JPH0394915A - Straightening device for warpage of shaft body - Google Patents

Straightening device for warpage of shaft body

Info

Publication number
JPH0394915A
JPH0394915A JP23384189A JP23384189A JPH0394915A JP H0394915 A JPH0394915 A JP H0394915A JP 23384189 A JP23384189 A JP 23384189A JP 23384189 A JP23384189 A JP 23384189A JP H0394915 A JPH0394915 A JP H0394915A
Authority
JP
Japan
Prior art keywords
shaft body
cylinder device
shaft
head
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23384189A
Other languages
Japanese (ja)
Other versions
JPH07110379B2 (en
Inventor
Yoshihiro Matsunaga
松永 好弘
Ichiro Hashimoto
一郎 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP23384189A priority Critical patent/JPH07110379B2/en
Publication of JPH0394915A publication Critical patent/JPH0394915A/en
Publication of JPH07110379B2 publication Critical patent/JPH07110379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent damaging measuring instrument when a shaft body is set by incorporating a position detector for a straightening head in a cylinder device with which the straightening head is vertically moved, measuring the warpage of a shaft body with the straightening head and also straightening the warpage of the shaft body. CONSTITUTION:The position detector 19 with which the position of the straightening head 9 is detected is incorporated in the cylinder device 10 and the warpage of the shaft body is measured by bring the straightening head 9 into slight contact with the shaft body 2 and also the warpage is straightened by pressing the shaft body 2 with the straightening head 9 with a stroke corresponding to the difference between the measured value and the set value. Therefore the measuring instrument isn't damaged when the shaft body 2 is set and so on.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば自動車用クランクシャフトやスクリュ
ーポンプ軸等の軸体の歪みや曲り等を矯ポずる輔体のl
4Illり矯正装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to the use of a support body for correcting distortions and bends in shaft bodies such as automobile crankshafts and screw pump shafts.
This invention relates to a 4Ill correction device.

(従来の技術) 従来の軸体の曲り矯正装置は、複数箇所にて軸体を支持
する支持部を有する架台と、支持部により支持された軸
体を押圧して曲りを矯正するための矯正ヘッドを昇降駆
動するシリンダ装置と、例えばダイヤルゲージ等からな
り架台上に設置されてallヘッドが軸体に当接する計
測器とを有し、曲り計測時に、軸体を回転させて計測器
により曲り量を計41リする横成であった(例えば丈開
昭54−174639号公報参照)。
(Prior Art) A conventional shaft straightening device includes a frame having a support section that supports the shaft at a plurality of locations, and a straightening device for correcting the bend by pressing the shaft supported by the support section. It has a cylinder device that drives the head up and down, and a measuring device, such as a dial gauge, that is installed on a stand and has all heads in contact with the shaft.When measuring bending, the shaft is rotated and the measuring device measures the bending. It was Yokunari with a total of 41 ri (see, for example, Jōkai No. 54-174639).

(発明が解決しようとする課8) 上記従来の構成では、計測器を架台上に設置するので架
台上の構造が複雑になる。また計測器が露出しているの
で軸体のセット時に計測器特に計M1ヘッドを損傷しや
すい。また軸体の曲り量に応じて計測器を交換するかあ
るいは調整を頻繁に行なう必要がある。またこのことか
ら軸体の自動供給が困難であり、自動化を実現できない
。また軸体の曲り量を軸芯方向適当間隔おきの複数の位
置で計測する場合、計測器が多く必要である。
(Issue 8 to be Solved by the Invention) In the conventional configuration described above, since the measuring instrument is installed on the pedestal, the structure on the pedestal becomes complicated. Furthermore, since the measuring instrument is exposed, it is easy to damage the measuring instrument, especially the M1 head, when setting the shaft. Furthermore, it is necessary to replace or adjust the measuring device frequently depending on the amount of bending of the shaft body. Furthermore, this makes it difficult to automatically supply the shaft, and automation cannot be realized. Furthermore, when measuring the amount of bending of the shaft body at a plurality of positions at appropriate intervals in the axial direction, many measuring instruments are required.

(課題を解決するための手段) 上記課題を解決するため、本発明の軸体の曲り矯正装置
は、複数箇所にて軸体を支持する支持部を有する架台と
、前記支持部により支持された前記軸体を軸芯周りに回
動させる回転駆動装置と、前記支持部により支持された
前記軸体を押圧して曲りを矯正するための矯正ヘッドを
昇降駆動するシリンダ装置と、このシリンダ装置を前記
支持部により支持された前記軸体の軸芯方向に移動させ
る横送り装置と、これら回転駆動装置とシリンダ装置と
横送り装置とを制御する制御装置とを設け、前記シリン
ダ装置に、前記矯正ヘッドの位置を検出する位置検出器
を内蔵させ、曲り計測l.+7に、前記制御装置により
前記回転駆動装置および前記シリンダ装置を制御して、
前記支持部により支持された前記軸体を軸芯周りに連続
的あるいは断続的に回転させ、この軸体に前記矯正ヘッ
ドを軽く当接させて、この矯正ヘッドの位置を前記位置
検出器により検出することにより前記軸体の曲りを計測
する構成としたものである。
(Means for Solving the Problems) In order to solve the above problems, the shaft body bending correction device of the present invention includes a pedestal having a support portion that supports the shaft body at a plurality of locations, and a frame supported by the support portions. A rotation drive device that rotates the shaft body around its axis; a cylinder device that drives up and down a correction head that presses the shaft body supported by the support portion to correct bending; and the cylinder device. A lateral feed device that moves the shaft body supported by the support portion in the axial direction, and a control device that controls the rotation drive device, the cylinder device, and the lateral feed device, and the cylinder device is provided with the correction device. It has a built-in position detector that detects the position of the head, and can measure bending l. +7, controlling the rotary drive device and the cylinder device by the control device,
The shaft body supported by the support part is rotated continuously or intermittently around the axis, the straightening head is brought into light contact with the shaft body, and the position of the straightening head is detected by the position detector. By doing so, the bending of the shaft body is measured.

(作用) 制御装置は、支持部により支持された軸体を軸芯周りに
連続的あるいは断続的に回転させ、この輔体に矯正ヘッ
ドを軽く当接させ、この矯正ヘッドの位置を位置検出器
により検出させて曲り計7IllJを行なう。
(Operation) The control device continuously or intermittently rotates the shaft body supported by the support part around the axis, brings the orthodontic head into light contact with the shaft body, and detects the position of the orthodontic head using a position detector. Detection is performed using a bend meter 7IllJ.

(実施例) 以下、本発明の一実施例を第1図〜第6図に基づいて説
明する。
(Example) Hereinafter, an example of the present invention will be described based on FIGS. 1 to 6.

第1図は本発明の一実施例における軸体の曲り矯疋装置
の正面図、第2図は同側面図で、架台1上には例えばス
クリューポンプ軸等の軸体2の両端部を支持する支持部
3と、支持部3により支持された軸体2を軸芯周りに回
動させる回転駆動装置としてのサーボモータ4とが設置
されており、架台1上の4隅に立設された支柱5により
フレーム6が支持されている。フレーム6には横送り装
置としてのシリンダ装置7と、シリンダ装置7により第
1図の左右方向に移動せしめられるスライドベース8と
が設置されており、スライドベース8には輔体2を押圧
してその曲りを矯正する矯正ヘッド9を昇將駆動するシ
リンダ装置10が設置されている。架台1の下方近傍に
はシリンダ装置7,10に作動油を供給する油圧ユニッ
ト11が配置されており、架台1の側方にはサーボモー
タ4とシリンダ装置7.10とを制御する制御装置12
が近接配置されている。
Fig. 1 is a front view of a shaft straightening device according to an embodiment of the present invention, and Fig. 2 is a side view of the same, in which both ends of a shaft 2, such as a screw pump shaft, are supported on a pedestal 1. A servo motor 4 serving as a rotational drive device for rotating the shaft body 2 supported by the support portion 3 around its axis is installed, and is installed upright at the four corners of the pedestal 1. A frame 6 is supported by pillars 5. The frame 6 is equipped with a cylinder device 7 as a lateral feed device and a slide base 8 that is moved in the left-right direction in FIG. 1 by the cylinder device 7. A cylinder device 10 is installed to drive the correction head 9 upward to correct the bend. A hydraulic unit 11 that supplies hydraulic oil to the cylinder devices 7 and 10 is arranged near the bottom of the pedestal 1, and a control device 12 that controls the servo motor 4 and the cylinder devices 7 and 10 is located on the side of the pedestal 1.
are placed close together.

第3図は上記軸体の曲り矯正装置の要部の構或図で、制
御装置12はパーソナルコンピュータ14とプログラマ
ブルコントローラ15とにより構成されている。サーボ
モータ4とシリンダ装置7,10とはプログラマブルコ
ントローラ15に電気的に接続されており、プログラマ
ブルコントローラ15はパーソナルコンピュータ14に
電気的に接続されている。シリンダ装置7,10は油圧
配管を介して浦圧ユニット11に接続されている。
FIG. 3 is a diagram showing the structure of the main part of the shaft straightening device, and the control device 12 is composed of a personal computer 14 and a programmable controller 15. The servo motor 4 and cylinder devices 7 and 10 are electrically connected to a programmable controller 15, and the programmable controller 15 is electrically connected to a personal computer 14. The cylinder devices 7 and 10 are connected to a pressure unit 11 via hydraulic piping.

シリンダ装置10は、第4図のように、シリンダ16と
、シリンダ16に摺動自在に嵌合するピストンロツド1
7と、後述の制御回路を内蔵しかつ作動浦を制御するサ
ーボバルブ18と、ピストンロット17の先端に一体に
形成された矯正ヘッド9の位置を検出する位置検出器1
つとにより構成されている。シリンダ16には、油室2
0,21が形成されていると共に、フィルタモジュール
22を介して泊室20とサーボバルブ18とを連通させ
る浦路23と、フィルタモジュール22を介して油室2
1とサーボバルブ18とを連通させる油路24とが形成
されている。位置検出器19は検出ロッド25を有して
おり、検出ロッド25ハピストンロッド]7に輔芯方向
に沿ってほぼ全長にわたって形成された孔17aに貫入
している。
As shown in FIG. 4, the cylinder device 10 includes a cylinder 16 and a piston rod 1 that is slidably fitted into the cylinder 16.
7, a servo valve 18 which incorporates a control circuit to be described later and which controls the working port, and a position detector 1 which detects the position of the straightening head 9 integrally formed at the tip of the piston rod 17.
It is composed of two parts. The cylinder 16 has an oil chamber 2
0 and 21 are formed, as well as a ura passage 23 that communicates the accommodation chamber 20 and the servo valve 18 via the filter module 22, and an oil chamber 2 via the filter module 22.
1 and the servo valve 18 are formed. The position detector 19 has a detection rod 25, which penetrates into a hole 17a formed in the piston rod 7 along the circumferential direction over almost its entire length.

サーホハルブ18の制御回路は、ケーブル26を介して
位置検出器19に接続されていると共に、ケーブル27
を介してプログラマブルコントローラ15に接続されて
いる。位置検出器1つは、例えばウィーデマン効果を利
用した磁歪式変位センサにより構成されており、ピスト
ンロッド17の伸展量すなわち矯正ヘッド9の位置を検
出する。
The control circuit of the surf hub 18 is connected to the position detector 19 via a cable 26 and a cable 27.
It is connected to the programmable controller 15 via. One position detector is constituted by a magnetostrictive displacement sensor that utilizes the Wiedemann effect, for example, and detects the amount of extension of the piston rod 17, that is, the position of the correction head 9.

なお餘置検出器19として直線式のエンコーダあるいは
ポテンショメー夕等を用いてもよい。またシリンダ装置
7はシリンダ装置10と同様の構成である。
Note that a linear encoder, potentiometer, or the like may be used as the position detector 19. Further, the cylinder device 7 has the same configuration as the cylinder device 10.

サーボバルブ18に内蔵された制御回路は、第5図のよ
うに、プログラマブルコントローラ15との信号授受を
行なうためのインターフェイス回路2つと、位置検出器
19からの信号を処理するフィードバック信号処理回路
30と、インターフエイス回路29およびフィードバッ
ク信号処理回路30からの信号に基づいてPID演算を
行なうPID演算回路31と、PID演算回路31がら
の信号に基づいてサーボバルブ18のソレノイドにパル
ス輻変調された制御信号を出力するPWM制御回路32
とにより構或されている。
As shown in FIG. 5, the control circuit built into the servo valve 18 includes two interface circuits for exchanging signals with the programmable controller 15, and a feedback signal processing circuit 30 for processing signals from the position detector 19. , a PID calculation circuit 31 that performs PID calculation based on signals from the interface circuit 29 and the feedback signal processing circuit 30, and a control signal that is pulse-radius modulated to the solenoid of the servo valve 18 based on the signals from the PID calculation circuit 31. PWM control circuit 32 that outputs
It is composed of:

次に制御装置12の動作を示すフローチャートである第
6図を参照しながら動作説明を行なう。
Next, the operation of the control device 12 will be explained with reference to FIG. 6, which is a flowchart showing the operation of the control device 12.

軸体2を支持部3にセットして制御装置12のスタート
ボタン(図示せず)を押すと、まずステップaにて軸体
2の曲り計測がなされる。すなわちシリンダ装置7が作
動してスライドベース8を所定の位置に移動させ、シリ
ンダ装置10が作動して矯正ヘッド9を小さな力で軸体
2に当接させる。
When the shaft body 2 is set on the support portion 3 and a start button (not shown) of the control device 12 is pressed, the bending of the shaft body 2 is first measured in step a. That is, the cylinder device 7 operates to move the slide base 8 to a predetermined position, and the cylinder device 10 operates to bring the correction head 9 into contact with the shaft body 2 with a small force.

なお矯止ヘッド9を含むピストンロツド17の自重によ
り矯正ヘッド9を軸体2に当接させるようにしてもよい
。そしてサーボモータ4が作動して軸体2を軸芯周りに
例えば1回転させ、このとき位置検出器19により矯正
ヘッド9の位置が検出されて、そのデータがサーボバル
ブ18の制御回路を介して制御装置12に供給される。
Note that the straightening head 9 may be brought into contact with the shaft body 2 by the weight of the piston rod 17 including the straightening head 9. Then, the servo motor 4 operates to rotate the shaft body 2, for example, once around the axis, and at this time, the position of the correction head 9 is detected by the position detector 19, and the data is transmitted via the control circuit of the servo valve 18. It is supplied to the control device 12.

そして曲りによる変形量を示す最大計測値が制御装置1
2の表示部(図示せず)にディジタル表示される。
The maximum measured value indicating the amount of deformation due to bending is the control device 1.
The information is digitally displayed on the display section 2 (not shown).

なおサーボモータ4により軸体2を軸芯周りに所定角度
ずつ回動させて計測してもよい。また計測箇所が軸体2
の軸芯方向に複数箇所ある場合は、シリンダ装置7によ
りシリンダ装置10が順次次の計測箇所に送られ、各計
測箇所毎に上記の計flpJ動作が行われる。
Note that the measurement may be performed by rotating the shaft body 2 by a predetermined angle around the axis using the servo motor 4. Also, the measurement point is shaft body 2
If there are multiple locations in the axial direction, the cylinder device 10 is sequentially sent to the measurement location by the cylinder device 7, and the above-mentioned total flpJ operation is performed for each measurement location.

次にステップbに進み、ステップaで計#IIll L
た曲りの計測値S1が予め制御装置12に設定された設
定1!82以下であるか否かを判断する。
Next, proceed to step b, and in step a total #IIll L
It is determined whether the measured value S1 of the curve is less than or equal to the setting 1!82 set in advance in the control device 12.

計測値Slが設定値82以下でないと判断すれば、ステ
ップCに進んで矯正点の割出しを行なう。すなわちシリ
ンダ装置7が作動してスライドベース8を移動させ、矯
正すべき位置にシリンダ装置10を位置させる。
If it is determined that the measured value Sl is not less than the set value 82, the process proceeds to step C and a correction point is determined. That is, the cylinder device 7 operates to move the slide base 8 and position the cylinder device 10 at the position to be corrected.

次にステップdに進み、軸体2の位置決めを行なう。す
なわちサーボモータ4が作動し、軸体2を回動させて曲
りの頂点が上向きになるようにする。
Next, the process proceeds to step d, where the shaft body 2 is positioned. That is, the servo motor 4 is activated to rotate the shaft body 2 so that the apex of the bend is directed upward.

次にステップeに進み、軸体2の曲りを自動矯正する。Next, the process proceeds to step e, where the bending of the shaft body 2 is automatically corrected.

すなわちシリンダ装置10が作動し、曲りの計7tpj
値S1と設定値S2との差に応じた最適ストローク量で
軸体2を矯正ヘッド9により強固に押圧して曲りを矯正
する。
In other words, the cylinder device 10 operates and bends for a total of 7 tpj.
The shaft body 2 is firmly pressed by the straightening head 9 with an optimum stroke amount according to the difference between the value S1 and the set value S2 to straighten the bend.

次にステップfに進み、学習を行なう。すなわち制御装
置12は、作業経験をもとに作業内容や与えられた条件
を理解・記憶し、何をなすべきかを判断して、最適の制
御を選択・実施する学習機能を白゛シており、したがっ
て正確かつ微妙な制御を行なうことができる。
Next, proceed to step f and perform learning. In other words, the control device 12 has a learning function that understands and memorizes the work content and given conditions based on work experience, determines what should be done, and selects and implements the optimal control. Therefore, accurate and delicate control can be performed.

次にステップaに戻り、再び同様の動作を行なう。すな
わち曲りの計測値S1が設定値82以下になるまで、矯
正ヘッド9のストローク量を微調整しながら矯正作業を
繰り返す。
Next, return to step a and perform the same operation again. That is, the straightening operation is repeated while finely adjusting the stroke amount of the straightening head 9 until the measured value S1 of the bend becomes equal to or less than the set value 82.

そしてステップbにおいて曲りの計All]値S{が設
定値82以下であると判断すれば、ステップgに進み、
矯正作業が完了したことを制御装置12の表示灯等(図
示せず)で報知し、動作を停止する。
If it is determined in step b that the total bending value S{ is less than or equal to the set value 82, the process proceeds to step g;
The completion of the correction work is notified by an indicator light or the like (not shown) of the control device 12, and the operation is stopped.

なお矯正箇所が軸体2の軸芯方向に複数箇所ある場合は
、シリンダ装置7によりシリンダ装置1oが順次次の矯
正箇所に送られ、各矯正箇所毎に上記の矯正動作が行わ
れて、全ての矯正箇所の矯正が完了した後にステップg
に進む。
If there are multiple correction points in the axial direction of the shaft body 2, the cylinder device 1o is sequentially sent to the next correction point by the cylinder device 7, and the above correction operation is performed for each correction point, so that all the correction points are corrected. Step g is completed after the correction of the corrected area is completed.
Proceed to.

このように、位置検出器19をシリンダ装置10に内蔵
させて、矯正ヘッド9を軸体2に軽く当接させることに
より軸体2の曲り;I?ipIを行なうようにしたので
、従来装置のように計測器を架台1上に設置するという
必要がないことから、架台1上の構造が簡単になり、支
持部3やサーボモータ4等の配置の自由度が大きい。ま
た位置検出器1つをシリンダ装置10に内蔵させたので
、従来装置のように軸体2のセット時等に計測器を損傷
するということがなく、耐久性および信頼性の向上を図
ることができる。また位置検出器19をシリンダ装置1
0に内蔵させて、矯正ヘッド9を軸体2に軽く当接させ
ることにより軸体2の曲り計測を行なうようにしたので
、従来装置のように軸体2の曲り量に応じて計測器を交
換したり調整を頻繁に行なったりする必要がなく、しか
もこのことから軸体2の自動供給が容易であり、完全自
動化を実現できる。またシリンダ装置10を軸体2の軸
芯方向に移動させるシリンダ装置7を設けたので、軸体
2の曲りを軸芯方向任意の位置で計測することかでき、
従来装置のように計測箇所数に応じて計71p+器を多
数設置するという必要がないことから、コストダウンを
図ることができる。また本文施例のように、制御装置1
2に学習機能を持たせるようにすれば、正確かつ微妙な
制御を容易に行なうことができ、矯正精度の向上を図る
ことができる。
In this way, by incorporating the position detector 19 into the cylinder device 10 and bringing the correction head 9 into light contact with the shaft body 2, the bending of the shaft body 2; Since ipI is performed, there is no need to install the measuring instrument on the pedestal 1 as in the conventional device, so the structure on the pedestal 1 is simplified, and the arrangement of the support part 3, servo motor 4, etc. Great degree of freedom. Furthermore, since one position detector is built into the cylinder device 10, the measuring device is not damaged when setting the shaft body 2, unlike conventional devices, and durability and reliability can be improved. can. In addition, the position detector 19 is connected to the cylinder device 1.
0 and measures the bending of the shaft 2 by lightly abutting the straightening head 9 against the shaft 2, unlike conventional devices, the measuring device can be adjusted according to the amount of bending of the shaft 2. There is no need for frequent replacement or adjustment, and because of this, automatic supply of the shaft body 2 is easy and complete automation can be realized. Furthermore, since the cylinder device 7 that moves the cylinder device 10 in the axial direction of the shaft body 2 is provided, the bending of the shaft body 2 can be measured at any position in the axial direction.
Unlike conventional devices, there is no need to install a large number of 71p+ devices in total depending on the number of measurement points, so costs can be reduced. Also, as in the example in the text, the control device 1
If 2 is provided with a learning function, accurate and delicate control can be easily performed, and correction accuracy can be improved.

(別の実施例) 上記実施例においては、回転駆動装置としてサーボモー
タ4を用いたが、本発明はこのような構成に限定される
ものではなく、サーボモータ4の代わりに例えばステッ
ピングモータ等を用いてもよい。
(Another Embodiment) In the above embodiment, the servo motor 4 was used as the rotational drive device, but the present invention is not limited to this configuration, and instead of the servo motor 4, for example, a stepping motor or the like may be used. May be used.

また上記実施例においては、横送り装置としてシリンダ
装置10と同様の構成のシリンダ装置7を用いたが、本
発明はこのような構成に限定されるものではなく、シリ
ンダ装置7の代わりに例えばラック・ビニオン機構等を
用いてもよい。
Further, in the above embodiment, the cylinder device 7 having the same configuration as the cylinder device 10 was used as the lateral feed device, but the present invention is not limited to such a configuration, and instead of the cylinder device 7, for example, a rack is used. - A pinion mechanism etc. may be used.

(発明の効果) 以上説明したように本発明の軸体の曲り矯正装置によれ
ば、位置検出器をシリンダ装置に内蔵させて、矯正ヘッ
ドを軸体に軽く当接させることにより軸体の曲り計測を
行なうようにしたので、従来装置のように計測器を架台
上に設置するという必要がないことから、架台上の構造
がlttI illになり、支持部や回転駆動装置等の
配置の自由度が大きい。
(Effects of the Invention) As explained above, according to the shaft bending straightening device of the present invention, the position detector is built into the cylinder device, and the straightening head is brought into light contact with the shaft, thereby reducing the bending of the shaft. Since the measurement is carried out, there is no need to install the measuring instrument on a pedestal as in conventional devices, and the structure on the pedestal is completely free, allowing for greater freedom in the placement of supporting parts, rotary drive devices, etc. is large.

また位置検出器をシリンダ装置に内蔵させたので、従来
装置のように軸体のセット時等に計測器を損傷するとい
うことがなく、耐久性および信頼性の向上を図ることが
できる。
Furthermore, since the position detector is built into the cylinder device, the measuring device will not be damaged when setting the shaft as in conventional devices, and durability and reliability can be improved.

また位置検出器をシリンダ装置に内蔵させて、矯正ヘッ
ドを軸体に軽く当接させることにより軸体の曲り計7l
ll1を行なうようにしたので、従来装置のように軸体
の曲り量に応じて計測器を交換したり調整を頻繁に行な
ったりする必要がなく、しかもこのことから軸体の自動
供給が容易であり、完全自動化を実現できる。
In addition, by incorporating a position detector into the cylinder device and lightly touching the correction head to the shaft body, the bending of the shaft body can be measured by 7L.
ll1, there is no need to replace the measuring device or make frequent adjustments depending on the amount of bending of the shaft unlike in conventional equipment, and this also makes it easy to automatically feed the shaft. Yes, full automation can be achieved.

またシリンダ装置を◆由体の軸芯方向に移動させる横送
り装置を設けたので、軸体の曲りを軸芯方向任意の位置
で計測することができ、従来装置のように計測箇所数に
応じて計測器を多数設置するという必要がないことから
、コストダウンを図ることができる。
In addition, we have installed a cross-feeding device that moves the cylinder device in the axial direction of the free body, making it possible to measure the bending of the shaft at any position in the axial direction. Since there is no need to install a large number of measuring instruments, costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一丈施例における軸体の曲り矯正装置
の正面図、第2図は同側面図、第3図は同要部構戊図、
昂4図はシリンダ装置の概略構成図、第5図はシリンダ
装置に内蔵された制御回路の回路ブロック図、第6図は
制御装置の動作を説明するフローチャートである。
Fig. 1 is a front view of the shaft bending correction device in the one-length embodiment of the present invention, Fig. 2 is a side view of the same, Fig. 3 is a schematic diagram of the main parts thereof,
FIG. 4 is a schematic configuration diagram of the cylinder device, FIG. 5 is a circuit block diagram of a control circuit built into the cylinder device, and FIG. 6 is a flowchart explaining the operation of the control device.

Claims (1)

【特許請求の範囲】[Claims] 1、複数箇所にて軸体を支持する支持部を有する架台と
、前記支持部により支持された前記軸体を軸芯周りに回
動させる回転駆動装置と、前記支持部により支持された
前記軸体を押圧して曲りを矯正するための矯正ヘッドを
昇降駆動するシリンダ装置と、このシリンダ装置を前記
支持部により支持された前記軸体の軸芯方向に移動させ
る横送り装置と、これら回転駆動装置とシリンダ装置と
横送り装置とを制御する制御装置とを設け、前記シリン
ダ装置に、前記矯正ヘッドの位置を検出する位置検出器
を内蔵させ、曲り計測時に、前記制御装置により前記回
転駆動装置および前記シリンダ装置を制御して、前記支
持部により支持された前記軸体を軸芯周りに連続的ある
いは断続的に回転させ、この軸体に前記矯正ヘッドを軽
く当接させて、この矯正ヘッドの位置を前記位置検出器
により検出することにより前記軸体の曲りを計測する構
成としたことを特徴とする軸体の曲り矯正装置。
1. A pedestal having a support portion that supports a shaft body at a plurality of locations, a rotation drive device that rotates the shaft body supported by the support portion around an axis, and the shaft supported by the support portion. A cylinder device that drives a straightening head up and down for pressing a body to correct a bend, a lateral feeding device that moves this cylinder device in the axial direction of the shaft body supported by the support part, and a rotation drive thereof. a control device for controlling the device, a cylinder device, and a lateral feed device; the cylinder device has a built-in position detector for detecting the position of the correction head; and when measuring bending, the control device controls the rotation drive device. and controlling the cylinder device to continuously or intermittently rotate the shaft body supported by the support portion around the axis, and to bring the straightening head into light contact with the shaft body, so that the straightening head 1. An apparatus for correcting the bending of a shaft body, characterized in that the bending of the shaft body is measured by detecting the position of the shaft body with the position detector.
JP23384189A 1989-09-08 1989-09-08 Shaft bending correction device Expired - Lifetime JPH07110379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23384189A JPH07110379B2 (en) 1989-09-08 1989-09-08 Shaft bending correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23384189A JPH07110379B2 (en) 1989-09-08 1989-09-08 Shaft bending correction device

Publications (2)

Publication Number Publication Date
JPH0394915A true JPH0394915A (en) 1991-04-19
JPH07110379B2 JPH07110379B2 (en) 1995-11-29

Family

ID=16961405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23384189A Expired - Lifetime JPH07110379B2 (en) 1989-09-08 1989-09-08 Shaft bending correction device

Country Status (1)

Country Link
JP (1) JPH07110379B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104438960A (en) * 2014-11-13 2015-03-25 成都迅德科技有限公司 Reinforcing steel bar straightener

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104438960A (en) * 2014-11-13 2015-03-25 成都迅德科技有限公司 Reinforcing steel bar straightener

Also Published As

Publication number Publication date
JPH07110379B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
EP2926936B1 (en) Wire electrical discharge machine having upper/lower guide thermal displacement correction function
US7788820B2 (en) Method and device for contacting a surface point on a workpiece
EP2312263B1 (en) Offset Amount Calibrating Method and Surface Profile Measuring Machine
JP2010266438A (en) Dimension measuring instrument and height gauge
JPH0739939A (en) Method and device for bending
JP2001105293A (en) Spherical shape measuring device and glass lens working device having the same, and calibration method for spherical shape measuring device
CN1325134C (en) System and method for deriving angular isokinetic measurements using a linear dynamometer
JPH0394915A (en) Straightening device for warpage of shaft body
JPH1010253A (en) Method and apparatus for adjusting machine
JP3784273B2 (en) Work shape measuring sensor and work shape measuring device
JP2933187B2 (en) Three-dimensional measuring devices
JP3013671B2 (en) 3D shape measuring device
JPH0655219A (en) Crowning device for bender
JP2007101468A (en) Instrument and method for measuring hardness
KR0178299B1 (en) Correction device for deflection of bar
JP2000246342A (en) Bend processing machine and bend processing method using this machine
CN220583648U (en) Measuring device for measuring elastic force of elastic sheet
JPS62169213A (en) Positioning device
JP3063806B2 (en) Semiconductor device lead straightening apparatus and method
JPH0777401A (en) Work bent angle indicator
JP2004017110A (en) Device for correcting circumferential length of metallic belt
JPH0486538A (en) Measuring apparatus for distribution of hardness in sheet
CN117161150A (en) Automatic shape correction equipment for blades
JPH02108903A (en) Distance measuring instrument for body to be measured such as rack shaft
JPS62248514A (en) Correction device for bend angle