JPH1135389A - Crystal growth method - Google Patents

Crystal growth method

Info

Publication number
JPH1135389A
JPH1135389A JP19428697A JP19428697A JPH1135389A JP H1135389 A JPH1135389 A JP H1135389A JP 19428697 A JP19428697 A JP 19428697A JP 19428697 A JP19428697 A JP 19428697A JP H1135389 A JPH1135389 A JP H1135389A
Authority
JP
Japan
Prior art keywords
crystal
material layer
seed crystal
layer
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19428697A
Other languages
Japanese (ja)
Inventor
Shigeo Kodama
茂夫 児玉
Yoshito Nishijima
由人 西嶋
Kazuo Nakajima
一雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19428697A priority Critical patent/JPH1135389A/en
Publication of JPH1135389A publication Critical patent/JPH1135389A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of growing a long-sized single crystal of a ternary or more compd. SOLUTION: A layer of a seed crystal 11, a first material layer 12 which is adjacent to this seed crystal layer and has the m.p. lower than the m.p. of the seed crystal and a second material layer 13 which is adjacent to this first material layer 12, has the m.p. higher than the m.p. of the first material layer and is formed by coating the whole or part of the surface exclusive of the part in contact with the first material layer with a material having the poor wettability with the melt of the first material or the soln. of the second material in the first material are arranged in this order. These layers are housed into a vessel which is then put into a heating atmosphere where the crystal of the compd. consisting of the constituting elements of the first material layer and the second material layer is grown on the surface of the seed crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結晶成長方法に関
し、特に3元化合物結晶の成長方法に関する。今日、半
導体を始め、酸化物、金属等の結晶の機能を利用した電
子素子、光学素子が多く使われている。特に、化合物半
導体およびその混晶は、組成を変化させることにより、
エネルギーギャップ、屈折率、移動度、格子定数などの
特性が変化するので、これを利用した超高速素子や受・
発光素子、光素子として広く使われている。
The present invention relates to a method for growing a crystal, and more particularly to a method for growing a ternary compound crystal. 2. Description of the Related Art Today, electronic devices and optical devices that utilize the functions of crystals such as semiconductors, oxides, and metals are widely used. In particular, compound semiconductors and their mixed crystals can be changed by changing the composition.
Characteristics such as energy gap, refractive index, mobility, and lattice constant change.
Widely used as light emitting elements and optical elements.

【0002】現在、これらの素子は、2元化合物の結晶
を基板として使用し、その上に2元以上の化合物半導体
を成長させることにより作成されている。ところで、こ
の場合、成長結晶の格子定数が問題となる。基板結晶と
格子定数の差があると、成長結晶には結晶欠陥が導入さ
れ、高性能の素子を実現することはできない。そこで、
2元の基板結晶と格子整合するような3元あるいは4元
の混晶を成長させているのが現状である。このため、効
率の向上や結晶成長の高速化を図った素子設計を行って
も、格子定数を基板結晶と合わせる必要があり、最適化
を行うことができなかった。
At present, these devices are manufactured by using a binary compound crystal as a substrate and growing a binary or more compound semiconductor thereon. By the way, in this case, the lattice constant of the grown crystal becomes a problem. When there is a difference between the substrate crystal and the lattice constant, crystal defects are introduced into the grown crystal, and a high-performance device cannot be realized. Therefore,
At present, a ternary or quaternary mixed crystal that is lattice-matched with a binary substrate crystal is grown. For this reason, even if an element is designed to improve the efficiency and speed up the crystal growth, the lattice constant must be matched with the substrate crystal, and the optimization cannot be performed.

【0003】上記のような不都合を解決し、素子特性の
最適化を行えるのが3元以上の化合物半導体基板であ
る。組成を変えることにより格子定数を任意に設定でき
るので、欠陥の少ない結晶成長が行え、高性能な素子を
実現できる。
[0003] It is a compound semiconductor substrate of three or more elements that can solve the above inconveniences and optimize the element characteristics. Since the lattice constant can be arbitrarily set by changing the composition, crystal growth with few defects can be performed, and a high-performance device can be realized.

【0004】[0004]

【従来の技術】3元以上の化合物半導体の結晶を融液ま
たは溶液から成長する過程では、分配係数が1でない
(液相中の組成と成長固相中の組成が異なる)ため液相
中の組成が結晶の成長とともに変化し、成長結晶中の成
長方向への組成分布は、いわゆるノーマルフリージング
の状態になり、均一な組成分布をもつ3元以上の化合物
半導体を成長させることはできない。そこで、固相中へ
の析出により、液相中で枯渇する特定の元素を、枯渇し
た量に応じて外部から液相中に補給する必要がある。例
えば、InGaAsのLEC(液体封止引き上げ)成長
では、成長の間に枯渇するGaAsをるつぼ内の融液に
補給する方法が採られている。
2. Description of the Related Art In the process of growing a compound semiconductor crystal of three or more elements from a melt or a solution, the distribution coefficient is not 1 (the composition in the liquid phase is different from the composition in the growing solid phase). The composition changes as the crystal grows, and the composition distribution in the growth direction in the grown crystal becomes a so-called normal freezing state, so that a ternary or higher compound semiconductor having a uniform composition distribution cannot be grown. Therefore, it is necessary to replenish a specific element that is depleted in the liquid phase by precipitation into the solid phase from the outside in the liquid phase according to the depleted amount. For example, in LEC (Liquid Sealed Pull) growth of InGaAs, a method is employed in which GaAs that is depleted during growth is supplied to the melt in the crucible.

【0005】LEC法以外の成長方法としては、温度差
法やゾーン法がある。温度差法では、図1に示すよう
に、るつぼ1内に結晶成長材料4と溶液材料3(低融点
金属)と種結晶2とを順に隣接して封入する。この状態
からるつぼを加熱炉に入れて加熱し、図に示すような温
度分布にすると、種結晶2と溶液材料3の境界とその近
傍および結晶成長材料4と溶液材料3の境界とその近傍
が溶解して溶液中の溶質濃度が高くなり、一定時間経過
後に溶液は飽和する。このとき、種結晶の加熱温度は、
その融点よりも低くする。溶解度は温度が高い方が高い
ので、図1に示すような温度勾配を与えると、溶液中の
濃度は種結晶側よりも結晶成長材料側の方が高くなり、
その濃度勾配により、溶質は低温側に拡散して移動し、
種結晶側の溶液は過飽和になるため、種結晶上に結晶が
成長する。この結果、結晶成長材料側の溶液は未飽和と
なるため、結晶成長材料表面に溶解が生じる。温度勾配
を維持している間、この種結晶上での成長および結晶成
長材料の溶解は継続する。また、成長速度と同じ速度で
加熱炉を結晶成長材料側へ移動させて温度分布を変えれ
ば、成長界面の温度が一定になるため成長組成を均一に
保つことができる。この温度差法によれば、溶液から種
結晶上に析出する元素を結晶成長材料から溶液中に供給
することになるため、結晶成長材料全体で特定元素が枯
渇することはない。
As growth methods other than the LEC method, there are a temperature difference method and a zone method. In the temperature difference method, as shown in FIG. 1, a crystal growth material 4, a solution material 3 (low melting point metal), and a seed crystal 2 are sequentially and adjacently sealed in a crucible 1. From this state, the crucible is placed in a heating furnace and heated to obtain a temperature distribution as shown in the figure, and the boundary between seed crystal 2 and solution material 3 and its vicinity and the boundary between crystal growth material 4 and solution material 3 and its vicinity are formed. Upon dissolution, the solute concentration in the solution increases, and after a certain period of time, the solution is saturated. At this time, the heating temperature of the seed crystal is
Lower than its melting point. Since the solubility is higher when the temperature is higher, when a temperature gradient as shown in FIG. 1 is given, the concentration in the solution becomes higher on the crystal growth material side than on the seed crystal side,
Due to the concentration gradient, the solute diffuses and moves to the low temperature side,
Since the solution on the seed crystal side becomes supersaturated, crystals grow on the seed crystal. As a result, the solution on the side of the crystal growth material becomes unsaturated, and dissolution occurs on the surface of the crystal growth material. While maintaining the temperature gradient, growth on this seed crystal and dissolution of the crystal growth material continues. Further, if the heating furnace is moved to the crystal growth material side at the same speed as the growth speed to change the temperature distribution, the temperature at the growth interface becomes constant, so that the growth composition can be kept uniform. According to this temperature difference method, the element that precipitates on the seed crystal from the solution is supplied from the crystal growth material into the solution, so that the specific element is not depleted in the entire crystal growth material.

【0006】次に、InGaAs化合物半導体の結晶成
長を例に挙げ、図2および図3を用いてゾーン法を説明
する。図2は、InAs−GaAs準二元系状態図であ
る。この図からわかるように、X=0.05(a点)の
Inx Ga1-x As結晶を液相からの析出により得るた
めには、融点である温度Taでこの固相と平衡する液相
組成(b点)でなくてはならないため、両者の組成値は
大きく異なる。そこで、図3のように、a点の固相と平
衡なb点の組成を持つ結晶成長材料8(または平均とし
てb点の組成を持つ2種以上の材料の集合体)を用い、
b点の組成を持つ材料7のみが融解し、a点の組成を持
つ材料8が融解しない温度条件の下で、種結晶側が低温
側になるように温度勾配を与え、b点の組成を持つ材料
7の融液から種結晶6上に結晶成長を行わせ、同時に高
温側に配置したa点の組成を持った結晶成長材料8を固
液界面で融解させ、融液中に原料を補給する。成長にと
もない、成長速度と同じ速度で炉を成長材料側へ移動さ
せれば、成長と融液補給が持続される。
Next, the zone method will be described with reference to FIGS. 2 and 3 by taking crystal growth of an InGaAs compound semiconductor as an example. FIG. 2 is an InAs-GaAs quasi-binary phase diagram. As can be seen from this figure, in order to obtain an In x Ga 1 -x As crystal of X = 0.05 (point a) by precipitation from a liquid phase, a liquid equilibrating with this solid phase at a temperature Ta, which is the melting point, is required. Since they must be phase compositions (point b), their composition values differ greatly. Therefore, as shown in FIG. 3, a crystal growth material 8 having a composition at point b equilibrated with the solid phase at point a (or an aggregate of two or more materials having a composition at point b on average) is used.
Under a temperature condition in which only the material 7 having the composition at the point b melts and the material 8 having the composition at the point a does not melt, a temperature gradient is given so that the seed crystal side is on the low temperature side, and the material has the composition at the point b. Crystal growth is performed on the seed crystal 6 from the melt of the material 7, and at the same time, the crystal growth material 8 having the composition at the point a disposed on the high temperature side is melted at the solid-liquid interface, and the raw material is supplied into the melt. . If the furnace is moved to the growth material side at the same speed as the growth speed during the growth, the growth and the melt supply are continued.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た如き従来の温度差法やゾーン法で結晶成長を行う場合
には、種結晶との界面から数mmの厚さで単結晶が成長し
た後に、サブグレインの混入や多結晶化が起こるで、長
尺の単結晶の成長は困難であった。そこで、本発明は、
3元以上の化合物の長尺の単結晶を成長させることので
きる方法を提供しようとするものである。
However, when crystal growth is performed by the conventional temperature difference method or zone method as described above, after a single crystal is grown to a thickness of several mm from the interface with the seed crystal, The growth of a long single crystal was difficult due to the incorporation of subgrains and polycrystallization. Therefore, the present invention
An object of the present invention is to provide a method capable of growing a long single crystal of a compound having three or more elements.

【0008】[0008]

【課題を解決するための手段】本発明は、従って、種結
晶の層と、この種結晶層に隣接して、前記種結晶よりも
融点の低い第1の材料の層とおよびこの第1の材料層に
隣接して、前記第1の材料層よりも融点が高く、かつ、
前記第1の材料層と接触する部分以外の全部または一部
の表面を前記第1の材料の融液または前記第1の材料中
の前記第2の材料の溶液と濡れの悪い材料で被覆した第
2の材料の層とをこの順序で配置し、これらを容器内に
収納し、次いで前記容器を加熱雰囲気中に入れて、前記
第1の材料層および前記第2の材料層の構成元素からな
る化合物の結晶を前記種結晶の表面に成長させることを
特徴とする結晶成長方法を提供する。
SUMMARY OF THE INVENTION The present invention therefore provides a seed crystal layer, a layer of a first material adjacent to the seed crystal layer, the first material having a lower melting point than the seed crystal, and the first crystal layer. Adjacent to the material layer, having a higher melting point than the first material layer, and
The whole or a part of the surface other than the portion in contact with the first material layer was coated with a material having poor wettability with the melt of the first material or the solution of the second material in the first material. The second material layer and the second material layer are arranged in this order, these are housed in a container, and then the container is placed in a heated atmosphere to remove the constituent elements of the first material layer and the second material layer. A crystal growth method comprising growing a crystal of the compound on the surface of the seed crystal.

【0009】[0009]

【発明の実施の形態】一般に、所定の材料の固相とその
材料の溶液または融液との濡れはよい。濡れによる影響
は微小重力下では顕著になり、固相の全周を溶液が取り
囲むことがある。本発明者らによる宇宙実験でも濡れに
よる溶液の移動が観測され、この知見から、本発明者ら
は、微小重力下での結晶成長において、溶液の移動を防
ぐために溶液と濡れの悪い材料で固相の表面を被覆して
結晶成長を行う方法を提案した(特願平1−20463
0)。しかし、地上での結晶成長では、溶液の移動は重
力により制限されるため、このような被覆は必要ないと
考えられていた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, a solid phase of a predetermined material and a solution or a melt of the material are well wetted. The effect of wetting is significant under microgravity and the solution may surround the entire circumference of the solid phase. In the space experiments by the present inventors, the movement of the solution due to wetting was also observed.From this finding, the present inventors found that in crystal growth under microgravity, in order to prevent the movement of the solution, the solution was solidified with a material with poor wettability. A method for crystal growth by covering the surface of the phase was proposed (Japanese Patent Application No. Hei 1-20463).
0). However, in the case of crystal growth on the ground, it was thought that such a coating was unnecessary because the movement of the solution was restricted by gravity.

【0010】ところが、温度差法やゾーン法では長尺の
単結晶の成長が困難な原因の1つとして、濡れ性による
液相の移動があることがわかった。結晶成長材料の表面
に沿って液相が高温側に移動し、結晶成長材料の高温側
を溶解するのである。このため、結晶の成長が進むにつ
れ、液相と結晶成長材料との界面の形状が平面からず
れ、液相中の組成分布も一定のものとならなくなり、結
晶成長に不安定性が現れるのである。
However, it has been found that one of the difficulties in growing a long single crystal by the temperature difference method or the zone method is the movement of the liquid phase due to wettability. The liquid phase moves to the high temperature side along the surface of the crystal growth material and dissolves the high temperature side of the crystal growth material. For this reason, as the crystal growth proceeds, the shape of the interface between the liquid phase and the crystal growth material deviates from a plane, the composition distribution in the liquid phase does not become constant, and instability appears in the crystal growth.

【0011】そこで、本発明では、結晶成長材料層の表
面の融液部または溶液部と接触する部分以外の全部また
は一部を、第1の材料(すなわち溶液材料)の融液また
は第1の材料(すなわち溶液材料)中の第2の材料(す
なわち結晶成長材料)の溶液と濡れの悪い材料で被覆す
ることにより、結晶成長材料の融解面または溶解面の形
状を安定に保持して、より長尺の単結晶の成長を容易に
できるようにしたものである。
Therefore, in the present invention, all or a part of the surface of the crystal growth material layer other than the portion in contact with the melt portion or the solution portion is melted with the first material (that is, the solution material) or the first material. By coating the solution of the second material (ie, the crystal growth material) in the material (ie, the solution growth material) and the material having poor wettability, the shape of the melting surface or the melting surface of the crystal growth material is stably maintained, and It is intended to facilitate the growth of a long single crystal.

【0012】すなわち、本発明では、温度差成長法およ
びゾーン成長法において、結晶成長材料層の液相部と接
触する部分以外の外周の全部または一部を、液相と濡れ
の悪い材料で被覆するようにしている。そのため、種結
晶上に結晶が成長する際に、結晶成長材料の表面に沿っ
た液相の移動を防止できるので、液相の形状を安定に保
つことができるようになり、結晶成長が安定化し、単結
晶の成長長を長くすることができる。
That is, in the present invention, in the temperature difference growth method and the zone growth method, the whole or a part of the outer periphery of the crystal growth material layer other than the portion in contact with the liquid phase is coated with a material having poor wettability with the liquid phase. I am trying to do it. Therefore, when the crystal grows on the seed crystal, the movement of the liquid phase along the surface of the crystal growth material can be prevented, so that the shape of the liquid phase can be kept stable, and the crystal growth is stabilized. In addition, the growth length of the single crystal can be increased.

【0013】本発明においては、好ましくは、加熱雰囲
気に種結晶側が低温側となるような温度勾配が与えら
れ、第1の材料層が融解されて融液とされ、この融液中
への溶質の溶解度の温度依存性を利用して、種結晶上に
化合物結晶が成長させられるとともに、第2の材料層の
低温側の面が融液中に溶解させられる。あるいは、第1
の材料が融解し、第2の材料全体が融解しない温度条件
下に、加熱雰囲気に種結晶側が低温側になるような温度
勾配が与えられ、種結晶の表面上に第1の材料層および
第2の材料層からの溶融元素からなる化合物の固相が形
成され、化合物結晶が成長されるのが好ましい。
In the present invention, preferably, a temperature gradient is applied to the heating atmosphere such that the seed crystal side is on the low temperature side, and the first material layer is melted into a melt, and the solute in the melt is melted. Utilizing the temperature dependence of the solubility of the compound material, the compound crystal is grown on the seed crystal, and the low-temperature side surface of the second material layer is dissolved in the melt. Or the first
A temperature gradient is applied to the heating atmosphere such that the seed crystal side is at a lower temperature side under a temperature condition in which the material of the second material melts and the entire second material does not melt, and the first material layer and the second material layer are formed on the surface of the seed crystal. Preferably, a solid phase of the compound composed of the molten element from the second material layer is formed, and the compound crystal is grown.

【0014】上記のいずれの場合にも、種結晶は III〜
V族の元素から選ばれる2または3種の元素の化合物か
らなり、前記第1の材料は III族およびV族の元素から
選ばれる1〜3種の元素の単体もしくは化合物からな
り、前記第2の材料は III〜V族の元素から選ばれる2
または3種の元素の化合物からなるのがよい。本発明に
おいては、前述したように、第2の材料層は第1の材料
層と接触する部分以外の全部または一部の表面が第1の
材料の融液または第1の材料中の第2の材料の溶液と濡
れの悪い材料で被覆されているけれども、同時に種結晶
層においても第1の材料層と接触する部分以外の全部ま
たは一部の表面が第1の材料の融液または第1の材料中
の種結晶の溶液と濡れの悪い材料で被覆されているのが
さらに好ましい。かかる第2の材料層および種結晶層の
被覆材料としては、SiO2 ,SiNまたはSiONで
あるのが好ましい。
In any of the above cases, the seed crystal is III-
The first material comprises a compound of two or three elements selected from Group V elements, and the first material comprises a simple substance or a compound of one to three elements selected from Group III and Group V elements; Is selected from the group III-V elements
Or it is good to consist of a compound of three kinds of elements. In the present invention, as described above, the surface of the second material layer is a melt of the first material or the second material in the first material except for a portion in contact with the first material layer. And at the same time, all or a part of the surface of the seed crystal layer other than the portion in contact with the first material layer is a melt of the first material or the first material layer. It is more preferable that the material is coated with a solution of the seed crystal in the material described above and a material having poor wettability. The coating material for the second material layer and the seed crystal layer is preferably SiO 2 , SiN or SiON.

【0015】[0015]

【実施例】以下、図面を参照しながら、本発明の好まし
い実施例について、具体的に説明する。 実施例1 図4は、本発明の第1の実施例に係る、改良されたゾー
ン成長法による3元化合物結晶の成長方法を説明するた
めの図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be specifically described below with reference to the drawings. Example 1 FIG. 4 is a view for explaining a method of growing a ternary compound crystal by an improved zone growth method according to a first example of the present invention.

【0016】内径15mm、外径18mm、長さ50mmのp
BN製るつぼ10に5mm厚のGaAs単結晶(種結晶)
11、2.5mm厚のInAs(第1の材料)12および
このInAsと接触する部分以外をCVD−SiO2
4により約500nmの厚さで被覆した5mm厚のGaAs
(第2の材料)13を入れ、これをさらに内径19mm、
外径22mmの石英製アンプル9内に5×10-7Torr以下
の真空度で真空封入する。これを電気炉内で加熱する
と、942℃でInAsが融解し、さらに温度を上げる
と融液に接触しているGaAs表面が融解し、1170
℃まで昇温すると融液の組成はIn0.37Ga0.63As
(図2のb点)になる。融解によりGaAs単結晶層は
1.2mmに、そしてGaAs材料層は0.4mmに厚さが
減少する。次に、種結晶−融液界面の温度を1170℃
に保ち、20℃/cmの温度勾配を形成させ、試料を図の
矢印方向に3μm/分の速度で移動させる(このとき電
気炉を矢印と逆の方向へ移動させてもよい)。この状態
を維持して20時間結晶成長を続けることにより、直径
15mm、長さ3.6mmのInx Ga1-x Asが成長し
た。この成長した結晶のInAsの固相組成は、成長界
面から0.4mm厚までは0.05から0.048まで徐
々に減少したが、その後の成長層中では0.05と一定
であった。
A p having an inner diameter of 15 mm, an outer diameter of 18 mm, and a length of 50 mm
5 mm thick GaAs single crystal (seed crystal) in BN crucible 10
11,2.5mm thick InAs (first material) 12 and CVD-SiO 2 1 a portion other than the portion in contact with the InAs
5 mm thick GaAs coated to a thickness of about 500 nm with
(Second material) 13 was added, and this was further added to an inner diameter of 19 mm.
It is vacuum-sealed in a quartz ampule 9 having an outer diameter of 22 mm at a degree of vacuum of 5 × 10 −7 Torr or less. When this is heated in an electric furnace, InAs is melted at 942 ° C., and when the temperature is further raised, the GaAs surface in contact with the melt is melted and 1170
When the temperature is raised to ℃, the composition of the melt becomes In 0.37 Ga 0.63 As
(Point b in FIG. 2). The melting reduces the thickness of the GaAs single crystal layer to 1.2 mm and the thickness of the GaAs material layer to 0.4 mm. Next, the temperature of the seed crystal-melt interface was set to 1170 ° C.
And a temperature gradient of 20 ° C./cm is formed, and the sample is moved at a speed of 3 μm / min in the direction of the arrow in the figure (at this time, the electric furnace may be moved in the direction opposite to the arrow). By maintaining this state and continuing crystal growth for 20 hours, In x Ga 1 -x As having a diameter of 15 mm and a length of 3.6 mm was grown. The solid phase composition of InAs in the grown crystal gradually decreased from 0.05 to 0.048 from the growth interface to a thickness of 0.4 mm, but remained constant at 0.05 in the subsequent growth layer.

【0017】SiO2 による被覆を行わない従来の方法
では固相組成は同様のものが得られるが、成長膜厚が1
mmを超えるあたりからサブグレインの混入が始まり、し
ばしば多結晶化が見られたが、本実施例では成長長全体
が単結晶であった。 実施例2 本発明の第2の実施例として、温度差成長法を改善した
3元化合物結晶の成長方法を図5により説明する。
In the conventional method without coating with SiO 2 , the same solid phase composition can be obtained.
Sub-grains began to be mixed from around mm, and polycrystallization was often observed. In this example, the entire growth length was a single crystal. Embodiment 2 As a second embodiment of the present invention, a method of growing a ternary compound crystal with an improved temperature difference growth method will be described with reference to FIG.

【0018】内径15mm、外径18mm、長さ50mmのp
BN製るつぼ16に第1の材料層側端部以外をCVD−
SiO2 18により約500nmの厚さで被覆した、5mm
厚のIn0.1 Ga0.9 As単結晶よりなる種結晶層17
を入れ、その上に、2mm厚のIn0.9 Ga0.1 よりなる
第1の材料層19とこのIn0.9 Ga0.1 層と接触する
部分以外をCVD−SiO2 21により約500nmの厚
さで被覆した、5mm厚のIn0.1 Ga0.9 Asよりなる
第2の材料層を入れ、これをさらに内径19mm、外径2
2mmの石英製アンプル15内に5×10-7Torr以下の真
空度で真空封入する。これを図5に示す温度勾配を有す
る電気炉内で加熱し、種結晶と第1の材料の界面の温度
を900℃とし、温度勾配を20℃/cmとする。この加
熱により第1の材料部分が融解して融液となり、この融
液に接する種結晶層および第2の材料層の部分がこの融
液中に溶解する。次に、試料を図の矢印方向に1μm/
分の速度で移動させる(このとき電気炉を矢印と逆の方
向へ移動させてもよい)。この状態を維持して50時間
結晶成長を続けることにより、直径15mm、長さ3mmの
In0.1 Ga0.9 Asが成長した。
A p with an inner diameter of 15 mm, an outer diameter of 18 mm and a length of 50 mm
In the crucible 16 made of BN, CVD-
5 mm coated with SiO 2 18 to a thickness of about 500 nm
Seed crystal layer 17 made of thick In 0.1 Ga 0.9 As single crystal
And a first material layer 19 made of In 0.9 Ga 0.1 having a thickness of 2 mm and a portion other than a portion in contact with the In 0.9 Ga 0.1 layer were covered with CVD-SiO 2 21 to a thickness of about 500 nm. A second material layer made of In 0.1 Ga 0.9 As and having a thickness of 5 mm was put therein, and this was further coated with an inner diameter of 19 mm and an outer diameter of 2 mm.
A 2 mm quartz ampule 15 is vacuum-sealed at a degree of vacuum of 5 × 10 −7 Torr or less. This is heated in an electric furnace having a temperature gradient shown in FIG. 5, the temperature at the interface between the seed crystal and the first material is set to 900 ° C., and the temperature gradient is set to 20 ° C./cm. By this heating, the first material portion is melted into a melt, and the seed crystal layer and the second material layer in contact with the melt are dissolved in the melt. Next, the sample was placed at 1 μm /
(The electric furnace may be moved in the direction opposite to the arrow at this time.) By maintaining this state and continuing crystal growth for 50 hours, In 0.1 Ga 0.9 As having a diameter of 15 mm and a length of 3 mm was grown.

【0019】SiO2 による被覆を行わない従来の方法
では固相組成は同様のものが得られるが、成長膜厚が
1.5mmを超えるあたりからサブグレインの混入が始ま
り、しばしば多結晶化が見られたが、本実施例では成長
長全体が単結晶であった。
In the conventional method without coating with SiO 2 , the same solid-phase composition can be obtained, but subgrain starts to be mixed when the grown film thickness exceeds about 1.5 mm, and polycrystallization is often observed. However, in this example, the entire growth length was a single crystal.

【0020】[0020]

【発明の効果】本発明によれば、結晶成長材料層表面の
融液部または溶液部と接触する部分以外の全部または一
部を、融液または溶液と濡れの悪い材料で被覆するの
で、成長材料の溶解面または融解面の形状を安定に維持
することができ、より長尺の単結晶の成長を容易に達成
できる。
According to the present invention, the whole or part of the surface of the crystal growth material layer other than the portion in contact with the melt or solution is coated with a material that is poorly wet with the melt or solution. The shape of the melting surface or the melting surface of the material can be stably maintained, and the growth of a longer single crystal can be easily achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術に係る温度差法の原理を示す模式図で
ある。
FIG. 1 is a schematic diagram illustrating the principle of a temperature difference method according to a conventional technique.

【図2】InAs−GaAs準二元系状態図である。FIG. 2 is an InAs-GaAs quasi-binary phase diagram.

【図3】従来技術に係るゾーン法の原理を示す模式図で
ある。
FIG. 3 is a schematic diagram showing the principle of the zone method according to the related art.

【図4】本発明に係る方法の一実施例を説明するための
模式図である。
FIG. 4 is a schematic view for explaining one embodiment of the method according to the present invention.

【図5】本発明に係る方法の他の実施例を説明するため
の模式図である。
FIG. 5 is a schematic diagram for explaining another embodiment of the method according to the present invention.

【符号の説明】[Explanation of symbols]

1、5、10、16…るつぼ 2、6、11、17…種結晶 3、7…溶液材料層 4、8…成長材料層 9、15…石英アンプル 12、19…第1の材料層 13、20…第2の材料層 14、18、21…被覆SiO2 1, 5, 10, 16 ... crucible 2, 6, 11, 17 ... seed crystal 3, 7 ... solution material layer 4, 8 ... growth material layer 9, 15 ... quartz ampoule 12, 19 ... first material layer 13, 20: second material layer 14, 18, 21 ... coated SiO 2 layer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 種結晶の層と、この種結晶層に隣接し
て、前記種結晶よりも融点の低い第1の材料の層とおよ
びこの第1の材料層に隣接して、前記第1の材料層より
も融点が高く、かつ、前記第1の材料層と接触する部分
以外の全部または一部の表面を前記第1の材料の融液ま
たは前記第1の材料中の前記第2の材料の溶液と濡れの
悪い材料で被覆した第2の材料の層とをこの順序で配置
し、これらを容器内に収納し、次いで前記容器を加熱雰
囲気中に入れて、前記第1の材料層および前記第2の材
料層の構成元素からなる化合物の結晶を前記種結晶の表
面に成長させることを特徴とする結晶成長方法。
1. A seed crystal layer, a first material layer having a lower melting point than the seed crystal adjacent to the seed crystal layer, and a first material layer adjacent to the first material layer. The melting point of the first material layer is higher than that of the first material layer, and all or a part of the surface other than the portion in contact with the first material layer is melted of the first material or the second material in the first material. A solution of the material and a layer of a second material coated with a poorly wetted material are arranged in this order, these are housed in a container, and then the container is placed in a heated atmosphere and the first material layer And growing a crystal of a compound comprising a constituent element of the second material layer on the surface of the seed crystal.
【請求項2】 前記加熱雰囲気に前記種結晶側が低温側
となるような温度勾配を与え、前記第1の材料層を融解
させて融液とし、前記融液中への溶質の溶解度の温度依
存性を利用して、前記種結晶上に前記化合物結晶を成長
させるとともに、前記第2の材料層の低温側の面を前記
融液中に溶解させる、請求項1記載の結晶成長方法。
2. A temperature gradient is applied to the heating atmosphere so that the seed crystal side is on a low temperature side, and the first material layer is melted to form a melt, and the solubility of the solute in the melt depends on the temperature. 2. The crystal growth method according to claim 1, wherein the compound crystal is grown on the seed crystal by utilizing the property, and a low-temperature side surface of the second material layer is dissolved in the melt. 3.
【請求項3】 前記種結晶は III〜V族の元素から選ば
れる2または3種の元素の化合物からなり、前記第1の
材料は III族およびV族の元素から選ばれる1〜3種の
元素の単体もしくは化合物からなり、前記第2の材料は
III〜V族の元素から選ばれる2または3種の元素の化
合物からなる、請求項2記載の結晶成長方法。
3. The seed crystal comprises a compound of two or three elements selected from the group III-V elements, and the first material comprises one to three types of compounds selected from the group III and V elements. The second material is composed of a simple substance or a compound of an element.
3. The crystal growth method according to claim 2, comprising a compound of two or three elements selected from the group III-V elements.
【請求項4】 前記第1の材料が融解し、前記第2の材
料全体が融解しない温度条件下に、前記加熱雰囲気に前
記種結晶側が低温側になるような温度勾配を与え、前記
種結晶の表面上に前記第1の材料層および前記第2の材
料層からの溶融元素からなる化合物の固相を形成させて
前記化合物結晶を成長させる、請求項1記載の結晶成長
方法。
4. A temperature gradient is applied to the heating atmosphere so that the seed crystal side is at a lower temperature side under a temperature condition in which the first material is melted and the entire second material is not melted. 2. The crystal growth method according to claim 1, wherein a solid phase of a compound composed of a molten element from the first material layer and the second material layer is formed on a surface of the first material layer to grow the compound crystal.
【請求項5】 前記種結晶は III〜V族の元素から選ば
れる2または3種の元素の化合物からなり、前記第1の
材料は III族およびV族の元素から選ばれる1〜3種の
元素の単体もしくは化合物からなり、前記第2の材料は
III〜V族の元素から選ばれる2または3種の元素の化
合物からなる、請求項4記載の結晶成長方法。
5. The seed crystal comprises a compound of two or three elements selected from the group III to V elements, and the first material comprises one to three kinds of compounds selected from the group III and V elements. The second material is composed of a simple substance or a compound of an element.
5. The crystal growth method according to claim 4, comprising a compound of two or three elements selected from the group III-V elements.
【請求項6】 前記種結晶層の前記第1の材料層と接触
する部分以外の全部または一部の表面を前記第1の材料
の融液または前記第1の材料中の前記種結晶の溶液と濡
れの悪い材料で被覆する、請求項1〜5のいずれかに記
載の結晶成長方法。
6. A melt of the first material or a solution of the seed crystal in the first material covering all or a part of the surface of the seed crystal layer other than a portion in contact with the first material layer. The crystal growth method according to claim 1, wherein the material is coated with a material having poor wettability.
【請求項7】 前記種結晶層の被覆材料および前記第2
の材料層の被覆材料がSiO2 ,SiNまたはSiON
である、請求項6記載の結晶成長方法。
7. A coating material for the seed crystal layer and the second material.
Is made of SiO 2 , SiN or SiON
The crystal growth method according to claim 6, wherein
JP19428697A 1997-07-18 1997-07-18 Crystal growth method Withdrawn JPH1135389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19428697A JPH1135389A (en) 1997-07-18 1997-07-18 Crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19428697A JPH1135389A (en) 1997-07-18 1997-07-18 Crystal growth method

Publications (1)

Publication Number Publication Date
JPH1135389A true JPH1135389A (en) 1999-02-09

Family

ID=16322083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19428697A Withdrawn JPH1135389A (en) 1997-07-18 1997-07-18 Crystal growth method

Country Status (1)

Country Link
JP (1) JPH1135389A (en)

Similar Documents

Publication Publication Date Title
US4999082A (en) Process for producing monocrystalline group II-IV or group III-V compounds and products thereof
US5131975A (en) Controlled growth of semiconductor crystals
US5871580A (en) Method of growing a bulk crystal
US4923561A (en) Crystal growth method
US4619811A (en) Apparatus for growing GaAs single crystal by using floating zone
JPH0244798B2 (en)
US4824520A (en) Liquid encapsulated crystal growth
JPH1135389A (en) Crystal growth method
JP3018738B2 (en) Single crystal manufacturing equipment
JP3412853B2 (en) Semiconductor crystal manufacturing equipment
JP2537322B2 (en) Semiconductor crystal growth method
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JP2922039B2 (en) Single crystal growth method
JP2679708B2 (en) Organic film fabrication method
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JPH0948700A (en) Production of group ii-vi or iii-v compound single crystal
JP4576571B2 (en) Method for producing solid solution
JPH0450188A (en) Method and apparatus for production of single crystal
JPH10212192A (en) Method for growing bulk crystal
JPH0867593A (en) Method for growing single crystal
JP2001072488A (en) Method for producing solid solution single crystal
JP2003267794A (en) Method and apparatus for growing crystal
JPH02308521A (en) Liquid-phase epitaxial crystal growth method
JPH0769798A (en) Production of cdte crystal
JPH039536A (en) Liquid epitaxial growth method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005