小林 いずみ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2218422A priority Critical patent/JPH04100275A/en
Publication of JPH04100275A publication Critical patent/JPH04100275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain an MOS type transistor wherein the leak current between the source and the drain is reduced, by forming an insulating film on a second conducting film formed on an insulative substrate and a conducting film of a first conductivity type, and forming a third conducting film of a first conductivity type on said insulating film. CONSTITUTION:After polysilicon 102 is sputtered on the whole surface of an insulative substrate, P-type impurities BF2<+> is ion-implanted in the whole surface. After a pattern is formed by using a positive resist layer, a pattern 103 is formed by anisotropic etching. After polysilicon is sputtered on the whole surface, a silicon oxide film 106 is formed on the whole surface by thermal oxidation. Then a polysilicon film 104 containing P-type impurities and an undoped polysilicon film 105 are formed. After a polysilicon film 107 is formed on the whole surface, and BF2<+> is ion-implanted, a gate electrode 108 is formed by anisotropic etching. As the result, the film thickness of a channel region is thin as compared with that of a source.drain region, so that a thin film transistor wherein the leak current in the source.drain region is small can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄膜トランジスタ(以下TPTという)から
なるMOS半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a MOS semiconductor device comprising a thin film transistor (hereinafter referred to as TPT).

[従来の技術] 半導体装置の微細化、高集積化にともない、MoS型ト
ランジスタも微細化されてきているが2次元ブレーナ技
術ではセル面積を小さくしていくのに限界がある。そこ
で考えられたのが、3次元集積回路である。この3次元
集積回路は2次元ブレーナ技術に比べて利点は多い。特
にMOSメモリーへの応用面からみた場合に重要なのは
高密度、高集積およびアルファ線によるソフトエラーの
少ないことである。この3次元集積回路の1つとしてト
ランジスタのソース、 ドレイン、チャンネル領域を薄
膜ポリシリコン層で形成するTFT (Thin  F
ilm  Transistor)がある。このTPT
の製造方法を第2図を用いて説明する。
[Prior Art] As semiconductor devices become smaller and more highly integrated, MoS transistors are also becoming smaller, but there is a limit to how much the two-dimensional brainer technology can reduce the cell area. This led to the idea of three-dimensional integrated circuits. This three-dimensional integrated circuit has many advantages over two-dimensional brainer technology. Particularly important from the viewpoint of application to MOS memory are high density, high integration, and low soft errors caused by alpha rays. One of these three-dimensional integrated circuits is the TFT (Thin F
ilm Transistor). This TPT
The manufacturing method will be explained using FIG. 2.

まず、絶縁性基板201にCVD法によりポリシリコン
膜を形成後ウェハー全面にN型不純物であるリンをイオ
ン注入してN−不純物層202を形成する。 (第2図
(a))次に第2図(b)の如く、N−不純物層202
の不要部分を写真蝕刻法により除去後、熱酸化すること
でゲート酸化膜203を形成する。引続きCVD法によ
りポリシリコン膜を形成後、第2図(C)の如く、写真
蝕刻法によりゲート電極204を形成する。次にゲート
電極204をマスクにP型不純物であるボロンをイオン
注入することによりd図の如くP十不純物層205を形
成する。
First, a polysilicon film is formed on an insulating substrate 201 by the CVD method, and then phosphorus, which is an N-type impurity, is ion-implanted over the entire surface of the wafer to form an N- impurity layer 202. (FIG. 2(a)) Next, as shown in FIG. 2(b), the N- impurity layer 202
After removing unnecessary portions by photolithography, a gate oxide film 203 is formed by thermal oxidation. Subsequently, after forming a polysilicon film by the CVD method, a gate electrode 204 is formed by photolithography as shown in FIG. 2(C). Next, using the gate electrode 204 as a mask, boron, which is a P-type impurity, is ion-implanted to form a P10 impurity layer 205 as shown in FIG.

[発明が解決しようとする課B] SRAMの大きな特徴の1つとしてバッテリーバックア
ップが可能なくらい低い待機時電流であることあげられ
る。しかしメモリー容量が増えるにしたかつ待機時電流
を低く抑えることが難しくなってきている。またリーク
電流に対しても45桁の余裕がないと安定したトランジ
スタはつくれない。しかし従来技術で述べたようなMO
3型シリコ薄膜トランジスタは単結晶状のトランジスタ
に比ベソース、 ドレイン領域間のリーク電流が大きい
という欠点がある。その改善策としてポリシリコ膜厚を
薄くする方法がある。 (例えば”HighPerfo
rmance  SOIMOSFET  Using 
 Ultra−thin  S。
[Problem B to be Solved by the Invention] One of the major features of SRAM is that the standby current is low enough to allow battery backup. However, as memory capacity increases, it is becoming difficult to keep the standby current low. Also, it is impossible to create a stable transistor unless there is a margin of 45 orders of magnitude against leakage current. However, MO as described in the prior art
Type 3 silicon thin film transistors have the disadvantage that the leakage current between the source and drain regions is larger than that of single crystal transistors. One way to improve this is to reduce the thickness of the polysilico film. (For example, “HighPerfo
rmance SOIMOSFET Using
Ultra-thin S.

IFil、m”:  Toshiba  VLSI  
Re5erch  Center:  640−IED
M87′) しかしこの場合ソース、 ドレイン領域のシリコン膜厚
も同時に薄くなるのでソース、 ドレイン領域の抵抗値
が高くなってしまい動作速度が遅くなってしまう。
IFil, m”: Toshiba VLSI
Research Center: 640-IED
(M87') However, in this case, the silicon film thickness of the source and drain regions is also thinned at the same time, so the resistance value of the source and drain regions becomes high and the operation speed becomes slow.

そこで本発明は、このような問題点を解決するものでそ
の目的とするところはソース、 ドレイン間のリーク電
流を低くおさえかつソース、 トレインの抵抗値をおさ
えたMO3型トランジスタを提供することにある。
The present invention is intended to solve these problems, and its purpose is to provide an MO3 type transistor in which the leakage current between the source and drain is kept low and the resistance values of the source and train are kept low. .

また本発明のもう一つの目的はゲート電極をエッチバッ
クで形成してフォト工程を省くことにより安定したMO
S型薄膜トランジスタを提供することにある。
Another object of the present invention is to form a gate electrode by etching back and to omit a photo process, thereby achieving stable MO.
An object of the present invention is to provide an S-type thin film transistor.

[課題を解決するための手段] ■本発明、半導体装置の製造方法は、紛縁性基板上に第
一導電型の導電膜を形成する工程と、前記第一導電型の
導電膜によりパターンを形成する工程と、前記絶縁性基
板と前記第一導電型の導電膜上に第二の導電膜を形成す
る工程と、前記第二の導電膜上に絶縁膜を形成する工程
と、前記絶縁膜上に第一導電型の第三の導電膜を形成す
る工程と、前記第三の導電膜をエッチバックすることに
よりゲート電極を形成する工程からなることを特徴とす
る。
[Means for Solving the Problems] ■The method of manufacturing a semiconductor device of the present invention includes the steps of forming a first conductive type conductive film on a mismatchable substrate, and forming a pattern using the first conductive type conductive film. forming a second conductive film on the insulating substrate and the first conductive type conductive film; forming an insulating film on the second conductive film; The method is characterized by comprising a step of forming a third conductive film of the first conductivity type thereon, and a step of forming a gate electrode by etching back the third conductive film.

■本発明、半導体装置の製造方法は半導体基板上に第一
の絶縁膜を形成する工程と前記第一の絶縁膜上に第一導
電型の導電膜を形成する工程と、前記第一導電型の導電
膜によりパターンを形成する工程と、前記第一の絶縁膜
と前記第一導電型の導電膜上に第二の導電膜を形成する
工程と、前記第二の導電膜上に第二の絶縁膜を形成する
工程と、前記第二の絶縁膜上に第一導電型の第三の導電
膜を形成する工程と、前記第三の導電膜をエッチバック
することによりゲート電極を形成する工程からなること
を特徴とする。
■The method of manufacturing a semiconductor device of the present invention includes a step of forming a first insulating film on a semiconductor substrate, a step of forming a conductive film of a first conductivity type on the first insulating film, and a step of forming a conductive film of the first conductivity type on the first insulating film. a step of forming a pattern using a conductive film, a step of forming a second conductive film on the first insulating film and the first conductive type conductive film, and a step of forming a second conductive film on the second conductive film. a step of forming an insulating film, a step of forming a third conductive film of a first conductivity type on the second insulating film, and a step of forming a gate electrode by etching back the third conductive film. It is characterized by consisting of.

[実施例] 以下、本発明について実施例に基づき詳細に説明する。[Example] Hereinafter, the present invention will be described in detail based on examples.

第1[は本発明の実施例を工程順に示す図である。10
1は絵縁性半導体基板、102はポリシリコン膜、10
3、104は102ポリシリコン膜にボロンを不純物と
して打ち込んだ(本実施例ではBF2”)P型ポリシリ
コン膜からなるソース領域及びドレイン領域、105は
チャンネル形成領域、106はゲート酸化膜として用い
たシリコン酸化膜、107はポリシリコン膜、108は
107により形成されたゲート電極である。
The first diagram is a diagram showing an embodiment of the present invention in order of steps. 10
1 is a picture-edge semiconductor substrate, 102 is a polysilicon film, 10
3, 104 is a source region and drain region made of a P-type polysilicon film in which boron is implanted as an impurity into a 102 polysilicon film (BF2'' in this example), 105 is a channel forming region, and 106 is used as a gate oxide film. A silicon oxide film, 107 is a polysilicon film, and 108 is a gate electrode formed by 107.

まず、(a)図の如く絶縁性基板の全面にCVD法によ
りポリシリコン102を2000〜3000人スパッタ
する。通常モノシランガスを620°Cで熱分解させて
堆積する。560°Cで熱分解させたアモルファスシリ
コン膜でもよい。次に全面にP型不純物、本実施例では
BF2”をエネルギー60Kev、 ドーズ量4XIQ
lsでイオン打ちこみする。次にフォトリソグラフィに
よりポジレジスト層を用いてパターンを形成後異方性エ
ツチングにより(b)図の如くパターン103を形成す
る。次に(C)図の如く、全面にCVD法によりポリシ
リコン104を500〜100OAスパツタ後、熱酸化
により全面にシリコン酸化膜106を形成する。
First, as shown in (a), polysilicon 102 is sputtered by 2000 to 3000 people over the entire surface of an insulating substrate by the CVD method. It is usually deposited by thermally decomposing monosilane gas at 620°C. An amorphous silicon film thermally decomposed at 560°C may also be used. Next, a P-type impurity, in this example, BF2'' is applied to the entire surface at an energy of 60 Kev and a dose of 4XIQ.
Implant ions with ls. Next, a pattern is formed using a positive resist layer by photolithography, and then a pattern 103 is formed by anisotropic etching as shown in FIG. Next, as shown in the figure (C), polysilicon 104 is sputtered to a thickness of 500 to 100 OA over the entire surface by CVD, and then a silicon oxide film 106 is formed over the entire surface by thermal oxidation.

この時ノンドープ状態のポリシリコンに拡散係数の大き
いボロンが拡散して(e)図の如くP形不純物を含んだ
ポリシリコン膜104とノンドープのポリシリコン膜1
05が形成される。次にf図の如く全面にCVD法によ
りポリシリコン膜107を形成し、全面にB F 2”
をエネルギー60Kev、ドーズ量4X1015でイオ
ン打ち込み後、CF、:02=5:1ガス中で異方性エ
ツチングを行ないg図の如くゲート電極108を形成す
る。
At this time, boron with a large diffusion coefficient diffuses into the non-doped polysilicon, and as shown in (e) the polysilicon film 104 containing P-type impurities and the non-doped polysilicon film 1.
05 is formed. Next, as shown in figure f, a polysilicon film 107 is formed on the entire surface by the CVD method, and a B F 2" film is formed on the entire surface.
After ion implantation with an energy of 60 Kev and a dose of 4.times.10@15, anisotropic etching is performed in CF, :02=5:1 gas to form a gate electrode 108 as shown in figure g.

本実施例によればソース、ドレイン領域のポリシリコン
膜厚に比べてチャンネル領域のポリシリコンの膜厚は薄
いので、ON時にはチャンネル領域はゲート電極の影響
を強く受けるためON電流(ゲート電圧5.0V、トレ
イン電圧5.0V時のドレイン電流)は大きくなる。ま
たOFF時にはP−N接合面が小さいのでP−N接合面
で流れるリーク電流は小さくてすむ。これにより本実施
例によるTFTの○N/○FF比は大きくなり、MOS
)ランジスタの駆動能力UPを図ることができる。
According to this embodiment, since the polysilicon film in the channel region is thinner than the polysilicon film in the source and drain regions, the channel region is strongly influenced by the gate electrode when ON, so that the ON current (gate voltage 5. 0V, the drain current (at a train voltage of 5.0V) increases. Furthermore, since the P-N junction surface is small in the OFF state, the leakage current flowing at the P-N junction surface can be small. As a result, the ○N/○FF ratio of the TFT according to this embodiment becomes large, and the MOS
) The driving ability of the transistor can be increased.

また、本実施例はゲート電極はTFTの中にゲート酸化
膜を介して埋め込む形で全面エッチバックにより形成し
ているので従来のゲート電極形成時のようにマスクを用
いないのでフォト工程が省けるため工程短縮につながり
、高歩留り、高品質の薄膜トランジスタが提供できる。
In addition, in this example, the gate electrode is embedded in the TFT via the gate oxide film and is formed by etching back the entire surface, so unlike the conventional gate electrode formation, a mask is not used and the photo process can be omitted. This leads to shortening of process steps, and enables the provision of high-yield, high-quality thin film transistors.

尚、本実施例ではPMOSトランジスタを用いたが、N
MOSトランジスタでも同様な効果を得ることができる
Note that although a PMOS transistor was used in this example, N
A similar effect can be obtained with a MOS transistor.

また、本実施例では絶縁性半導体基板を用いたが導電性
半導体基板上にシリコン酸化膜を形成したものを用いて
も同様な効果が得られる。
Further, although an insulating semiconductor substrate is used in this embodiment, a similar effect can be obtained by using a conductive semiconductor substrate on which a silicon oxide film is formed.

また、本実施例ではゲート電極に不純物を注入したポリ
シリコン膜を用いたが、高融点金属またはそのシリサイ
ドを用いても同様な効果が得られる。
Further, in this embodiment, a polysilicon film doped with impurities was used for the gate electrode, but similar effects can be obtained by using a high melting point metal or its silicide.

[発明の効果] 本発明によれば、以下に述べるような効果が期待できる
[Effects of the Invention] According to the present invention, the following effects can be expected.

■MO8方薄膜トランジスタにおいてソース、 ドレイ
ン領域の膜厚に比べてチャンネル領域の膜厚は薄いこと
によりソース、 ドレイン領域のリーク電流が小さくま
たON電流が高い薄膜トランジスタをつくることが可能
である。
- In MO8-way thin film transistors, the thickness of the channel region is thinner than that of the source and drain regions, making it possible to create thin film transistors with small leakage currents and high ON current in the source and drain regions.

■ゲート電極をフォトレジストを用いないエッチバック
により形成するので高歩留り、高品質の薄膜トランジス
タをつくることが可能である。
■Since the gate electrode is formed by etch-back without using photoresist, it is possible to produce high-yield, high-quality thin film transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(g)は本発明の半導体装置の製造方法
の一実施例を示す工程順断面図。 第2図(a)〜(d)は、従来例による半導体装置の製
造方法を示す図。 101.201  絶縁性半導体基板 102.104,105,107  ポリシリコン膜 103.104,205  P型ポリシリコン膜106
.203  シリコン酸化膜 108.204  ゲート電極 ポリシリコン膜 以上
FIGS. 1(a) to 1(g) are step-by-step sectional views showing an embodiment of the method for manufacturing a semiconductor device of the present invention. FIGS. 2(a) to 2(d) are diagrams showing a conventional method of manufacturing a semiconductor device. 101.201 Insulating semiconductor substrate 102.104, 105, 107 Polysilicon film 103.104, 205 P-type polysilicon film 106
.. 203 Silicon oxide film 108.204 Gate electrode polysilicon film or higher

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁性基板上に第一導電型の導電膜を形成する工
程と、前記第一導電型の導電膜によりパターンを形成す
る工程と、前記絶縁性基板と前記第一導電型の導電膜上
に第二の導電膜を形成する工程と、前記第二の導電膜上
に絶縁膜を形成する工程と、前記絶縁膜上に第一導電型
の第三の導電膜を形成する工程と、前記第三の導電膜を
エッチバックすることによりゲート電極を形成する工程
からなることを特徴とする半導体装置の製造方法。
(1) A step of forming a first conductive type conductive film on an insulating substrate, a step of forming a pattern using the first conductive type conductive film, and a step of forming a pattern on the insulating substrate and the first conductive type conductive film. forming a second conductive film on the second conductive film; forming an insulating film on the second conductive film; and forming a third conductive film of a first conductivity type on the insulating film; A method for manufacturing a semiconductor device, comprising the step of forming a gate electrode by etching back the third conductive film.
(2)半導体基板上に第一の絶縁膜を形成する工程と前
記第一の絶縁膜上に第一導電型の導電膜を形成する工程
と、前記第一導電型の導電膜によりパターンを形成する
工程と、前記第一の絶縁膜と前記第一導電型の導電膜上
に第二の導電膜を形成する工程と、前記第二の導電膜上
に第二の絶縁膜を形成する工程と、前記第二の絶縁膜上
に第一導電型の第三の導電膜を形成する工程と、前記第
三の導電膜をエッチバックすることによりゲート電極を
形成する工程からなることを特徴とする半導体装置の製
造方法。
(2) Forming a first insulating film on a semiconductor substrate, forming a first conductive type conductive film on the first insulating film, and forming a pattern using the first conductive type conductive film. a step of forming a second conductive film on the first insulating film and the first conductive type conductive film; and a step of forming a second insulating film on the second conductive film. , comprising a step of forming a third conductive film of a first conductivity type on the second insulating film, and a step of forming a gate electrode by etching back the third conductive film. A method for manufacturing a semiconductor device.
JP2218422A 1990-08-20 1990-08-20 Manufacture of semiconductor device Pending JPH04100275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2218422A JPH04100275A (en) 1990-08-20 1990-08-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2218422A JPH04100275A (en) 1990-08-20 1990-08-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04100275A true JPH04100275A (en) 1992-04-02

Family

ID=16719668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2218422A Pending JPH04100275A (en) 1990-08-20 1990-08-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04100275A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153329A (en) * 2006-12-15 2008-07-03 Renesas Technology Corp Method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153329A (en) * 2006-12-15 2008-07-03 Renesas Technology Corp Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
KR101558038B1 (en) Method and structure to boost mosfet performance and nbti
TW200409296A (en) Manufacturing method of 1-transistor random access memory
US6649455B2 (en) SOI type MOS element and manufacturing method thereof
JPH02122563A (en) Manufacture of semiconductor device
TW200401433A (en) Semiconductor integrated circuit apparatus and fabrication method thereof
JPH04100275A (en) Manufacture of semiconductor device
JPH03191529A (en) Manufacture of semiconductor device
JPH06267974A (en) Manufacture of semiconductor element
JPH0472770A (en) Manufacture of semiconductor device
JPH05275697A (en) Semiconductor device
JPH0479336A (en) Production of semiconductor device
JPH0221648A (en) Semiconductor device and manufacture thereof
JPH10242460A (en) Semiconductor integrated circuit device and its manufacture
JPS62130563A (en) Semiconductor device
KR920000634B1 (en) Manufacturing method of mosfet
JPS63237462A (en) Static type semiconductor memory and manufacture thereof
JPH04179162A (en) Semiconductor device and manufacture thereof
JPS62291066A (en) Manufacture of vertical field-effect transistor
JPS6118176A (en) Manufacture of semiconductor device
JPH0621464A (en) Thin film mos transistor
JPH04188837A (en) Semiconductor device
JPH02309665A (en) Semiconductor device and manufacture thereof
JPH03257846A (en) Manufacture of semiconductor device
JPH02260432A (en) Manufacture of mos-type integrated circuit
JPH03256355A (en) Manufacturing process for ldd type cmos transistor