JPH0397273A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPH0397273A
JPH0397273A JP1236694A JP23669489A JPH0397273A JP H0397273 A JPH0397273 A JP H0397273A JP 1236694 A JP1236694 A JP 1236694A JP 23669489 A JP23669489 A JP 23669489A JP H0397273 A JPH0397273 A JP H0397273A
Authority
JP
Japan
Prior art keywords
insulator
conductor
electrode
semiconductor layer
amorphous semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1236694A
Other languages
Japanese (ja)
Other versions
JP2738569B2 (en
Inventor
Kenji Murata
邑田 健治
Hiroyuki Tanaka
博之 田中
Shinichi Kamitsuma
上妻 信一
Hiroshi Inoue
浩 井上
Yasuo Kishi
岸 靖雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1236694A priority Critical patent/JP2738569B2/en
Publication of JPH0397273A publication Critical patent/JPH0397273A/en
Application granted granted Critical
Publication of JP2738569B2 publication Critical patent/JP2738569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To simplify the processing by a method wherein a conductor and an insulator are formed adjacent each other, an amorphous semiconductor layer and a rear electrode are laminated on the conductor and the insulator and these are cut in a simultaneous manner using an energy beam shaped asymmetrically with respect to the border line between the conductor and the insulator. CONSTITUTION:A transparent electrode 2 is laminatedly formed on the whole surface of a light-transmitting insulating substrate 1 and thereafter, with the electrode 2 cut and separated into two by laser scribing, a conductor 3 and an insulator 4 are formed in parallel with each other on the separated transparent electrodes 2 and 2 in a state that they are in contact with each other. Then, a lens 7 is arranged in the optical path of a laser beam LB and the laser beam LB is projected in a pulse status with width to cover both of the conductor 3 and the insulator 4. An open pattern of an iris 8, that is, a laser beam projection pattern 9 is an asymmetric pattern with respect to the border line between the conductor 3 and the insulator 4, for example. An amorphous semiconductor layer 5 and a rear electrode 6, which are located on the insulator 4, are both made to transpire and divided and the at the same time, the edge part of the electrode 6 is made to solidify at the trace of the transpired layer 5 in a state that is contacts with the surface of the insulator 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複数の光起電力素子を直列接続してなる光起電
力装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a photovoltaic device in which a plurality of photovoltaic elements are connected in series.

〔従来技術〕[Prior art]

通常この種の光起電力装置は第3図(イ),(口)に示
す如く構成されている。第3図(イ)は従来の光起電力
装置の断面構造図、第3図(口)は同軸平面図であり、
透光性絶縁基板1上に、透明電極2,p−1−n接合型
、或いはn−i−p接合型の非晶質半導体層5,裏面電
極6をこの順序に積層形成して構威される光起電力素子
A,B・・・のうち、相隣する一方の光起電力素子Aの
裏面電極6を他方の光起電力素子Bの透明電極2上に形
成した条状の導電体3と接続し、またこの導電体3自体
はこれと平行に形成した同じく条状の絶縁体4にて当該
他方の光起電力素子Bの透明電極2、非晶質半導体N5
と遮断状態に維持して光起電力素子A,B,・・・を相
互に直列接続する方法が採られている。
Usually, this type of photovoltaic device is constructed as shown in FIGS. Figure 3 (a) is a cross-sectional structural diagram of a conventional photovoltaic device, and Figure 3 (opening) is a coaxial plan view.
A transparent electrode 2, a p-1-n junction type or n-i-p junction type amorphous semiconductor layer 5, and a back electrode 6 are laminated in this order on a transparent insulating substrate 1. A strip-shaped conductor in which the back electrode 6 of one adjacent photovoltaic element A is formed on the transparent electrode 2 of the other photovoltaic element B among the photovoltaic elements A, B... 3, and this conductor 3 itself is connected to the transparent electrode 2 of the other photovoltaic element B and the amorphous semiconductor N5 by the same strip-shaped insulator 4 formed parallel to this conductor 3 itself.
A method has been adopted in which the photovoltaic elements A, B, .

ところでこのような光起電力装置の製造は従来第4図(
イ),(口)に示す如くに行われている。
By the way, the manufacturing of such a photovoltaic device has conventionally been carried out as shown in Fig. 4 (
This is done as shown in (a) and (b).

第4図(イ),(ロ)は従来方法の製造過程を示す模式
図であり、先ず第4図(イ)に示す如く透光性絶縁基F
il上に透明電極2を積層形成した後、この透明電極2
を各光起電力素子A,B・・・を構成する領域毎に切断
し、また切断にて区分した各透明電極の一側縁近傍には
切断溝に沿い切断溝側に位置して条状の導電体3を、ま
たこれと所要の間隔を隔てて透明電極の中心側寄りに位
置して同じく条状の絶縁体4を夫々並列形成する。
FIGS. 4(a) and 4(b) are schematic diagrams showing the manufacturing process of the conventional method. First, as shown in FIG. 4(a), a transparent insulating base F
After laminating the transparent electrode 2 on the il, this transparent electrode 2
were cut into regions constituting each photovoltaic element A, B, etc., and near one side edge of each transparent electrode divided by cutting, a strip was placed along the cutting groove and located on the cutting groove side. A conductor 3 is formed in parallel with the conductor 3, and a strip-shaped insulator 4 is formed in parallel with the conductor 3 at a required distance from the conductor 3 and positioned closer to the center of the transparent electrode.

次いで第4図(ロ)に示す如く透明電極2、切断溝及び
導電体3、絶縁体4上にわたって非晶質半導体層5、裏
面電極6をこの順序で積層形成し、導電体3上に対して
は断続的に、また絶縁体4上に対しては連続的に夫々破
線で示す如くに所要線幅のレーザビームを投射する。こ
れによってN.Tft.体3上にあっては、レーザビー
ムが投射された部分では夫々スポット状に非晶質半導体
層5,裏面電極6ともに穿孔され、非晶質半導体層5は
蒸散せしめられ、また裏面電極6は孔の周縁部が蒸散せ
しめられた非晶質半導体層5の跡に垂れ下って導電体3
と電気的に接触した状態で固化する。
Next, as shown in FIG. 4(B), an amorphous semiconductor layer 5 and a back electrode 6 are laminated in this order over the transparent electrode 2, the cutting groove, the conductor 3, and the insulator 4. A laser beam with a required line width is projected onto the insulator 4 intermittently, and continuously onto the insulator 4 as shown by broken lines. As a result, N. Tft. On the body 3, the amorphous semiconductor layer 5 and the back electrode 6 are perforated in spots in the areas where the laser beam is projected, the amorphous semiconductor layer 5 is evaporated, and the back electrode 6 is perforated. The conductor 3 hangs down from the amorphous semiconductor layer 5 where the periphery of the hole was evaporated.
Solidifies when in electrical contact with.

一方、絶縁体4上にあってはレーザビームが連続的に投
射され、非晶質半導体層5,裏面電柵6が共に破断され
、非晶質半導体層5,裏面電極6共に蒸散せしめられる
が、裏面電極6はその破断縁部が蒸散せしめられた非晶
質半導体層5の跡に垂れ下って絶縁体4上に接触した状
態で固化する。
On the other hand, the laser beam is continuously projected onto the insulator 4, and both the amorphous semiconductor layer 5 and the back electrode 6 are broken, and the amorphous semiconductor layer 5 and the back electrode 6 are evaporated. The back electrode 6 is solidified with its broken edge hanging down from the evaporated amorphous semiconductor layer 5 and in contact with the insulator 4.

これによって第3図(イ),(口)に示す如く非晶質半
導体層5,裏面電極6は夫々各光起電力素子A,  B
・・・毎に絶縁体4上で切断され、且つ相随する一方の
光起電力素子における裏面電極6は導電体3を通じて他
方の光起電力素子における透明電極2と接続されて相隣
する光起電力素子は相互に直列接続された状態となる。
As a result, as shown in FIG.
... is cut on the insulator 4, and the back electrode 6 of one of the associated photovoltaic elements is connected to the transparent electrode 2 of the other photovoltaic element through the conductor 3, so that the adjacent light The electromotive force elements are connected in series.

ところで上述した如き従来の製造方法にあっては導電体
3上に対しては断続的に、また絶縁体4上に対しては連
続的に夫々レーザビームを投射する必要があって、加工
作業が煩わしいこと、又光起電力装置として、例えば透
明電極2,2間、導電体3,絶縁体4下及びこれらに挟
まれた部分は実際上太陽電池等として機能しない無効部
分となるが、この導電体3,絶縁体4の幅寸法は裏面電
極6と導電体3とを確実に接触維持するため導電体3上
に対するレーザビームスポット径は30〜100μm、
また絶縁体4上にて相隣する光起電力素子の非晶質半導
体層5,裏面電極6を確実に絶縁維持するため絶縁体4
上に対するレーザビームの線幅は150μm程度に設定
され、更に導電体3と絶縁体4は相互の間に100〜2
00μm程度の幅寸法を隔てて形成するため全体の無効
部分は500〜700μm程度となり、無効部分の幅が
大きいという問題もあった。
However, in the conventional manufacturing method as described above, it is necessary to project the laser beam intermittently onto the conductor 3 and continuously onto the insulator 4, which makes processing work difficult. This is troublesome, and in a photovoltaic device, for example, between the transparent electrodes 2, 2, under the conductor 3, insulator 4, and the part sandwiched between these is an ineffective part that does not actually function as a solar cell, etc. The width dimensions of the body 3 and the insulator 4 are such that the diameter of the laser beam spot on the conductor 3 is 30 to 100 μm to ensure that the back electrode 6 and the conductor 3 are maintained in contact with each other.
In addition, in order to maintain insulation between the amorphous semiconductor layer 5 and the back electrode 6 of adjacent photovoltaic elements on the insulator 4, the insulator 4
The line width of the laser beam with respect to the top is set to about 150 μm, and the conductor 3 and insulator 4 have a distance of 100 to 2 μm between them.
Since they are formed with a width of about 0.00 μm apart, the total ineffective portion is about 500 to 700 μm, and there is also a problem that the width of the ineffective portion is large.

第5図(イ),(口)は、上述した如き問題点を解決す
べく開発された他の従来技術であり、第5図(イ)は断
面図、第5図(口)は平面図である。また第6図(イ)
.(口)はその製造過程を示している。
Figures 5(a) and 5(opening) show other conventional technology developed to solve the above-mentioned problems. Figure 5(a) is a cross-sectional view, and Figure 5(opening) is a plan view. It is. Also, Figure 6 (a)
.. (mouth) indicates the manufacturing process.

なお、図中の番号は第3図(イ),(ロ)及び第4図(
イ),(口)と対応ずる部分には同し番号を付してある
The numbers in the figures refer to Figures 3 (a), (b) and 4 (
The parts corresponding to a) and (mouth) are given the same numbers.

この従来技術においては、導電体3及び絶縁体4を相接
した状態で並列形成し、次いで透明電極2上、透明電極
2.2間の切断部に露出する透光性絶縁基板l及び導電
体3.絶縁体4上にわたってp−i−n接合型、或いは
n−i−p接合型の非晶質半導体層5及びAl,Ti 
,Ag製の裏面電極6をこの順序で所要厚さに積層形戒
する。
In this prior art, a conductor 3 and an insulator 4 are formed in parallel in contact with each other, and then a transparent insulating substrate l and a conductor are exposed on the transparent electrode 2 at a cut portion between the transparent electrodes 2 and 2. 3. A p-i-n junction type or n-i-p junction type amorphous semiconductor layer 5 and Al, Ti are formed over the insulator 4.
, Ag back electrodes 6 are laminated in this order to the required thickness.

次に第6図(口)に破線で示す如く、導電体3絶縁体4
の両者にわたるように線幅100〜150μmのレーザ
ビームを投射し、これらの上の非晶質半導体層5,裏面
電極6を蒸散せしめて分断すると共に、この分断された
裏面電極6の縁部を溶融状態で垂れ下らせて夫々導電体
3,絶縁体4表面に接触した状態で固化せしめる。
Next, as shown by broken lines in FIG. 6 (opening), conductor 3 insulator 4
A laser beam with a line width of 100 to 150 μm is projected so as to cover both sides, and the amorphous semiconductor layer 5 and back electrode 6 on these are evaporated and divided, and the edges of the separated back electrode 6 are They are allowed to hang down in a molten state and solidified while in contact with the surfaces of the conductor 3 and insulator 4, respectively.

これによって相隣する光起電力素子における非晶質半導
体層5,裏面電極6は夫々導電体3,絶縁体4上にて相
互に分断され、且つ一方の光起電力素子の裏面電極6は
他方の光起電力素子における導電体3を介して透明電掘
2と電気的に接続せしめられて、各光起電力素子A,B
・・・が直列接続された光起電力装置が構成されること
となる。
As a result, the amorphous semiconductor layer 5 and back electrode 6 of adjacent photovoltaic elements are separated from each other on the conductor 3 and insulator 4, respectively, and the back electrode 6 of one photovoltaic element is separated from the other on the conductor 3 and insulator 4, respectively. The photovoltaic elements A and B are electrically connected to the transparent trench 2 via the conductor 3 in the photovoltaic elements A, B
... are connected in series to form a photovoltaic device.

この従来技術にあっては導電体と絶縁体とを相隣せしめ
て形成し、この上に非晶質半導体層5,裏面電極6を積
層形成してこれを導電体3、絶縁体4上にて同時的に切
断せしめると共に、導電体3上の裏面電極6の縁部を導
電体3と電気的に接触せしめた状態とすることが出来、
レーザビームによる加工が一回で済み、加工が簡略化さ
れ、また導電体3と絶縁体4とを相互に接触せしめて形
成するから相互の間の無効領域を除去することが出来て
無効面積の狭小化も図れる。
In this prior art, a conductor and an insulator are formed next to each other, an amorphous semiconductor layer 5 and a back electrode 6 are laminated thereon, and then the conductor 3 and the insulator 4 are stacked. It is possible to simultaneously cut the conductor 3 and bring the edge of the back electrode 6 on the conductor 3 into electrical contact with the conductor 3.
Machining with a laser beam is required only once, which simplifies the process, and since the conductor 3 and insulator 4 are formed in contact with each other, the ineffective area between them can be removed, reducing the ineffective area. It can also be made narrower.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、この従来技{ネiにおいては各光起電力
素子A,B・・・の直列接続が導電体3上に垂れ下がっ
た裏面電桶6の一方の端縁部のみで行われることとなり
、第3,4図に示す従来方法ではスポット部分の全周で
溶着接続されるのに比べ、接触面積が小さく、接触抵抗
が増加する欠点があり、また温度変化に対してもスポッ
ト状の溶着に比べ、線状の溶着は接続部の強度が弱く断
線の危険性が大きい等の問題があった。
However, in this conventional technique, the series connection of each of the photovoltaic elements A, B, etc. is performed only at one edge of the backside electric bucket 6 that hangs down on the conductor 3. The conventional method shown in Figures 3 and 4 has the disadvantage that the contact area is smaller and the contact resistance increases compared to welding and connecting the entire circumference of the spot, and it is also more resistant to temperature changes than spot welding. However, linear welding has problems such as the strength of the joint being weak and the risk of wire breakage being high.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは、レーザビームによる一回の加工で
光起電力素子の分割と直列接続とを同時に行うと共に、
直列接続部において低い接触抵抗と高い接続強度が得ら
れる光起電力装置の製造方法を提供するものである。
The present invention was made in view of the above circumstances, and its purpose is to simultaneously divide and connect photovoltaic elements in series in a single process using a laser beam, and to
The present invention provides a method for manufacturing a photovoltaic device that provides low contact resistance and high connection strength in series connections.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る光起電力装置は、透光性絶縁基板上に各光
起電力素子を形成する領域毎に分離した透明電極の表面
に切断部近傍に沿って相接した状態で条状に導電体及び
絶縁体を形成した後、導電体2絶縁体及び各切断した透
明電極上にわたって非晶質半導体層,裏面電槓をこの順
序に積層形成し、前記導電体.絶縁体上において、前記
非晶質半導体層,裏面電極を、前記導電体と絶縁体との
境界線に対して非対象な形状に成形したエネルギービー
ムを用いて溶融切断し、前記導電体に、相隣する他の光
起電力素子の裏面電極を電気的に接触せしめる過程を含
むことを特徴とする。
The photovoltaic device according to the present invention has a conductive conductor formed in a strip shape on the surface of a transparent electrode that is separated for each region in which each photovoltaic element is formed on a transparent insulating substrate, and that is in contact with the surface of the transparent electrode along the vicinity of the cut portion. After forming the conductor 2 and the insulator, an amorphous semiconductor layer and a backside electrode layer are laminated in this order over the conductor 2 insulator and each cut transparent electrode, and the conductor 2 is laminated over the insulator and each cut transparent electrode. On the insulator, the amorphous semiconductor layer and the back electrode are melted and cut using an energy beam shaped asymmetrically with respect to the boundary line between the conductor and the insulator, and the conductor is It is characterized in that it includes a process of bringing the back electrodes of adjacent photovoltaic elements into electrical contact.

〔作用〕[Effect]

本発明にあってはこれによって、一回のエネルギービー
ムの操作で相隣する光起電力素子間は、広い面積で接触
させ得ることとなる。
According to the present invention, by one operation of the energy beam, adjacent photovoltaic elements can be brought into contact over a wide area.

〔実施例〕〔Example〕

以下本発明をその実施状態を示す図面に基づき具体的に
説明する。第1図(イ),(口)は本発明方法により製
造した光起電力装置の要部を示す模式図であり、図中1
はガラス等を用いた共通の透光性絶縁基板を示している
。この共通の透光性絶縁基Fi.1上に各光起電力素子
A,B・・・が形成されている。各光起電力素子A, 
 B,・・・は前記した共通の透光性絶縁基板1上に夫
々Sn02, ITO/SnOz等を用いた透明電極2
を形成し、その上に部分的にAf,Ag等を用いた導電
体3,ガラス等を用いた絶縁体4を相接した状態に隣接
形成した後、これらの表面にアモルファスシリコン等を
用いたρ−i−n接合型、又はn−i−p接合型の非晶
質半導体層5,Al等を用いた裏面電横6をこの順序に
積層形成し、レーザビームの投射によって非晶質半導体
層5,裏面電極6を夫々各光起電力素子A,B・・・毎
に分断して絶縁体4にて相互に電気的に遮断すると共に
、相隣する光起電力素子A,B・・・のうち一方の光起
電力素子Aの裏面電極6は他の光起電力素子B上の導電
体3を介してその透明電極2と接続せしめ、光起電力素
子A,B,・・・を相互に直列接続せしめてある。
The present invention will be specifically described below based on drawings showing its implementation state. Figures 1 (a) and 1 (opening) are schematic diagrams showing the main parts of a photovoltaic device manufactured by the method of the present invention, and 1 in the figure.
indicates a common light-transmitting insulating substrate made of glass or the like. This common light-transmitting insulating group Fi. 1, each photovoltaic element A, B, . . . is formed. Each photovoltaic element A,
B, . . . are transparent electrodes 2 using Sn02, ITO/SnOz, etc., respectively, on the above-mentioned common translucent insulating substrate 1.
A conductor 3 made of Af, Ag, etc., and an insulator 4 made of glass, etc. are formed on the conductor 3 and insulator 4 made of glass, etc., in contact with each other. A ρ-i-n junction type or n-i-p junction type amorphous semiconductor layer 5 and a backside electrode layer 6 made of Al or the like are laminated in this order, and the amorphous semiconductor layer is formed by laser beam projection. The layer 5 and the back electrode 6 are divided into each photovoltaic element A, B... and electrically isolated from each other by the insulator 4, and the adjacent photovoltaic elements A, B... The back electrode 6 of one of the photovoltaic elements A is connected to the transparent electrode 2 of the other photovoltaic element B via the conductor 3, and the photovoltaic elements A, B,... They are connected to each other in series.

なお、前記裏面電極6と導電体3との接続は、レーザビ
ーム投射部の周辺領域で導電体3の上の領域全域にわた
って略等間隔で行われている。
Note that the connection between the back electrode 6 and the conductor 3 is made at approximately equal intervals over the entire area above the conductor 3 in the peripheral area of the laser beam projection section.

次にこのような光起電力装置の製造方法を第2図(イ)
,(口),(ハ)に基づき説明する。
Next, the method for manufacturing such a photovoltaic device is shown in Figure 2 (a).
, (Ex), (C).

先ず第2図(イ)に示す如く、ガラス等を用いて形成し
た共通の透光性絶縁基板l上にSnOz.或いはITO
/SnOz等を材料とする透明電極2を全面に積層形成
した後、レーザスクライブによって透明電極2を各光起
電力素子A,B・・・を形戒ずる領域毎に切断分離する
と共に、分離した各透明電桶2.2上には切断溝に沿わ
せて一側縁の全長にわたるよう導電体3及び絶縁体4を
相接した状態で並列形成せしめる。
First, as shown in FIG. 2(A), SnOz. Or ITO
After laminating a transparent electrode 2 made of /SnOz or the like over the entire surface, the transparent electrode 2 was cut and separated into regions where the photovoltaic elements A, B, etc. were to be separated using a laser scribe. On each transparent electric bucket 2.2, a conductor 3 and an insulator 4 are formed in parallel and in contact with each other so as to span the entire length of one side edge along the cutting groove.

この導電体3.絶縁体4は、例えばAgを主体とする導
電体ペースト、ガラスを主体とする絶縁体ペーストを従
来知られたペン描画法等にて透明電横2上に条状に付着
させた後、これを焼或することによって形成される。
This conductor 3. The insulator 4 is made by applying a conductive paste mainly composed of Ag or an insulating paste mainly composed of glass to the transparent electrode 2 in a strip shape using a conventionally known pen drawing method or the like. Formed by firing.

次いで透明電捕2上、及び透明電極2,2間の切断部に
露出する透光性絶縁基板1上及び導電体3,絶縁体4上
にわたってp−i−n接合型、或いはn−i−p接合型
の非晶質半導体層5及びAj2, Ti,Ag製の裏面
電横6をこの順序で所要厚さに積層形成する。
Next, a p-i-n junction type or n-i- A p-junction type amorphous semiconductor layer 5 and a back electrode layer 6 made of Aj2, Ti, and Ag are laminated in this order to a required thickness.

次に第2図(口)に示す如く、レーザビームl,Bの光
路中に所定の開ロバターンを有するアイリス8及び該開
口パターンを裏面電極6上に結像させるためのレンズ7
を配置し、導電体3,絶縁体4の両者にわたる幅でレー
ザビームLBをパルス状に投射する。アイリス8の開口
パターン、即ちレーザビーム投射パターン9は、例えば
第2図(ハ)にハンチングを付して示す如く導電体3と
絶縁体4との境界線に関して非対称なパターンであり、
長方形状部分aと円形状部分bとこの両部分a,bを結
ぶ細いスリット状部分Cとを有し、長方形状部分aを経
たレーザビームは絶縁体4上の裏面電極6上に、また円
形状部分bを経たレーザビームは導電体3上の裏面電極
6上に夫々投射され、更にスリット状部分Cは導電体3
.絶縁体4の両者にわたる裏面電極6上に夫々投射され
るようになっている。
Next, as shown in FIG. 2 (opening), an iris 8 having a predetermined aperture pattern in the optical path of the laser beams l and B, and a lens 7 for imaging the aperture pattern onto the back electrode 6.
is arranged, and a laser beam LB is projected in a pulsed manner with a width spanning both the conductor 3 and the insulator 4. The aperture pattern of the iris 8, that is, the laser beam projection pattern 9, is an asymmetrical pattern with respect to the boundary line between the conductor 3 and the insulator 4, as shown with hunting in FIG. 2(c), for example.
It has a rectangular part a, a circular part b, and a thin slit-like part C that connects both parts a and b, and the laser beam that has passed through the rectangular part a is on the back electrode 6 on the insulator 4 and also in the circular part. The laser beams that have passed through the shaped portions b are projected onto the back electrodes 6 on the conductor 3, and the slit-shaped portions C are projected onto the back electrodes 6 on the conductor 3.
.. The beams are projected onto the back electrodes 6 extending over both sides of the insulator 4, respectively.

絶縁体4上では長方形状部分aを経たレーザビームが絶
縁体4の長手方向において一部がオーハランブする態様
で、また導電体3上では円形状部分bを経たレーザビー
ムが相互に適長離間した状態で投射されるようレーザビ
ーム光学系と光起電力装置との相対的移動量を適正に設
定する。これによってレーザビームLBは導電体3上に
スポット状に投射され、レーザビームが投射された部分
では非晶質半導体層5,裏面電極6ともに所定の間隔で
穿孔され、非晶質半導体層5は蒸散せしめられ、裏面電
極6は孔の周縁部が蒸散せしめられた非晶質半導体層5
の跡に垂れ下がって導電体3と電気的に接触した状態で
固化する。
On the insulator 4, the laser beam that has passed through the rectangular portion a partially overlaps in the longitudinal direction of the insulator 4, and on the conductor 3, the laser beam that has passed through the circular portion b is separated from each other by an appropriate length. The amount of relative movement between the laser beam optical system and the photovoltaic device is appropriately set so that the laser beam is projected in the same state. As a result, the laser beam LB is projected onto the conductor 3 in a spot shape, and the amorphous semiconductor layer 5 and the back electrode 6 are perforated at a predetermined interval in the portion where the laser beam is projected, and the amorphous semiconductor layer 5 is The back electrode 6 is an amorphous semiconductor layer 5 whose periphery of the hole is evaporated.
It hangs down from the trace and solidifies in electrical contact with the conductor 3.

また絶縁体4上の非晶質半導体層5,裏面電横6が共に
蒸散せしめられて分断すると共に、この分断された裏面
電極6の縁部を蒸散した非晶質半導体層5の跡に溶融状
態で垂れ下らせて絶縁体4表面に接触した状態で固化せ
しめる。
In addition, the amorphous semiconductor layer 5 on the insulator 4 and the back electrode 6 are both evaporated and divided, and the edges of the divided back electrode 6 are melted into the traces of the evaporated amorphous semiconductor layer 5. It is allowed to hang down and solidify while in contact with the surface of the insulator 4.

これによって相隣する光起電力素子A,Bにおける非晶
質半導体層5,裏面電極6は共に導電体3,絶縁体4上
にて相互に分断され、且つ一方の光起電力素子Aの裏面
電極6は他方の光起電力素子Bにおける導電体3を介し
て透明電極2と電気的に接続せしめられ、各光起電力素
子A,B・・・が直列接続された光起電力装置が構成さ
れることとなる。
As a result, the amorphous semiconductor layer 5 and back electrode 6 of adjacent photovoltaic elements A and B are both separated from each other on the conductor 3 and insulator 4, and the back surface of one photovoltaic element A The electrode 6 is electrically connected to the transparent electrode 2 via the conductor 3 in the other photovoltaic element B, and a photovoltaic device is constructed in which each of the photovoltaic elements A, B... is connected in series. It will be done.

なお、上述の実施例ではレーザビーム投射パターン9と
して長方形部分a,円形状部分b,スリット状部分Cを
一連とした場合について説明したが、何らこれに限るも
のではなく、導電体3上ではスポット状に、また絶縁体
4上では矩形状に独立して溶断を行い得るパターンであ
ってもよい。
In the above embodiment, the laser beam projection pattern 9 is made up of a series of rectangular portions a, circular portions b, and slit-like portions C. It may be a pattern in which fusing can be performed independently in a rectangular shape or in a rectangular shape on the insulator 4.

〔効果〕〔effect〕

上述した如く本発明方法にあっては導電体と絶縁体とを
相隣せしめて形成し、この上に非晶質半導体層.裏面電
極を積層形成し、これらを導電体と絶縁体との境界線に
対して非対象に戊形したエネルギービームを用いて導電
体、絶縁体上にて同時的に切断せしめると共に、導電体
上における裏面電極の縁部をスポット状に導電体と電気
的に接触せしめた状態とすることが出来、エネルギービ
ームによる加工が一回で済むことは勿論、加工が簡略化
され、また導電体上における裏面電極と導電体との接続
面積が広く、しかも高い接続強度が得られることとなり
、低接触抵抗で高い信頼性が得られるなど、本発明は優
れた効果を奏するものである。
As described above, in the method of the present invention, a conductor and an insulator are formed adjacent to each other, and an amorphous semiconductor layer is formed on top of the conductor and insulator. Back electrodes are laminated and cut simultaneously on the conductor and insulator using an energy beam shaped asymmetrically with respect to the boundary line between the conductor and the insulator. The edge of the back electrode can be brought into electrical contact with the conductor in a spot-like manner, which not only requires processing with an energy beam only once, but also simplifies the process. The present invention has excellent effects such as a wide connection area between the back electrode and the conductor, high connection strength, low contact resistance, and high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)は本発明方法により製造した光起電力装置
の断面構造図、第1図(口)は同じくその平面図、第2
図(イ),(口),(ハ)は本発明方法の主要工程を示
す模式的断面図、第3図(イ)は従来の方法で製造され
た光起電力装置の断面構造図、第3図(口)は同じくそ
の平面図、第4図(イ),(口)は従来方法の主要工程
を示す模式的断面図、第5図(イ)は他の従来方法によ
り製造された光起電力装置の断面構造図、第5図(ロ)
は同じくその平面図、第6図(イ),(口)は他の従来
方法の主要工程を示す模式的断面図である。 1・・・透光性絶縁基板 2・・・透明電極 3・・・
導電体 4・・・絶縁体 5・・・非晶質半導体層 6
・・・裏面電極 7・・・レンズ 8・・・アイリス 
9・・・レーザビーム投射パターン 特 許 出願人  三洋電機株式会社
FIG. 1(A) is a cross-sectional structural diagram of a photovoltaic device manufactured by the method of the present invention, FIG. 1(B) is a plan view thereof, and FIG.
Figures (A), (C), and (C) are schematic cross-sectional views showing the main steps of the method of the present invention; Figure 3 (A) is a cross-sectional structural diagram of a photovoltaic device manufactured by the conventional method; Figure 3 (opening) is a plan view of the same, Figures 4 (a) and (opening) are schematic cross-sectional views showing the main steps of the conventional method, and Figure 5 (a) is a light produced by another conventional method. Cross-sectional structural diagram of the electromotive force device, Figure 5 (b)
6 is a plan view thereof, and FIGS. 6A and 6B are schematic cross-sectional views showing the main steps of another conventional method. 1... Transparent insulating substrate 2... Transparent electrode 3...
Conductor 4... Insulator 5... Amorphous semiconductor layer 6
...Back electrode 7...Lens 8...Iris
9...Laser beam projection pattern patent Applicant: SANYO Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、透光性絶縁基板上に各光起電力素子を形成する領域
毎に分離した透明電極の表面に、切断部近傍に沿って相
接した状態で条状に導電体及び絶縁体を形成した後、導
電体、絶縁体及び各切断した透明電極上にわたって非晶
質半導体層、裏面電極をこの順序に積層形成し、前記導
電体、絶縁体上において、前記非晶質半導体層、裏面電
極を、前記導電体と絶縁体との境界線に対して非対象な
形状に成形したエネルギービームを用いて溶融切断し、
前記導電体に、相隣する他の光起電力素子の裏面電極を
電気的に接触せしめる過程を含むことを特徴とする光起
電力装置の製造方法。
1. A conductor and an insulator were formed in strips on the surface of a transparent electrode separated for each region where each photovoltaic element was formed on a transparent insulating substrate, in contact with each other along the vicinity of the cut portion. After that, an amorphous semiconductor layer and a back electrode are laminated in this order over the conductor, insulator, and each cut transparent electrode, and the amorphous semiconductor layer and back electrode are stacked on the conductor and insulator. , melting and cutting using an energy beam shaped into an asymmetrical shape with respect to the boundary line between the conductor and the insulator,
A method for manufacturing a photovoltaic device, comprising the step of electrically bringing a back electrode of another adjacent photovoltaic element into contact with the conductor.
JP1236694A 1989-09-11 1989-09-11 Method for manufacturing photovoltaic device Expired - Fee Related JP2738569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1236694A JP2738569B2 (en) 1989-09-11 1989-09-11 Method for manufacturing photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1236694A JP2738569B2 (en) 1989-09-11 1989-09-11 Method for manufacturing photovoltaic device

Publications (2)

Publication Number Publication Date
JPH0397273A true JPH0397273A (en) 1991-04-23
JP2738569B2 JP2738569B2 (en) 1998-04-08

Family

ID=17004388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1236694A Expired - Fee Related JP2738569B2 (en) 1989-09-11 1989-09-11 Method for manufacturing photovoltaic device

Country Status (1)

Country Link
JP (1) JP2738569B2 (en)

Also Published As

Publication number Publication date
JP2738569B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
JP2005500701A5 (en)
JPH06342924A (en) Thin-film solar cell and manufacture thereof
JP2005500701A (en) Chain link metal interconnect structure
JP3846312B2 (en) Method for manufacturing multiple chip resistors
JPH10233517A (en) Photoelectric conversion device and its manufacturing method
JP2000164901A (en) Solar battery
JPH0744286B2 (en) Method for manufacturing amorphous photovoltaic module
JP2680582B2 (en) Method for manufacturing photovoltaic device
JPH0397273A (en) Manufacture of photovoltaic device
JPS62232176A (en) Photovoltaic device
JP2000164903A (en) Solar battery
JPS62242371A (en) Manufacture of photovoltaic device
JPH067599B2 (en) Photovoltaic device and manufacturing method thereof
JPS6276786A (en) Manufacture of photovoltaic device
SE1430133A1 (en) Method of Interconnecting Single Solar Cells into Solar CellModules
JPH0519991B2 (en)
JPS63102274A (en) Photovoltaic device
JP3222981B2 (en) Solar cell and manufacturing method thereof
JPH0558676B2 (en)
JP2771650B2 (en) Method for manufacturing photovoltaic device
JPS59168681A (en) Amorphous thin film solar cell
JP2004179260A (en) Solar battery module
JP2744058B2 (en) Method for manufacturing photovoltaic device
JPH03127867A (en) Photovoltaic device and manufacture thereof
JPS6289368A (en) Manufacture of solar cell device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees