JPH0384930A - Formation of protective film - Google Patents

Formation of protective film

Info

Publication number
JPH0384930A
JPH0384930A JP1222189A JP22218989A JPH0384930A JP H0384930 A JPH0384930 A JP H0384930A JP 1222189 A JP1222189 A JP 1222189A JP 22218989 A JP22218989 A JP 22218989A JP H0384930 A JPH0384930 A JP H0384930A
Authority
JP
Japan
Prior art keywords
layer
resin layer
protective film
opening
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1222189A
Other languages
Japanese (ja)
Inventor
Masahiko Suzumura
正彦 鈴村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1222189A priority Critical patent/JPH0384930A/en
Publication of JPH0384930A publication Critical patent/JPH0384930A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To reduce the number of mask formation operations and to arrange that an oxide film on the rear of a substrate is not left when a protective film is completed by a method wherein the substrate where an inorganic layer and a resin layer are laminated on the surface and an opening for window use is opened in the resin layer is used and an opening for window use is formed in the lower inorganic layer by an etching operation. CONSTITUTION:A CVD oxide layer (e.g. SiO2 film) 4 is deposited on a semiconductor substrate 1 where an insulating layer 2 and a metal layer 3 for electrode of Al or the like are formed on the surface on which individual regions required for a semiconductor element are formed; in succession, a polyimide-based resin layer 5 is laminated. Then, a mask is formed on the resin layer 5 by using a photolithographic method, and an etching treatment is executed; thereby, an opening 10 for wire bonding window is made. In succession, an opening 11 for wire bonding window is made in the CVD oxide layer 4 by using a mask of the resin layer 5 in which the opening 10 is made. Thereby, a protective film 6 having a wire bonding window 7 composed of the openings 10, 11 is completed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体素子の形成された基板の上に設けら
れる保護膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a protective film provided on a substrate on which a semiconductor element is formed.

〔従来の技術〕[Conventional technology]

半導体装置では、通常、第3図(dlにみるように、半
導体素子に必要な各領域が作り込まれ表面に絶縁(酸化
)層52やAI(アル主ニウム)等の電極用金属層53
が形成された半導体基板(基板)51を得た後、同半導
体基板51表面にCVD酸化層(例えば、Si0g膜)
54上にポリイミド系樹脂層55が積層された2重構造
であってワイヤボンディングのための窓57が明けられ
た保護膜56を設ける。このワイヤボンディング窓57
を通して金属層53にワイヤ(図示省略)がボンディン
グ接続される。
In a semiconductor device, normally, as shown in FIG.
After obtaining the semiconductor substrate (substrate) 51 on which is formed, a CVD oxide layer (for example, Si0g film) is formed on the surface of the semiconductor substrate 51.
A protective film 56 having a double structure with a polyimide resin layer 55 laminated thereon and having a window 57 for wire bonding is provided on the protective film 54 . This wire bonding window 57
A wire (not shown) is connected to the metal layer 53 through bonding.

保護膜56は、従来、以下のようにして形成されている
The protective film 56 is conventionally formed as follows.

まず、第3図(a)にみるように、CVD法によりCV
D酸化層(無機質層)54を堆積させた後、第3図(b
)にみるように、フォトリソグラフィ技術を利用して、
同酸化層54にボンディング窓用開口57′を明ける。
First, as shown in Figure 3(a), CVD is performed using the CVD method.
After depositing the D oxide layer (inorganic layer) 54, FIG.
), using photolithography technology,
A bonding window opening 57' is formed in the oxide layer 54.

ついで、第3図(C)にみるように、ポリイミド系樹脂
層55を積層した後、フォトリソグラフィ技術を利用し
て、同樹脂層55にボンディング窓用開口を明ければ、
ワイヤボンディング窓57のある保護膜56が完成する
こととなる。
Next, as shown in FIG. 3(C), after laminating a polyimide resin layer 55, an opening for a bonding window is formed in the resin layer 55 using photolithography.
A protective film 56 with a wire bonding window 57 is completed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の2重構造の保護1!156形戒方
法は、第3図(b)、(d)の2回のフォトリソグラフ
ィ工程があり、マスク形成が2回必要であるため、コス
トや歩留まりの点で問題がある。
However, the conventional double structure protection 1!156 type method requires two photolithography steps as shown in FIG. There is a problem with this.

また、半導体素子が高耐圧ブレーナ型半導体素子の場合
、通常、半導体基板51裏面に高電位電極を設ける。一
方、第3図(d)の工程終了後の半導体基板51裏面に
は、ポリイミド系樹脂7155のエンチング液では除去
されない薄い自然酸化膜が残っている。このような酸化
膜が半導体基板51裏面に残っていると、裏面電極のコ
ンタクト抵抗の増加、電極と半導体基板の接合不良、あ
るいは、熱抵抗の増加といった不都合がある。そのため
、高耐圧ブレーナ型半導体素子の場合、十分な性能を確
保するには、半導体基板51裏面の残存酸化膜を除去す
るエツチング工程が余分に必要となる。
Further, when the semiconductor element is a high-voltage Brenna type semiconductor element, a high potential electrode is usually provided on the back surface of the semiconductor substrate 51. On the other hand, on the back surface of the semiconductor substrate 51 after the process shown in FIG. 3(d) is completed, a thin natural oxide film that cannot be removed by the etching solution of the polyimide resin 7155 remains. If such an oxide film remains on the back surface of the semiconductor substrate 51, there are disadvantages such as increased contact resistance of the back electrode, poor bonding between the electrode and the semiconductor substrate, or increased thermal resistance. Therefore, in the case of a high breakdown voltage Brainer type semiconductor element, an extra etching step is required to remove the remaining oxide film on the back surface of the semiconductor substrate 51 in order to ensure sufficient performance.

この発明は、上記事情に鑑み、マスク形成回数が少なく
、基板裏面の酸化膜が保護膜完成時点では残らないよう
に保護膜を形成することができる方法を提供することを
課題とする。
In view of the above-mentioned circumstances, it is an object of the present invention to provide a method that can form a protective film so that the number of mask formations is small and no oxide film remains on the back surface of the substrate when the protective film is completed.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため、第1図(C1にみるように、
無機質M(例えば、CVD@化層)4上に樹脂層(例え
ば、ポリイミド系樹脂層)5が積層された2重構造であ
ってワイヤボンディング窓7が明けられている保護膜6
を、半導体素子の形成された基板(例えば、シリコン半
導体基板)1表面に設けるにあたり、この発明では、第
1図山)にみるように、表面に無機質層4と樹脂rfi
5が積層され同樹脂層5には前記窓用開口10が明けら
れている前記基板1を用い、この樹脂層5をマスクにし
て、下の無機質層4に前記窓用開口11をエツチングに
より明けるようにしている。
In order to solve the above problem, as shown in Figure 1 (C1),
A protective film 6 having a double structure in which a resin layer (for example, a polyimide resin layer) 5 is laminated on an inorganic material M (for example, a CVD layer) 4, and a wire bonding window 7 is opened therein.
As shown in FIG.
5 is laminated and the window opening 10 is formed in the resin layer 5. Using the resin layer 5 as a mask, the window opening 11 is formed in the underlying inorganic layer 4 by etching. That's what I do.

無機質層4としては5insからなるCVD酸化層が例
示され、樹脂層5にはポリイミド系樹脂層が例示される
のであるが、これらに限らず、無機質層4や樹脂15が
他の無機物質や無機質層のエンチング液に侵されない樹
脂からなるようであってもよい。
Examples of the inorganic layer 4 include a CVD oxidized layer of 5ins, and examples of the resin layer 5 include a polyimide resin layer; however, the inorganic layer 4 and the resin 15 may be made of other inorganic substances or minerals. The layer may be made of a resin that is not attacked by the etching liquid.

基板1に形威される半導体素子としては、例えば、基板
裏面に電極を設ける縦型の高耐圧ブレーナ型半導体素子
が挙げられる。この縦型高耐圧ブレーナ型半導体素子の
具体的なものには、サイリスク、トランジスタ、ダイオ
ード、IGBT、パワーMOS等が例示されるが、基板
に形威される半導体素子はこれらに限らない。
Examples of the semiconductor element formed on the substrate 1 include a vertical high-voltage Brenna type semiconductor element in which electrodes are provided on the back surface of the substrate. Specific examples of this vertical high-voltage brainer type semiconductor device include a SIRISK, a transistor, a diode, an IGBT, a power MOS, etc., but the semiconductor device formed on the substrate is not limited to these.

〔作   用〕[For production]

この発明の保護膜の形成方法では、無機質層のエツチン
グ前に樹脂層を形威し、樹脂層の方だけにワイヤボンデ
ィング窓用開口を先に明ける。そして、このワイヤボン
ディング窓用開口の明いた樹脂層をマスクに使い、下の
無機質層にボンディング窓用開口をエツチングにより形
成する。したがって、困難なマスク形成が樹脂層の開口
工程で必要なだけで、無機質層の開口工程では不要であ
る。しかも、樹脂層の開口と無機質層の開口は互いにず
れることなく、ぴったりと一致する。そのため、製造コ
スト低減や歩留まり向上が可能となる。
In the method for forming a protective film of the present invention, the resin layer is shaped before etching the inorganic layer, and openings for wire bonding windows are first opened only in the resin layer. Then, using this resin layer with the wire bonding window opening as a mask, the bonding window opening is formed in the underlying inorganic layer by etching. Therefore, difficult mask formation is only necessary in the step of opening the resin layer, but not in the step of opening the inorganic layer. Furthermore, the openings in the resin layer and the openings in the inorganic layer do not shift from each other and match exactly. Therefore, it is possible to reduce manufacturing costs and improve yield.

無機質層(例えば、CV D 5ins層)エツチング
では、同じ無機質である基板裏面の自然酸化膜(sto
霊111)が同時にエツチング除去され、保護膜の完成
時点で既に残存していない。そのため、高耐圧ブレーナ
型半導体素子で基板裏面に電極を設ける場合でも、改め
て自然酸化膜を除去するエツチング工程が要らない。
When etching an inorganic layer (for example, a CVD 5ins layer), a natural oxide film (sto
111) is removed by etching at the same time, and no longer remains when the protective film is completed. Therefore, even when an electrode is provided on the back surface of the substrate in a high-voltage Brenna type semiconductor element, there is no need for an additional etching process to remove the natural oxide film.

〔実 施 例〕〔Example〕

続いて、この発明の具体的な実施例を、図面を参照しな
がら詳しく説明する。
Next, specific embodiments of the present invention will be described in detail with reference to the drawings.

第1図(al〜(C)は、この発明にかかる方法の一例
による保護膜形成の様子を工程順にあられす。
FIGS. 1A to 1C show the formation of a protective film according to an example of the method according to the present invention in the order of steps.

第1図(alにみるように、半導体素子に必要な各領域
が作り込まれ表面に絶縁(酸化)層2やAg(アルミニ
ウム)等の電極用金属層3が形成された半導体基板(基
板)lの上に、CVD法を用いCVD酸化層(例えば、
Si0目臭)4を堆積させ、続いて、ポリイミド系樹脂
層5を積層する。
As shown in Figure 1 (al), a semiconductor substrate (substrate) in which various regions necessary for a semiconductor element are formed and an insulating (oxidized) layer 2 and an electrode metal layer 3 such as Ag (aluminum) are formed on the surface. A CVD oxide layer (e.g.
After that, a polyimide resin layer 5 is laminated.

つぎに、フォトリソグラフィ法を用いマスクを樹脂層5
の上に設はエツチング処理することにより、第1図(b
lにみるように、樹脂層5にワイヤボンディング窓用開
口10を明ける。
Next, a mask is formed on the resin layer 5 using a photolithography method.
By performing an etching process on top of the
As shown in FIG. 1, an opening 10 for a wire bonding window is formed in the resin layer 5.

続いて、開口10を明けた樹脂N5をマスクとして、C
VD酸化層4にワイヤボンディング窓用開口11を明け
れば、開口10.11からなるワイヤボンディング窓7
のある保護1!!!6が完成することになる。
Next, using the resin N5 with the opening 10 as a mask, C
If a wire bonding window opening 11 is formed in the VD oxide layer 4, a wire bonding window 7 consisting of the opening 10.11 is formed.
Protection 1! ! ! 6 will be completed.

CVD酸化層4のエツチングの際には、フン酸(HF)
と適当な緩衝剤(例えば、フン化アンモニウム)を含む
エツチング液(バッファードフソ酸液と呼ばれたりもす
る)を用いている。この液を用いると、CVD酸化層4
とポリイミド系4M脂層5の接着信頼性を損なう(例え
ば、剥離等)ことなく、CVD酸化層4および半導体基
板1裏面の自然酸化膜のエツチング除去が行えるのであ
るなお、第2図は、半導体素子として縦型静電誘導サイ
リスタが形成された半導体基板lにCVD酸化層4上に
ボリイくド系樹脂層5が積層された二重構造の保護膜6
が設けられてなる半導体装置の端の部分をあられす。
When etching the CVD oxide layer 4, use hydronic acid (HF).
An etching solution (sometimes called a buffered fluoride solution) containing a suitable buffer (for example, ammonium fluoride) is used. When this solution is used, the CVD oxide layer 4
The CVD oxide layer 4 and the natural oxide film on the back surface of the semiconductor substrate 1 can be removed by etching without impairing the adhesion reliability of the polyimide 4M resin layer 5 (for example, peeling). A double-structured protective film 6 in which a boiled resin layer 5 is laminated on a CVD oxide layer 4 on a semiconductor substrate l on which a vertical electrostatic induction thyristor is formed as an element.
The end portion of the semiconductor device is covered with rain.

半導体基板1では、カソード領域(N”層)やゲート領
域CP”層〉は図示外の基板中央表面部分に形成され、
アノード領域(P”1)lbは基板裏面に形成されてい
る。カソード・アノード間のN−層1aは高比抵抗領域
(ベース領域)である、10層IC・・・は基板中央の
活性領域を囲むように形成されたガードリング領域であ
る。
In the semiconductor substrate 1, a cathode region (N" layer) and a gate region CP" layer are formed in a central surface portion of the substrate (not shown),
The anode region (P"1) lb is formed on the back surface of the substrate. The N- layer 1a between the cathode and anode is a high resistivity region (base region). The 10-layer IC... is an active region in the center of the substrate. This is a guard ring area formed to surround the.

保護l1lI6におけるワイヤボンディング窓7はカソ
ード電極層AI!金属層3のボンディング用域に明けら
れた後、ワイヤがボンディングされることはいうまでも
ない。勿論、ゲート電極用A/金属層のボンディング域
にもワイヤボンディング窓が同時に明けられることもい
うまでもない。
The wire bonding window 7 in the protection l1lI6 is connected to the cathode electrode layer AI! It goes without saying that the wire is bonded after the bonding area of the metal layer 3 has been opened. Of course, it goes without saying that a wire bonding window is also opened in the bonding area of the gate electrode A/metal layer at the same time.

この半導体装置では、アノード電極9の設けられる半導
体基板1裏面には自然酸化膜がないため、電極9のコン
タクト抵抗増加や接合不良の問題、さらには熱抵抗増大
が解消されている。
In this semiconductor device, since there is no native oxide film on the back surface of the semiconductor substrate 1 on which the anode electrode 9 is provided, the problems of increased contact resistance and poor bonding of the electrode 9, as well as increased thermal resistance, are solved.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、この発明にかかる保護膜の形成方
法では、マスク形成回数が少なくなるため、製造コスト
低減や歩留まり向上ができるようになり、しかも、基板
裏面の酸化膜が保護膜完成時点では残らないため、高信
頼・高性能の高耐圧ブレーナ型半導体素子のある半導体
装置の製造工程が簡略化できる。
As described above, in the method for forming a protective film according to the present invention, the number of times of mask formation is reduced, making it possible to reduce manufacturing costs and improve yield. Therefore, the manufacturing process of a semiconductor device having a highly reliable and high performance high breakdown voltage brainer type semiconductor element can be simplified.

【図面の簡単な説明】 第1図は、この発明の方法の一例による保護膜形成の様
子を工程順にあられす概略断面図、第2図は、この発明
により形成された保護膜を備える半導体装置の一部端部
分をあられす概略断面図、第3図は、従来の方法による
保護膜形成の様子を工程順にあられす概略断面図である
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic cross-sectional view showing the process of forming a protective film according to an example of the method of the present invention, and FIG. 2 is a semiconductor device equipped with a protective film formed according to the present invention. FIG. 3 is a schematic cross-sectional view showing the process of forming a protective film by a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1 無機質層上に樹脂層が積層された2重構造であって
ワイヤボンディング窓が明けられている保護膜を、半導
体素子の形成された基板表面に設けるにあたり、表面に
前記無機質層と樹脂層が積層され同樹脂層には前記窓用
開口が明けられている前記基板を用い、この樹脂層をマ
スクにして、下の無機質層に前記窓用開口をエッチング
により明けるようにすることを特徴とする保護膜の形成
方法。
1. When providing a protective film with a double structure in which a resin layer is laminated on an inorganic layer and a wire bonding window is opened on the surface of a substrate on which a semiconductor element is formed, the inorganic layer and resin layer are layered on the surface. The substrate is laminated and the resin layer has the window opening, and the window opening is etched into the underlying inorganic layer using the resin layer as a mask. How to form a protective film.
JP1222189A 1989-08-28 1989-08-28 Formation of protective film Pending JPH0384930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1222189A JPH0384930A (en) 1989-08-28 1989-08-28 Formation of protective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1222189A JPH0384930A (en) 1989-08-28 1989-08-28 Formation of protective film

Publications (1)

Publication Number Publication Date
JPH0384930A true JPH0384930A (en) 1991-04-10

Family

ID=16778550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1222189A Pending JPH0384930A (en) 1989-08-28 1989-08-28 Formation of protective film

Country Status (1)

Country Link
JP (1) JPH0384930A (en)

Similar Documents

Publication Publication Date Title
US4789647A (en) Method of manufacturing a semiconductor device, in which a metallization with a thick connection electrode is provided on a semiconductor body
JPH0862628A (en) Liquid crystal display element and its production
JPH0384930A (en) Formation of protective film
JPH06236893A (en) Manufacture of tft liquid crystal display
JP2717166B2 (en) Method for manufacturing semiconductor device
JPH01128545A (en) Semiconductor device
JPS58105551A (en) Semiconductor device
JP2002314088A (en) Manufacturing method for thin film transistor array substrate and liquid crystal display device using the same manufactured by the method
JPH04335524A (en) Manufacture of semiconductor device
JPH0682630B2 (en) Method for manufacturing multi-layer electrode of semiconductor device
JPH03209823A (en) Resin-sealed semiconductor device
JP2606414B2 (en) Method for manufacturing semiconductor device
JPS6025255A (en) Manufacture of semiconductor device
JPH05136198A (en) Semiconductor device
JPH0226022A (en) Semiconductor device
JPS6240770A (en) Manufacture of semiconductor device
JPS63104025A (en) Liquid crystal display device
JPH0787248B2 (en) Method of forming thin film transistor
JPH07111978B2 (en) Method for manufacturing semiconductor device
JPH07249627A (en) Manufacture of semiconductor integrated circuit device and semiconductor integrated circuit device
JPS6229164A (en) Schottky barrier type semiconductor device and manufacture thereof
JPS6225425A (en) Etching method for surface protective film
JPH03236234A (en) Manufacture of semiconductor device
JPH0783126B2 (en) Method of manufacturing thin film transistor
JPS61116869A (en) Manufacture of image sensor