JPH039536A - Liquid epitaxial growth method - Google Patents

Liquid epitaxial growth method

Info

Publication number
JPH039536A
JPH039536A JP14499589A JP14499589A JPH039536A JP H039536 A JPH039536 A JP H039536A JP 14499589 A JP14499589 A JP 14499589A JP 14499589 A JP14499589 A JP 14499589A JP H039536 A JPH039536 A JP H039536A
Authority
JP
Japan
Prior art keywords
temperature
melt
substrate
epitaxial growth
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14499589A
Other languages
Japanese (ja)
Inventor
Tamotsu Yamamoto
保 山本
Tetsuo Saito
哲男 齊藤
Tetsuya Kawachi
哲也 河内
Toshiyuki Ueda
敏之 上田
Kosaku Yamamoto
山本 功作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14499589A priority Critical patent/JPH039536A/en
Publication of JPH039536A publication Critical patent/JPH039536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain epitaxial crystal of uniform composition in which crystal nucleus turning to a cause of abnormal growth is not generated on a fixing jig of a substrate, by a method wherein, when the temperature of fused melt in cooling process reaches a specified temperature higher than the liquid phase temperature, a substrate is brought into contact with the melt. CONSTITUTION:After melt for epitaxial growth use is fused at a fusing temperature T1, the temperature of fused melt is decreased; when it becomes a temperature T3 higher than the liquid phase temperature Tl of epitaxial crystal to be formed on a substrate the substrate is brought into contact with the fused melt to start epitaxial growth. The temperature of the fused melt is decreased by a large temperature gradient, epitaxial growth is continued in the state where the temperature of the fused melt is kept at a temperature T2 lower than or equal to the liquid phase temperature, for a specified time. That is, since the temperature of fused melt is kept at a temperature higher than or equal to supercooling temperature at the stage of starting the epitaxial growth, crystal nucleus can be prevented from generating at a portion except the substrate. Thereby high quality epitaxial crystal whose composition is stabilized can be obtained.

Description

【発明の詳細な説明】 〔概 要] 液相エピタキシャル成長方法に関し、 エピタキシャル成長用基板の固定治具等にエピタキシャ
ル成長時に異常成長の要因となる結晶核が発生せず、か
つ成長されたエピタキシャル結晶の厚さ方向に沿って組
成の均一なエピタキシャル結晶が得られるような液相エ
ピタキシャル成長方法を目的とし、 エピタキシャル成長用メルトを所定時間溶融した後、該
メルトの温度を急速に降下させるとともに、該メルトに
エピタキシャル成長用基板を接触させ、その後、該基板
上に成長させるエビタ;1−シャル結晶の液相化温度(
T1)より低い一定の成長温度(T2)で所定時間保つ
ことにより、前記基板上にメル1−より析出したエピタ
キシャル結晶を成長させる方法に於いて、 前記メルトの冷却過程であって、かつ溶融したメルトが
、前記液相化温度(T2)より高い所定の温度(T3)
に成った時点で前記基板をメルトに接触させるようにし
て構成する。
[Detailed Description of the Invention] [Summary] Regarding the liquid phase epitaxial growth method, there is no generation of crystal nuclei that can cause abnormal growth during epitaxial growth in the fixing jig of the epitaxial growth substrate, and the thickness of the grown epitaxial crystal can be reduced. Aiming at a liquid phase epitaxial growth method that can obtain an epitaxial crystal with a uniform composition along the direction, after melting a melt for epitaxial growth for a predetermined period of time, the temperature of the melt is rapidly lowered, and a substrate for epitaxial growth is attached to the melt. and then grown on the substrate at the liquidus temperature (
T1) In the method of growing epitaxial crystals precipitated from melt 1- on the substrate by keeping at a constant growth temperature (T2) lower than that for a predetermined time, The melt is at a predetermined temperature (T3) higher than the liquidus temperature (T2).
The structure is such that the substrate is brought into contact with the melt when the melt is reached.

[産業上の利用分野] 本発明は液相エピタキシャル成長方法に関する。[Industrial application field] The present invention relates to a liquid phase epitaxial growth method.

赤外線検知素子や、赤外線レーザ素子のような光電変換
素子には、エネルギーバンドギャップの狭い水銀・カド
ミウム・テルル(Hg+□Cd、 Te)のような化合
物半導体結晶が用いられている。
Compound semiconductor crystals such as mercury-cadmium-tellurium (Hg+□Cd, Te), which have a narrow energy band gap, are used in infrared detection elements and photoelectric conversion elements such as infrared laser elements.

このようなI1g+−x CdxTeの結晶を、カドミ
ウムテルル(CdTe)の基板上にエピタキシャル成長
する場合、水銀が易蒸発性の元素であるため、密閉構造
のアンプルを用いて水銀の医発を防ぎ、溶融した水銀・
カドミウムテルルルのメルト(合金)を基板に接触させ
てエピタキシャル結晶を基板上に形成する液相エピタキ
シャル成長方法が、装置の構造が簡単でかつ形成される
エピタキシャル結晶の組成制御性が良い等の理由により
多用されている。
When such I1g+-x CdxTe crystals are epitaxially grown on a cadmium telluride (CdTe) substrate, since mercury is an element that evaporates easily, an ampoule with a sealed structure is used to prevent mercury from causing medical problems and to prevent the mercury from melting. mercury
The liquid phase epitaxial growth method, in which epitaxial crystals are formed on a substrate by bringing a melt (alloy) of cadmium telluride into contact with the substrate, has a simple structure and good controllability of the composition of the epitaxial crystal formed. It is widely used.

〔従来の技術〕[Conventional technology]

液相エピタキシャル成長方法に用いる装置としては、第
3図に示すようにエピタキシャル成長用基板1を保持す
る板状の基板ホルダ2を挟持する溝3を有し、エピタキ
シャル成長時の装置の回転時に溶融したエピタキシャル
成長用メルト4を収容する空間部5を有した対向せる一
対の円柱形状の石英部材よりなる固定治具6と、該固定
治具6を封入するアンプル7とよりなる。
As shown in FIG. 3, the apparatus used in the liquid phase epitaxial growth method has a groove 3 that holds a plate-shaped substrate holder 2 that holds the epitaxial growth substrate 1, and has a groove 3 that holds the epitaxial growth substrate 1 that is melted when the apparatus is rotated during epitaxial growth. It consists of a fixing jig 6 made of a pair of opposing cylindrical quartz members having a space 5 for accommodating the melt 4, and an ampoule 7 enclosing the fixing jig 6.

このような装置を用い、従来の方法でエピタキシャル結
晶を基板上に形成する場合に付いて説明する。
A case in which epitaxial crystals are formed on a substrate by a conventional method using such an apparatus will be described.

第3図および第3図のm−m ’線に沿った断面図の第
4図(a)に示すように、基板1を板状の基板ホルダ2
に設置し、該基板ホルダ2を前記した固定治具6の溝3
内に設置し、該基板lを設置した固定治具6を、該基板
と対向する反対側の位置に水銀、カドミウムおよびテル
ルより成るエピタキシャル成長用メルl−4の形成材料
を充填した状態でアンプル7内に封入する。
As shown in FIG. 3 and FIG. 4(a), which is a cross-sectional view taken along line m-m' in FIG.
The substrate holder 2 is installed in the groove 3 of the fixing jig 6 described above.
The fixing jig 6 with the substrate 1 installed therein is filled with a forming material for epitaxial growth mel 1-4 made of mercury, cadmium, and tellurium at the opposite position facing the substrate, and an ampoule 7 is placed inside the ampoule 7. Enclose inside.

次いで上記アンプル7を加熱炉内の炉芯管(図示せず)
内に挿入し、アンプル7を加熱してアンプル7内の前記
メルト形成材料を溶融する。
Next, the ampoule 7 is placed in a furnace core tube (not shown) in a heating furnace.
ampoule 7 is heated to melt the melt-forming material within ampoule 7.

この場合のメルト形成材料の溶融温度(T3)は、第5
図の従来の方法に於けるメルト温度と成長時間の関係図
に示すように約500°Cとする。
The melting temperature (T3) of the melt forming material in this case is the fifth
As shown in the relationship between melt temperature and growth time in the conventional method shown in the figure, the temperature is about 500°C.

以下、従来のエピタキシャル成長方法に付いて、第4図
(b)、第4図(C)および第5図を用いて説明する。
The conventional epitaxial growth method will be explained below with reference to FIG. 4(b), FIG. 4(C), and FIG. 5.

前記500″Cの溶融温度(T1)でメルト形成材料を
溶融した後、この溶融温度(T3)で所定時間保った後
、該溶融したエピタキシャル成長用メルトの温度を、該
基板上に形成するHgr−x Cd3 Teのエピタキ
シャル結晶の液相化温度(T f )より低い温度のエ
ピタキシャル成長温度(T2)まで降下させる。
After melting the melt-forming material at the melting temperature (T1) of 500''C and maintaining it at this melting temperature (T3) for a predetermined time, the temperature of the melted epitaxial growth melt is adjusted to the Hgr- The temperature is lowered to an epitaxial growth temperature (T2) lower than the liquidus temperature (T f ) of the epitaxial crystal of x Cd3 Te.

次いでアンプル7を矢印へ方向に沿って180度回転し
、第4図(b)に示すように、溶融したエピタキシャル
成長用メルト4に基板1を接触させ、上記溶融メルトの
温度をT2の温度に保った状態で、時間1+より時間t
z迄経過させ、基板上に熔融した11g1□CdつTe
のメルトを析出させて基板上に11g1□CdX Te
のエピタキシャル結晶を成長している。
Next, the ampoule 7 is rotated 180 degrees along the direction of the arrow, and as shown in FIG. 4(b), the substrate 1 is brought into contact with the molten epitaxial growth melt 4, and the temperature of the molten melt is maintained at the temperature T2. In this state, from time 1+ to time t
11g1□CdTe melted on the substrate
A melt of 11g1□CdX Te is deposited on the substrate.
growing epitaxial crystals.

次いで該アンプル7を矢印B方向に更に180度回転し
、第4図(C)に示すように基板上に付着しているメル
トを下部に落下させるワイプオフの作業によってエピタ
キシャル成長を停止している。
Next, the ampoule 7 is further rotated 180 degrees in the direction of arrow B, and the epitaxial growth is stopped by a wipe-off operation in which the melt adhering to the substrate falls to the bottom as shown in FIG. 4(C).

このような従来の方法で形成した試料について成長条件
と成長結晶厚さを第1表に記載する。
Table 1 lists the growth conditions and growth crystal thickness for samples formed by such conventional methods.

第   1   表 なお、上記第1表で過冷却度は、第5図のグラフに於い
て液相化温度(T l )−成長温度(T2)の値を示
し、成長時間は成長終了時点(t2)〜成長開始時点(
1+ )の値を示す。
Table 1 Note that the degree of supercooling in Table 1 above indicates the value of liquidus temperature (T l ) - growth temperature (T2) in the graph of FIG. ) ~ Growth start point (
1+).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し、上記した従来の方法では、溶融したエピタキシャ
ル成長用メルトを一旦、エピタキシャル結晶の液相化温
度より低い温度迄冷却しており、この温度に於ける溶融
したエピタキシャル成長用メルトは、固相と液相が共存
した過冷却状態を呈しており、僅かの衝撃等がアンプル
の外部より加わることによって結晶が容易に成長し易い
状態にある。
However, in the conventional method described above, the molten epitaxial growth melt is once cooled to a temperature lower than the liquid phase temperature of the epitaxial crystal, and the molten epitaxial growth melt at this temperature has a solid phase and a liquid phase. The ampoule is in a supercooled state in which the ampoule coexists with the ampoule, and is in a state where crystals can easily grow when a slight shock or the like is applied from outside the ampoule.

そのため、従来の方法でエピタキシャル成長を開始する
と、エピタキシャル成長用メルトが接触している固定治
具の側壁や、基板ホルダの側壁に結晶の析出核が発生し
、その析出核を基にしてエピタキシャル成長用基板以外
の箇所で結晶が析出し易く成り、そのため、溶融メルト
が成長用基板以外の成長に消費されて基板上のエピタキ
シャル結晶成長速度が遅くなる問題がある。
Therefore, when epitaxial growth is started using the conventional method, crystal precipitation nuclei are generated on the side walls of the fixing jig that are in contact with the epitaxial growth melt, and on the side walls of the substrate holder. Crystals tend to precipitate at these locations, and as a result, there is a problem in that the molten melt is consumed for growth on things other than the growth substrate, slowing down the growth rate of epitaxial crystals on the substrate.

また従来の方法では、上記した基板以外の部分の結晶の
析出核の発生によって、基板に接触しているエピタキシ
ャル成長用メルトの組成に変動を来し、それが原因とな
って基板上に形成されるエピタキシャル結晶の厚さ方向
に組成変動が生しやすい問題がある。
In addition, in the conventional method, the composition of the epitaxial growth melt in contact with the substrate changes due to the generation of crystal precipitation nuclei in areas other than the substrate, which causes the formation of crystals on the substrate. There is a problem that compositional fluctuations tend to occur in the thickness direction of the epitaxial crystal.

本発明は上記した問題点を解決し、エピタキシャル成長
用基板以外の箇所に結晶核が発生し難く、且つエピタキ
シャル層の成長速度の低下を招かず、更にエピタキシャ
ル層の厚さ方向に沿って均一な組成が得られるような液
相エピタキシャル成長方法の提供を目的とする。
The present invention solves the above-mentioned problems, makes it difficult for crystal nuclei to occur in locations other than the epitaxial growth substrate, does not cause a decrease in the growth rate of the epitaxial layer, and furthermore provides a uniform composition along the thickness direction of the epitaxial layer. The purpose of the present invention is to provide a liquid phase epitaxial growth method that provides the following.

〔課題を解決するための手段] 上記目的を達成する本発明の液相エピタキシャル成長方
法は、エピタキシャル成長用メルトを所定時間溶融した
後、該メルトの温度を急速に降下させるとともに、該メ
ルトにエピタキシャル成長用基板を接触させ、その後、
該基板上に成長させるエピタキシャル結晶の液相化温度
(Tりより低い一定の成長温度(T2)で所定時間保つ
ことにより、前記基板上にメルトより析出したエピタキ
シャル結晶を成長させる方法に於いて、 前記メルトの冷却過程であって、かつ溶融したメルトが
、前記液相化温度(T ffi )  より高い所定の
温度(T3)に成った時点で前記基板をメルトに接触さ
せるようにしたことを特徴とする。
[Means for Solving the Problems] In the liquid phase epitaxial growth method of the present invention that achieves the above object, after melting a melt for epitaxial growth for a predetermined period of time, the temperature of the melt is rapidly lowered, and a substrate for epitaxial growth is added to the melt. and then,
In a method of growing an epitaxial crystal deposited from a melt on the substrate by maintaining it at a constant growth temperature (T2) lower than the liquidus temperature (T) of the epitaxial crystal grown on the substrate for a predetermined time, The substrate is brought into contact with the melt when the melt reaches a predetermined temperature (T3) higher than the liquidus temperature (Tffi) during the cooling process of the melt. shall be.

〔作 用] 本発明の方法は、第1図に示すようにエピタキシャル成
長用メルトを例えば50(1″C程度の溶融温度(T3
)で溶融した後、該溶融メルトの温度を降下させ、基板
上に形成するエピタキシャル結晶の液相化温度(T f
fi )より高い温度(T3)に成った時に、基板を溶
融メルトに接触させてエピタキシャル成長を開始する。
[Function] As shown in FIG. 1, the method of the present invention uses a melt for epitaxial growth at a melting temperature (T3
), the temperature of the molten melt is lowered to reach the liquidus temperature (T f ) of the epitaxial crystal formed on the substrate.
fi) When the temperature reaches a higher temperature (T3), the substrate is brought into contact with the molten melt to begin epitaxial growth.

次いで溶融メルトの温度を0.5°C/分以上の大きい
温度勾配で降下させ、溶融メルトの温度を液相化温度以
下の温度(T2)に所定時間保った状態で、エピタキシ
ャル成長する。
Next, the temperature of the molten melt is lowered with a large temperature gradient of 0.5° C./min or more, and epitaxial growth is performed while the temperature of the molten melt is maintained at a temperature (T2) below the liquidus temperature for a predetermined period of time.

このようにするとエピタキシャル成長を開始する初期の
段階で溶融メルトの温度が、過冷却温度以上の温度に保
たれているため、基板以外の箇所に結晶核の発生するの
が防止され、基板上でのエピタキシャル層の成長速度も
従来より大となり、また基板以外でのメルトの消耗が無
いので、溶融メルトの組成変動も生じ難くなり、エピタ
キシャル結晶の厚さ方向に沿っての組成変動も発生し難
く成る。
In this way, the temperature of the molten melt is maintained at a temperature higher than the supercooling temperature at the initial stage of starting epitaxial growth, which prevents the generation of crystal nuclei in areas other than the substrate. The growth rate of the epitaxial layer is also faster than before, and since there is no melt consumption outside of the substrate, compositional fluctuations in the molten melt are less likely to occur, and compositional fluctuations along the thickness direction of the epitaxial crystal are also less likely to occur. .

〔実 施 例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の方法に於ける溶融したエピタキシャル
成長用メルトのエピタキシャル成長時間に対する温度勾
配図である。
FIG. 1 is a temperature gradient diagram of the melt for epitaxial growth with respect to the epitaxial growth time in the method of the present invention.

上記温度勾配図と、051記した第4図(a)より第4
図(C)迄のエピタキシャル成長工程図を用いて本発明
の詳細な説明すると、第4図(a)に示すようにアンプ
ル7内にエピタキシャル成長用基板1と、水銀、カドミ
ウムおよびテルルを所定量秤量して混合溶融して所定形
状に固化したエピタキシャル成長用メルト4とを封入し
た後、第1図に示ず約500°Cのメルト熔融温度(T
3)にて溶融する。
From the above temperature gradient diagram and Figure 4 (a) marked 051,
The present invention will be explained in detail with reference to the epitaxial growth process diagrams up to FIG. 4(C). As shown in FIG. After encapsulating the epitaxial growth melt 4 mixed and melted and solidified into a predetermined shape, the melt melting temperature (T
3) Melt.

次いで第1図に示すように、溶融メルトの液相化温度(
T2)より約2°C程度高温の温度(T3)迄降下させ
る。そしてこの溶融メルトの温度をT3の温度とした状
態で、第4図(b)に示すようにエビタキシセル成長用
基板lを溶融メルト4に接触させてエピタキシャル成長
を開始する。このエピタキシャル成長を開始した時点が
り、である。
Next, as shown in Figure 1, the liquidus temperature of the molten melt (
The temperature is lowered to about 2°C higher than T2) (T3). Then, with the temperature of this molten melt set to T3, the epitaxy cell growth substrate 1 is brought into contact with the molten melt 4, as shown in FIG. 4(b), to start epitaxial growth. This is the point at which this epitaxial growth is started.

次いで第1図に示すように、溶融メルトの温度を0.5
°C/分の温度勾配で降下させ、液相化温度(T/)の
479°Cより10°C程度降下させた温度(T2)迄
到達させ、この温度(T2)で所定時間保って基板上に
溶融メルトよりエピタキシャル結晶を析出させる。そし
てL2時間に成った時点で、第4図(C)に示すように
アンプルを更に180度回軸回転て、エピタキシャル結
晶が成長した基板上より不要な溶融メルトをワイプオフ
してエピタキシャル結晶を形成する。
Then, as shown in Figure 1, the temperature of the molten melt was decreased to 0.5
The temperature is lowered at a temperature gradient of °C/min to reach a temperature (T2) that is about 10 °C lower than the liquidus temperature (T/) of 479 °C, and this temperature (T2) is maintained for a predetermined period of time. Epitaxial crystals are deposited on top from the melt. Then, at the L2 time, the ampoule is further rotated by 180 degrees as shown in FIG. 4(C), and unnecessary molten melt is wiped off from the substrate on which the epitaxial crystal has grown to form an epitaxial crystal. .

このような本発明の方法で形成されたエピタキシャル結
晶の試料に付いて第2表に示す。
Table 2 shows epitaxial crystal samples formed by the method of the present invention.

第   2   表 ル成長を開始するし、の時点が、溶融したエピタキシャ
ル成長用メルトの温度がエピタキシャル結晶の液相化温
度(T I!3)より高い(T3)の温度に設定されて
おり、該メル]−が固相と液相の共存する過冷却状態で
ないために、エピタキシャル成長用基板以外の箇所より
結晶核が発生してそれが異常成長するような現象が無く
なる。
The temperature of the melt for epitaxial growth is set at a temperature (T3) higher than the liquidus temperature (TI!3) of the epitaxial crystal, and ]- is not in a supercooled state where a solid phase and a liquid phase coexist, there is no phenomenon in which crystal nuclei are generated from locations other than the epitaxial growth substrate and grow abnormally.

そのため、本発明の方法によれば溶融メルトが異常成長
によって消耗されることが無いため、エピタキシャル結
晶の成長速度が従来の方法に比して約4倍程度上昇する
Therefore, according to the method of the present invention, the molten melt is not consumed by abnormal growth, so that the growth rate of epitaxial crystals increases about four times as compared to the conventional method.

またこのようにして形成されたエピタキシャル結晶は、
エピタキシャル成長用基板以外に異常成長が発生しない
ので熔融メルトの組成に変動を生しないため、第2図に
示すように基板表面近傍を除いて、基板表面よりエピタ
キシャル結晶の表面迄、殆どX値が変動しないI18+
−x CdXTeのエピタキシャル結晶が得られる。
In addition, the epitaxial crystal formed in this way is
Since abnormal growth does not occur on anything other than the substrate for epitaxial growth, there is no change in the composition of the molten melt, so as shown in Figure 2, the X value almost changes from the substrate surface to the surface of the epitaxial crystal, except near the substrate surface. No I18+
An epitaxial crystal of -x CdXTe is obtained.

このような本発明の方法によれば、エビタキシャ[発明
の効果] 以Fの説明から明らかなように本発明によれば、基板に
溶融メルトを接触させてエピタキシャル成長を開始する
初期の時点で、基板以外に結晶の異常成長が無いので、
組成の安定した高品質なエピタキシャル結晶が得られる
効果がある。
According to the method of the present invention, epitaxial growth can be achieved.Effects of the Invention As is clear from the explanation below, according to the present invention, at the initial point of contacting the molten melt with the substrate to start epitaxial growth, Since there is no other abnormal growth of crystals,
This has the effect of obtaining a high quality epitaxial crystal with a stable composition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に於けるメルト温度と成長時間の
関係図、 第2図は本発明の方法で形成したエピタキシャル結晶の
組成図、 第3図はエピタキシャル成長に用いる装置の断面図、 第4図(a)より第4図(C)まではエピタキシャル成
長の工程を示す断面図、 第5図は従来の方法に於けるメルト温度と成長時間の関
係図である。 ダ、3は溝、4はエピタキシャル成長用メルト、5は空
間部、6は固定治具、7はアンプル、T+はメルトの溶
融温度、T3はエピタキシャル成長σt1始時のメルト
温度、[2は液相化温度、T2はエピタキシャル成長継
続時のメルト温度、tlはエピタキシャル成長開始時点
、1,2はエビタ・1−シャル成長終了時点を示す。 図に於いて、 1はエピタキシャル成長用基板、2は基板ホル第 一→ r5′n5ヱル八長チ千β1 図 (()
Fig. 1 is a diagram showing the relationship between melt temperature and growth time in the method of the present invention, Fig. 2 is a composition diagram of an epitaxial crystal formed by the method of the present invention, Fig. 3 is a cross-sectional view of an apparatus used for epitaxial growth, 4(a) to 4(C) are cross-sectional views showing the epitaxial growth process, and FIG. 5 is a diagram showing the relationship between melt temperature and growth time in the conventional method. 3 is the groove, 4 is the melt for epitaxial growth, 5 is the space, 6 is the fixing jig, 7 is the ampoule, T+ is the melting temperature of the melt, T3 is the melt temperature at the beginning of epitaxial growth σt1, [2 is the liquid phase Temperature T2 indicates the melt temperature during continuation of epitaxial growth, tl indicates the start point of epitaxial growth, and 1 and 2 indicate the end point of epitaxial growth. In the figure, 1 is the substrate for epitaxial growth, 2 is the substrate hole 1 → r5'n5eru 8 long chisen β1 Figure (()

Claims (1)

【特許請求の範囲】 エピタキシャル成長用メルト(4)を所定時間溶融した
後、該メルトの温度を急速に降下させるとともに、該メ
ルトにエピタキシャル成長用基板(1)を接触させ、そ
の後、該基板上に成長させるエピタキシャル結晶の液相
化温度(Tl)より低い一定の成長温度(T_2)で所
定時間保つことにより、前記基板(1)上にメルトより
析出したエピタキシャル結晶を成長させる方法に於いて
、 前記メルト(4)の冷却過程であって、かつ溶融したメ
ルトが、前記液相化温度(Tl)より高い所定の温度(
T_3)に成った時点で前記基板(1)をメルト(4)
に接触させるようにしたことを特徴とする液相エピタキ
シャル成長方法。
[Claims] After melting the epitaxial growth melt (4) for a predetermined period of time, the temperature of the melt is rapidly lowered, and the epitaxial growth substrate (1) is brought into contact with the melt, and then the epitaxial growth is performed on the substrate. In the method of growing an epitaxial crystal precipitated from a melt on the substrate (1) by keeping it at a constant growth temperature (T_2) lower than the liquidus temperature (Tl) of the epitaxial crystal for a predetermined period of time, the melt In the cooling process of (4), the molten melt reaches a predetermined temperature (Tl) higher than the liquidus temperature (Tl).
When T_3) is reached, the substrate (1) is melted (4).
1. A liquid phase epitaxial growth method characterized in that the epitaxial growth method is brought into contact with
JP14499589A 1989-06-06 1989-06-06 Liquid epitaxial growth method Pending JPH039536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14499589A JPH039536A (en) 1989-06-06 1989-06-06 Liquid epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14499589A JPH039536A (en) 1989-06-06 1989-06-06 Liquid epitaxial growth method

Publications (1)

Publication Number Publication Date
JPH039536A true JPH039536A (en) 1991-01-17

Family

ID=15375024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14499589A Pending JPH039536A (en) 1989-06-06 1989-06-06 Liquid epitaxial growth method

Country Status (1)

Country Link
JP (1) JPH039536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334278A (en) * 1991-05-16 1994-08-02 Samsung Electronics Co., Ltd. Liquid-phase epitaxy growth system and method for growing epitaxial layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334278A (en) * 1991-05-16 1994-08-02 Samsung Electronics Co., Ltd. Liquid-phase epitaxy growth system and method for growing epitaxial layer

Similar Documents

Publication Publication Date Title
US5131975A (en) Controlled growth of semiconductor crystals
EP0751242B1 (en) Process for bulk crystal growth
Gille et al. Crystal growth of PbTe and (Pb, Sn) Te by the Bridgman method and by THM
JPH039536A (en) Liquid epitaxial growth method
EP0266227B1 (en) Method for growing compound semiconductor crystals
JPH01197399A (en) Preperation of monocrystal cadmium telluride mercury layer
US4613495A (en) Growth of single crystal Cadmium-Indium-Telluride
Maida et al. Growth of Bi12SiO20 single crystals by the pulling-down method with continuous feeding
JP2004203721A (en) Apparatus and method for growing single crystal
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JPS6256394A (en) Method for growing compound semiconductor single crystal
JPH085760B2 (en) Method for producing Hgl-xo Cdxo Te crystal ingot
JP2001072488A (en) Method for producing solid solution single crystal
JPH08109094A (en) Production of compound semiconductor single crystal
Horowitz et al. The growth of large germanium single crystals by the thermal gradient method
JPH1135389A (en) Crystal growth method
Gopalakrishnan INFRARED DETECTOR MATERIALS-Hg1_x Cdx Te AND Pb1_x Snx Te
JPS63310787A (en) Crystal growing method of semiconductor compound
JPH03137085A (en) Production of ii-vi compound semiconductor crystal
JPH0769798A (en) Production of cdte crystal
JPH0867593A (en) Method for growing single crystal
JP2002241199A (en) METHOD FOR PRODUCING ZnTe-BASED COMPOUND SEMICONDUCTOR SINGLE CRYSTAL AND ZnTe-BASED COMPOUND SEMICONDUCTOR SINGLE CRYSTAL
JPS59182292A (en) Production of silicon crystal band
JPH05270995A (en) Production of cadmium-tellurium based single crystal
JPS63112490A (en) Growth method for single crystal