JPH0380596B2 - - Google Patents

Info

Publication number
JPH0380596B2
JPH0380596B2 JP59134048A JP13404884A JPH0380596B2 JP H0380596 B2 JPH0380596 B2 JP H0380596B2 JP 59134048 A JP59134048 A JP 59134048A JP 13404884 A JP13404884 A JP 13404884A JP H0380596 B2 JPH0380596 B2 JP H0380596B2
Authority
JP
Japan
Prior art keywords
laser beam
scanned
plane
focus
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59134048A
Other languages
Japanese (ja)
Other versions
JPS6068185A (en
Inventor
Shaaki Mario
Kaze Rooran
Seie Joruju
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIAKII SA
Original Assignee
SHIAKII SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIAKII SA filed Critical SHIAKII SA
Publication of JPS6068185A publication Critical patent/JPS6068185A/en
Publication of JPH0380596B2 publication Critical patent/JPH0380596B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Resistance Welding (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はレーザービームによるスポツト溶接
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a spot welding method using a laser beam.

〔従来技術〕[Prior art]

レーザービームの整合焦点は高出力を生むの
で、一般的な金属加工や、ペネトレーシヨン効果
を要する溶接加工などにレーザーは有効に利用さ
れている。レーザービームの有する利点は、かな
り離れた所にまでほどんどエネルギー損失なく容
易に空中伝播できるところにあり、したがつて、
作業場内に分散設置された多数の作業部所に時分
割供給することができる。また同様に、レーザー
を用いれば大きな加工部材の至る箇所に連続して
スポツト溶接を行なえるので、例えば、自動車の
車体などの重畳金属板の一次的な溶接に利用する
ことができる。この種の溶接には、従来より抵抗
溶接が二通りの方法で用いられている。その一つ
は、一箇所ごと別個に溶接する方法で、溶接機材
として固定具及びその支持台、大きな断面を有す
るケーブル、変圧器、電力供給及び操作装置など
を要し、溶接箇所と同数の溶接装置を必要とする
ものである。もう一つは、溶接装置を搭載したロ
ボツトを一台ないしは複数台使用する方法で、一
台のロボツトで何箇所かの溶接作業を行なわせる
方法である。この方法では、多数の溶接機材がロ
ボツトにより、移動要素の機械的応力の限界内で
可能な最短時間で一挙に移動させられる。
Because the aligned focus of the laser beam produces high output power, lasers are effectively used for general metal processing and welding processes that require penetration effects. The advantage of laser beams is that they can easily propagate through the air over large distances with little loss of energy;
It is possible to time-divide supply to a large number of work stations distributed in a work place. Similarly, if a laser is used, spot welding can be performed continuously throughout a large workpiece, so it can be used, for example, for primary welding of overlapping metal plates such as the body of an automobile. Conventionally, resistance welding has been used in two ways for this type of welding. One is a method in which each location is welded separately, which requires welding equipment such as a fixture and its support, a cable with a large cross section, a transformer, a power supply and operation device, etc. It requires equipment. The other method is to use one or more robots equipped with welding equipment, in which one robot performs welding work at several locations. In this method, a large number of welding equipment is moved at once by a robot in the shortest possible time within the limits of the mechanical stress of the moving elements.

レーザービームを使用すれば、単一源からのエ
ネルギー分散が可能なため、レーザー光を平行す
る複数のレーザービームに分散し、各レーザービ
ームをそれぞれ位置対応する焦点調整装置に投射
すれば、重畳加工部材の垂直上方に位置する該焦
点調整装置によりレーザービームが加工部材上に
焦点整合され、ペネトレーシヨン効果を有する高
出力整合焦点により重畳加工部材が複数箇所で溶
接されるようになる。例えば、第1図に示すよう
に、レーザービームの光軸上への出し入れが自在
な複数(図示の例では3枚)の平面鏡1を一列に
配置し、ジエネレータ3から照射されるレーザー
ビーム2を各平面鏡1により順次反射させ、各平
面鏡1の垂直下方に位置する焦点調整装置4,
5,6に順次導くように構成すれば、前記のロボ
ツトを使用する等の方法に比し、溶接機材の移動
作業等の省略化が図れ、溶接作業が簡略化され
る。また、こうした方法においては、溶接される
重畳加工部材7に十分な断面積を有する溶接部7
を形成することが重要な要因となるが、溶接部
1を別個多数形成するには技術的にも経済的に
も無理な面があるため、重畳加工部材7上に整合
されるレーザービームの焦点に円軌道を描かせる
ことで、溶接部71の断面積増加による継手強化
が図られている。このため、各溶接ヘツドにモー
タ41,51,61を連結したり、焦点調整装置4,
5,6内にレンズ、凹面鏡等の可動部材を搭載
し、溶接ヘツドや可動部材をモータ駆動により回
転運動させることで、レーザービームの整合焦点
に円軌道を描かせる方法が従来からとられてい
る。しかしながらこの従来法によれば、各焦点調
整装置4,5,6ごとに回転駆動装置及びそれら
の操作装置を取り付ける必要があるため、溶接装
置全体としての構造が大型化すること、レーザー
ビームの平面鏡による反射位置等に基づき各駆動
装置の作動制御を行なう必要があるため、機構が
複雑になることなどの欠点があつた。
Using a laser beam allows energy dispersion from a single source, so if the laser beam is dispersed into multiple parallel laser beams and each laser beam is projected to a focus adjustment device that corresponds to the position, superimposed processing can be performed. The focusing device, located vertically above the workpiece, focuses the laser beam onto the workpiece, and a high power focused focus with a penetration effect causes the overlapping workpiece to be welded at multiple locations. For example, as shown in FIG. 1, a plurality of plane mirrors 1 (three in the illustrated example) that can be freely moved in and out on the optical axis of the laser beam are arranged in a row, and the laser beam 2 irradiated from the generator 3 is A focus adjustment device 4 that is sequentially reflected by each plane mirror 1 and located vertically below each plane mirror 1;
5 and 6 sequentially, the welding work can be simplified by eliminating the work of moving the welding equipment, etc., compared to the method using a robot as described above. Moreover, in such a method, the welding part 7 having a sufficient cross-sectional area for the superimposed workpiece 7 to be welded
1 is an important factor, but since it is technically and economically impossible to form a large number of separate welds 7 1 , the laser beam aligned on the superimposed workpiece 7 is By drawing a circular orbit at the focal point, the joint is strengthened by increasing the cross-sectional area of the welded part 71 . For this reason, motors 4 1 , 5 1 , 6 1 are connected to each welding head, and focus adjustment devices 4 and 6 1 are connected to each welding head.
Conventionally, a method has been used in which movable members such as lenses and concave mirrors are mounted in 5 and 6, and the welding head and movable members are rotated by a motor to draw a circular trajectory at the matching focus of the laser beam. . However, according to this conventional method, it is necessary to install a rotary drive device and an operating device for each of the focus adjustment devices 4, 5, and 6, resulting in an increase in the size of the overall structure of the welding device, and a plane mirror for the laser beam. Since it is necessary to control the operation of each drive device based on the reflection position etc., there are drawbacks such as a complicated mechanism.

〔問題を解決するための手段〕[Means to solve the problem]

この発明は上記欠点を解決すべくなされたもの
であつて、溶接装置全体としての構造簡略化を図
れるレーザービームによるスポツト溶接方法を提
供することを目的とし、その特徴とするところ
は、ジエネレータから放射されるレーザービーム
の光軸を移動制御し、この移動レーザービームを
静止式焦点調整装置に送り込み、移動レーザービ
ームの移動態様に対応した移動軌跡を、焦点調整
装置により加工部材上に整合されるレーザービー
ムの焦点に描かせるようにしたところにある。
This invention has been made to solve the above-mentioned drawbacks, and aims to provide a spot welding method using a laser beam that can simplify the structure of the welding device as a whole. The optical axis of the laser beam to be processed is controlled to move, and the moving laser beam is sent to a stationary focusing device, and the laser is aligned on the workpiece by the focusing device so that the movement trajectory corresponding to the movement mode of the moving laser beam is controlled. This is where the image is drawn at the focus of the beam.

また、この発明方法によれば、ジエネレータか
ら放射されるレーザービームは、その放射光軸に
対して平行移動、又は回転移動走査される。そし
て、レーザービームは一平面上に移動走査され
る。
Further, according to the method of the present invention, the laser beam emitted from the generator is moved in parallel or rotationally scanned with respect to its emission optical axis. Then, the laser beam is moved and scanned on one plane.

〔作用及び効果〕[Action and effect]

この発明法においては、静止式の焦点調整装置
を使用し、この焦点調整装置への入射前にレーザ
ービーム自体を移動走査するようにしているの
で、各焦点調整装置に設けた可動部材等を移動操
作してビームの焦点位置を移動させることが必要
なく、装置全体の小型化及び操作の簡略化が図れ
る。
In this invention method, a static focus adjustment device is used, and the laser beam itself is moved and scanned before entering the focus adjustment device, so movable members etc. provided in each focus adjustment device are moved. There is no need to operate to move the focal position of the beam, and the entire device can be made smaller and the operation can be simplified.

尚、焦点調整装置には、入射レーザービームの
ビーム径や走査経路に応じて、ビームの焦点を所
望位置に整合すべくその形状、寸法を調整した
種々のレンズや鏡を使用するが、これらの選択は
使用レーザービームの出力に応じて決定されるも
のである。
Note that the focus adjustment device uses various lenses and mirrors whose shapes and dimensions are adjusted to align the focal point of the beam to a desired position depending on the beam diameter and scanning path of the incident laser beam. The selection depends on the power of the laser beam used.

〔実施例〕〔Example〕

この発明の一実施例を図面を参照しつつ以下詳
細に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第2図に示す装置は、重畳加工部材8,9間に
スポツト溶接部を遂次円形状に形成するレーザー
溶接装置である。
The apparatus shown in FIG. 2 is a laser welding apparatus that sequentially forms circular spot welds between superimposed workpieces 8 and 9.

レーザー発生装置10から放射されるレーザー
ビーム11は、その光軸が装置12により軸13
に平行、かつ該軸13回りに回転させられる。前
記軸13上には複数個の平面鏡15,16,17
が配列されている。これら各平面鏡は軸上及び軸
外への位置変更が可能で、軸上に位置する際に
は、装置12から送り出されるレーザービーム1
4がそれに反射し、各平面鏡15,16,17に
相当する焦点調整装置151,161,171に導
かれるようにその軸上位置が設定されている。
The laser beam 11 emitted from the laser generator 10 has its optical axis aligned with the axis 13 by the device 12.
parallel to and rotated about the axis 13. A plurality of plane mirrors 15, 16, 17 are arranged on the shaft 13.
are arranged. Each of these plane mirrors can be repositioned on-axis and off-axis, and when positioned on-axis, the laser beam 1 emitted from the device 12
4 is reflected thereon and guided to focus adjustment devices 15 1 , 16 1 , 17 1 corresponding to each of the plane mirrors 15 , 16 , 17 , the axial position of which is set.

平面鏡15,16,17で反射すると共に、軸
19回りに回転するレーザービーム18は、前記
焦点調整装置151,161,171に入るとそこ
で焦点調整が行なわれ、重畳加工部材8,9上面
の点20にその焦点が合わされる。この点20は
入射ビーム18の円軌跡に応じた円軌道を重畳加
工部材上面に描くこととなる。こうして重畳加工
部材8,9上面をその焦点が漸進的に円軌道を描
くレーザービームにより、重畳加工部材8,9は
その接触面に沿つて融接されていき、焦点20の
描く円軌道の直径と実質的に一致する直径からな
る溶接点が形成される。
The laser beam 18, which is reflected by the plane mirrors 15, 16, 17 and rotates around the axis 19, enters the focus adjusting device 15 1 , 16 1 , 17 1 where the focus is adjusted, and the superimposed workpieces 8, 9 Its focus is on point 20 on the top surface. This point 20 draws a circular trajectory corresponding to the circular trajectory of the incident beam 18 on the upper surface of the superimposed workpiece. In this way, the superimposed workpieces 8 and 9 are fused together along their contact surfaces by the laser beam whose focal point gradually draws a circular orbit on the upper surface of the overlapping workpieces 8 and 9, and the diameter of the circular orbit drawn by the focal point 20 A weld point is formed having a diameter that substantially corresponds to the diameter of the weld.

このように、焦点調整装置を静止要素のみから
構成したことにより、その構造及び組立てが簡略
化され、とりわけそのかさが減じられるので、該
装置の設置間隔ひいては溶接点の形成間隔をせば
めることができ、重畳加工部材間の継手を強化す
ることができると共に、重畳加工部材の位置決め
や握り等の工具の操作スペースも十分確保できる
ようになる。
By thus constituting the focusing device from only stationary elements, its structure and assembly are simplified and, above all, its bulk is reduced, so that the installation spacing of the device and thus the formation spacing of the welding points can be reduced. This makes it possible to strengthen the joint between the superimposed workpieces, and also to ensure sufficient space for positioning the superposition workpieces and operating tools such as grips.

第2図においては、装置12によりレーザービ
ームを軸13に平行、かつ該軸13回りに回転さ
せるようにしているが、装置12から送り出され
るレーザービームを軸13を枢軸として旋回さ
せ、円軌道若しくはその他適当な軌道を描かせる
ようにすることも可能である。
In FIG. 2, the laser beam is rotated by the device 12 parallel to the axis 13 and around the axis 13, but the laser beam sent out from the device 12 is rotated about the axis 13, and the laser beam is rotated in a circular orbit or around the axis 13. It is also possible to draw other suitable trajectories.

第3図に装置12の一実施例を示す。この装置
12によれば、ジエネレータ10から発せられた
ビーム11が2つの平面鏡21,22により連続
して反射される。これら2つの平面鏡21,22
は、相直交する2つの軸211,221にそれぞれ
一端を枢支されると共に、他端が機械式伝導装置
241,251を介して電気モータ23により駆動
される歯車24,25にそれぞれ連結されてい
る。したがつて、電気モータ23の作動により2
つの平面鏡21,22は枢支軸回りに揺動され、
両平面鏡21、22の揺動角速度が同一、かつ、
両平面鏡21,22の位相が90°異なる条件の下
においては、前記軸13がレーザービーム14の
回転軸となる。すなわち、装置12に入るビーム
11と装置12から出ていくビーム14との並進
が保持されつつ、ビーム14の軸13回りの回転
移動が獲得される。当然の如く、前記角速度や位
相等の条件を変更すれば、レーザービーム14に
違つた移動形態をとらせることができる。
FIG. 3 shows one embodiment of the device 12. According to this device 12, a beam 11 emitted from a generator 10 is continuously reflected by two plane mirrors 21 and 22. These two plane mirrors 21, 22
have one end pivoted on two orthogonal shafts 21 1 and 22 1, respectively, and the other end connected to gears 24 and 25 driven by an electric motor 23 via mechanical transmission devices 24 1 and 25 1. Each is connected. Therefore, the operation of the electric motor 23 causes 2
The two plane mirrors 21 and 22 are swung around a pivot axis,
The swing angular velocity of both plane mirrors 21 and 22 is the same, and
Under the condition that the phases of both plane mirrors 21 and 22 are different by 90 degrees, the axis 13 becomes the rotation axis of the laser beam 14. That is, rotational movement of the beam 14 about the axis 13 is obtained while the translation of the beam 11 entering the device 12 and the beam 14 exiting the device 12 is maintained. Naturally, by changing the conditions such as the angular velocity and phase, the laser beam 14 can be caused to take a different movement form.

第4図に複数の鏡から構成される焦点調整装置
151,161,171を示す。図において、装置
12から第1平面鏡26に送りこまれたレーザー
ビーム14は、該平面鏡26により反射し、多数
の凹面鏡271から構成される多面鏡27上に導
かれる。各凹面鏡271に導かれたレーザービー
ムは次いで、溶接加工される重畳加工部材の上面
にその焦点を合わされる。また、隣接する凹面鏡
271により調整されたレーザービームの焦点が、
重畳加工部材表面上に円軌跡を描くべく前記多面
鏡27は構成されている。したがつて、ビーム1
4が軸13回りに一回転する間に、平面鏡26に
より反射したビーム14が連続して隣接各凹面鏡
271上に導かれ、ビーム14の焦点が面28上
に次々と間隔をあけて合わせていくので、焦点位
置281上に形成される各スポツト溶接部が統合
し、重畳加工部材間には第8図に示されるような
一つのスポツト溶接部29が形成される。そし
て、このスポツト溶接部29は適度の接合面積を
有するため、両加工部材間の強連結が確保される
のである。
FIG. 4 shows focus adjusting devices 15 1 , 16 1 , 17 1 composed of a plurality of mirrors. In the figure, the laser beam 14 sent from the device 12 to the first plane mirror 26 is reflected by the plane mirror 26 and guided onto a polygon mirror 27 composed of a large number of concave mirrors 27 1 . The laser beam guided by each concave mirror 27 1 is then focused on the upper surface of the superimposed workpiece to be welded. In addition, the focus of the laser beam adjusted by the adjacent concave mirror 27 1 is
The polygon mirror 27 is configured to draw a circular locus on the surface of the superimposed workpiece. Therefore, beam 1
4 makes one revolution around the axis 13, the beam 14 reflected by the plane mirror 26 is successively directed onto each adjacent concave mirror 271 , and the focus of the beam 14 is focused on the plane 28 at successive intervals. As a result, the spot welds formed on the focal position 281 are integrated, and one spot weld 29 as shown in FIG. 8 is formed between the superimposed workpieces. Since this spot weld 29 has a suitable joint area, a strong connection between the two processed parts is ensured.

第4図乃至第6図に示されるような多面鏡27
を使用した方法によると、円軌道走査されるレー
ザービームにより形成されるスポツト溶接部29
は、第9図に示される如く、一連のスポツト溶接
部30が重なり合つた菊花紋状に形成される。し
かし、こうした多面鏡27の代りに、ビームの入
射角に応じてビームを同一平面上に焦点調整でき
るような円環状等の反射面を有する鏡を使用すれ
ば、重畳加工部材に切れ目のない融接連続ライ
ン、例えば連続円ラインを形成することもでき
る。この場合には、累積熱伝導により該円ライン
に沿つて半径方向に融接部が生長するので、レー
ザービームの焦点走査円経路の径とほぼ等しい径
を有する円形面31に沿つて両加工部材が溶接さ
れるようになる。この種の鏡を第11図に例示す
る。鏡32の反射面321はトーリツク凹面に構
成され、軸13回りに回転走査されるレーザー入
射ビームが鏡32により連続的に平面33上に焦
点調整され、その焦点軌道が該平面33上に円ラ
インを描くようになつている。
Polygon mirror 27 as shown in FIGS. 4 to 6
According to the method using a spot weld 29 formed by a laser beam scanned in a circular orbit,
As shown in FIG. 9, a series of spot welds 30 are formed in a chrysanthemum pattern in which they overlap. However, if a mirror having a reflective surface such as an annular shape that can adjust the focus of the beam on the same plane according to the incident angle of the beam is used instead of the polygon mirror 27, it is possible to create a seamless fusion between the superimposed workpieces. It is also possible to form tangent continuous lines, for example continuous circular lines. In this case, the fusion weld grows radially along the circular line due to cumulative heat conduction, so that both workpieces are grown along the circular surface 31 having a diameter approximately equal to the diameter of the focal scanning circular path of the laser beam. will be welded. An example of this type of mirror is shown in FIG. The reflecting surface 32 1 of the mirror 32 is configured as a toric concave surface, and the incident laser beam that is rotated and scanned around the axis 13 is continuously focused on a plane 33 by the mirror 32, and its focal trajectory is circular on the plane 33. It's like drawing a line.

この発明においては、静止式の焦点調整装置と
してレンズを使用することも可能である。これを
第7図に例示する。
In this invention, it is also possible to use a lens as a static focusing device. This is illustrated in FIG.

レンズ34は、移動走査される投射レーザービ
ームを受光する凸面状の上面341と、レーザー
ビームが通過する多面ピラミツド状の下面342
とから成つており、凸面ないしは凹面の下面34
各面を通過するレーザービームが同一平面上に
焦点調整され、しかもその焦点が該平面上に不連
続円ラインを描くように構成されている。勿論、
焦点調整面上に連続円ラインを描かせるようにす
ることも可能であり、この場合には、第12図に
例示する如く、レンズ36を凸面状の上面861
と、通過ビームに円軌道を描かせる、例えば、平
面又は曲面(凸面ないしは凹面)を母面に有する
円錐面からなる下円362とから構成すればよい。
The lens 34 has a convex upper surface 34 1 that receives a moving and scanned projection laser beam, and a polygonal pyramid-shaped lower surface 34 2 through which the laser beam passes.
It consists of a convex or concave lower surface 34.
2. The laser beam passing through each surface is focused on the same plane, and the focus is configured to draw a discontinuous circular line on the plane. Of course,
It is also possible to draw a continuous circular line on the focus adjustment surface, and in this case, as illustrated in FIG .
and a lower circle 36 2 made of a conical surface having a plane or curved surface (convex or concave) as its parent surface, which allows the passing beam to draw a circular orbit.

重畳加工部材にスポツト溶接部ではなく、溶接
ラインを形成したいような場合には、第13図に
示すように、レーザー発生装置から照射されるレ
ーザービーム38を、まず平面鏡37上に移動走
査する。このビーム移動走査は、第2図又は第3
図に示した方法を線形移動走査用に調節したもの
で行なうことができる。平面鏡37上に投射され
たレーザービーム38は反射し、多面鏡39上に
導かれ、そして平面上に焦点調整される。この多
面鏡39は一連の例えば凹面鏡391から構成さ
れ、したがつて、平面鏡39上を移動走査される
レーザービーム38は順次隣接する凹面鏡391
に導かれ、平面上には焦点40により不連続線が
描かれる。
When it is desired to form a weld line instead of a spot weld on the superimposed workpiece, a laser beam 38 emitted from a laser generator is first moved and scanned on a plane mirror 37, as shown in FIG. This beam movement scanning is shown in Fig. 2 or 3.
The method shown can be carried out with an adaptation for linear motion scanning. The laser beam 38 projected onto the plane mirror 37 is reflected, guided onto the polygon mirror 39, and focused onto a plane. This polygonal mirror 39 is composed of a series of concave mirrors 39 1 , for example, so that the laser beam 38 moved and scanned on the plane mirror 39 is sequentially scanned by adjacent concave mirrors 39 1 .
, and a discontinuous line is drawn on the plane by the focal point 40.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこのようの実施例を示すものであつて、
第1図は従来の溶接装置の概略線図、第2図はこ
の発明に使用される装置の側面線図、第3図はレ
ーザービームを回転移動走査する装置の一実施例
を示す斜視線図、第4図は凹面多面鏡を具備する
装置の斜視図、第5図は第4図の凹面多面鏡の正
面図、第6図は第5図の線−に沿つての断面
図、第7図は多面レンズからなる焦点調整装置を
示す側面図、第8図はこの発明により形成された
スポツト溶接部を示す断面図、第9図は同平面
図、第10図は別態様のスポツト溶接部の正面
図、第11図は別態様の焦点調整用鏡の斜視図、
第12図は別態様の焦点調整用レンズの斜視図、
第13図は一連の凹面鏡からなる焦点調整用凹面
多面鏡の斜視図である。 10……レーザービーム発生装置、11……レ
ーザービーム、13……軸、14,18……移動
レーザービーム、15,16,17……平面鏡、
151,161,171……焦点調整装置、34,
36……レンズ。
The drawings show such embodiments,
Fig. 1 is a schematic diagram of a conventional welding device, Fig. 2 is a side view of the device used in the present invention, and Fig. 3 is a perspective view showing an embodiment of a device for rotating and scanning a laser beam. , FIG. 4 is a perspective view of an apparatus equipped with a concave polygon mirror, FIG. 5 is a front view of the concave polygon mirror of FIG. 4, FIG. 6 is a sectional view taken along the line - of FIG. 5, and FIG. The figure is a side view showing a focus adjustment device consisting of a multifaceted lens, FIG. 8 is a sectional view showing a spot weld formed according to the present invention, FIG. 9 is a plan view of the same, and FIG. 10 is a spot weld in another embodiment. , and FIG. 11 is a perspective view of another embodiment of the focusing mirror.
FIG. 12 is a perspective view of another embodiment of the focus adjustment lens;
FIG. 13 is a perspective view of a concave polygon mirror for focusing, which is made up of a series of concave mirrors. 10... Laser beam generator, 11... Laser beam, 13... Axis, 14, 18... Moving laser beam, 15, 16, 17... Plane mirror,
15 1 , 16 1 , 17 1 ... focus adjustment device, 34,
36...Lens.

Claims (1)

【特許請求の範囲】 1 レーザービーム発生装置から放射されるレー
ザービームを、少なくとも一つの装置に導き、該
装置により前記レーザービームの焦点を加工部材
上に整合する方法であつて、前記レーザービーム
発生装置から放射されるレーザービームを移動走
査し、この移動走査されるレーザービームを静止
式焦点調整装置に導き、加工部材上にレーザービ
ームの焦点を整合させると共に、該整合焦点に前
記焦点調整装置に導かれるレーザービームの移動
走査に応じた移動軌跡を加工部材上に描かせるよ
うにしたことを特徴とするレーザービームによる
スポツト溶接方法。 2 特許請求の範囲第1項記載のレーザービーム
によるスポツト溶接方法であつて、レーザービー
ム発生装置から放射されるレーザービームを、そ
の放射軸に対して平行移動走査することを特徴と
する方法。 3 特許請求の範囲第1項又は第2項記載のレー
ザービームによるスポツト溶接方法であつて、レ
ーザービームを回転移動走査することを特徴とす
る方法。 4 特許請求の範囲第1項から第3項のうちいず
れかに記載のレーザービームによるスポツト溶接
方法であつて、レーザービームを一平面内に移動
走査することを特徴とする方法。
[Scope of Claims] 1. A method for guiding a laser beam emitted from a laser beam generating device to at least one device, and aligning the focus of the laser beam on a workpiece by the device, the method comprising: A laser beam emitted from the apparatus is moved and scanned, and the moving and scanned laser beam is guided to a stationary focusing device to align the focus of the laser beam on the workpiece and to direct the laser beam to the focusing device at the aligned focus. A spot welding method using a laser beam, characterized in that a movement trajectory is drawn on a workpiece in accordance with the movement scanning of a guided laser beam. 2. A spot welding method using a laser beam according to claim 1, characterized in that the laser beam emitted from a laser beam generator is scanned in parallel with its radiation axis. 3. A spot welding method using a laser beam according to claim 1 or 2, characterized in that the laser beam is rotated and scanned. 4. A spot welding method using a laser beam according to any one of claims 1 to 3, characterized in that the laser beam is moved and scanned within one plane.
JP59134048A 1983-06-27 1984-06-27 Spot welding method by laser beam Granted JPS6068185A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8310602A FR2547757B1 (en) 1983-06-27 1983-06-27 LASER BEAM POINT WELDING PROCESS AND INSTALLATION
FR8310602 1983-06-27

Publications (2)

Publication Number Publication Date
JPS6068185A JPS6068185A (en) 1985-04-18
JPH0380596B2 true JPH0380596B2 (en) 1991-12-25

Family

ID=9290209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59134048A Granted JPS6068185A (en) 1983-06-27 1984-06-27 Spot welding method by laser beam

Country Status (7)

Country Link
US (1) US4572941A (en)
EP (1) EP0131487B1 (en)
JP (1) JPS6068185A (en)
CA (1) CA1250622A (en)
DE (1) DE3463467D1 (en)
ES (1) ES533626A0 (en)
FR (1) FR2547757B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9506862B2 (en) 2013-03-29 2016-11-29 Toyota Jidosha Kabushiki Kaisha Welded portion inspection apparatus and inspection method thereof
US9517533B2 (en) 2013-03-29 2016-12-13 Toyota Jidosha Kabushiki Kaisha Welded portion inspection apparatus and inspection method thereof, with inspection in different zones of the molten pool
US9527166B2 (en) 2013-04-15 2016-12-27 Toyota Jidosha Kabushiki Kaisha Welding portion inspection device and inspection method therefore, with extracting portion for extracting evaporation luminescence and thermal radiation
US10137530B2 (en) 2014-04-08 2018-11-27 Toyota Jidosha Kabushiki Kaisha Laser weld method and weld structure

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728773A (en) * 1986-12-08 1988-03-01 Ex-Cell-O Corporation Laser processing center
US5200230A (en) * 1987-06-29 1993-04-06 Dunfries Investments Limited Laser coating process
US4777341A (en) * 1987-08-18 1988-10-11 Quantum Laser Corporation Back reflection monitor and method
GB8813315D0 (en) * 1988-06-06 1988-07-13 Serrano J P Beam delivery system
JPH0757427B2 (en) * 1989-12-08 1995-06-21 三菱電機株式会社 Laser cutting machine
EP0483385B1 (en) * 1990-05-23 1997-12-10 Shin Meiwa Industry Co., Ltd. Laser robot and its control method, optical beam deflection apparatus and apparatus for generating its control signal
US5153408A (en) * 1990-10-31 1992-10-06 International Business Machines Corporation Method and structure for repairing electrical lines
JP2762773B2 (en) * 1991-06-19 1998-06-04 住友金属工業株式会社 Al or Al alloy plate and method for producing the same
US5229571A (en) * 1991-07-08 1993-07-20 Armco Steel Co., L.P. High production laser welding assembly and method
US5380250A (en) * 1993-03-01 1995-01-10 Dion; Jean-Paul Frangible joints for frangible band of wires or strip of fasteners
DE4318896C2 (en) * 1993-06-07 1998-10-15 Dieter Prof Dr Roes Device for illuminating an area
US5384953A (en) * 1993-07-21 1995-01-31 International Business Machines Corporation Structure and a method for repairing electrical lines
US5446961A (en) * 1993-10-15 1995-09-05 International Business Machines Corporation Method for repairing semiconductor substrates
JP3060813B2 (en) * 1993-12-28 2000-07-10 トヨタ自動車株式会社 Laser processing equipment
DE19616863C2 (en) * 1995-04-28 1998-08-06 Fraunhofer Ges Forschung Arrangement for coherence reduction and beam homogenization of high-power laser radiation
JP3352361B2 (en) * 1997-07-10 2002-12-03 本田技研工業株式会社 Laser welding method and apparatus
DE10007496C1 (en) * 2000-02-18 2001-04-26 Dreistern Werk Maschinenbau Gmbh & Co Kg Metal profile manufacturing line has profiling machine with rolling tools and welding device with single energy source coupled to at least 2 welding heads
EP1219381A1 (en) * 2000-12-27 2002-07-03 Siemens Aktiengesellschaft Method of laser welding
ITTO20040361A1 (en) * 2004-05-28 2004-08-28 Comau Spa METHOD AND DEVICE FOR REMOTE LASER WELDING USING A ROBOT, WITH SIMPLIFIED CONTROL OF THE FOCUSING DIRECTION OF THE LASER BEAM.
JP2008544859A (en) * 2005-06-29 2008-12-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Laser welding system and method
DE102007038502B4 (en) * 2007-08-14 2013-01-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for joining at least two workpieces by means of a laser beam
JP5196128B2 (en) * 2007-12-19 2013-05-15 マツダ株式会社 Laser welding method
DE102010032958A1 (en) * 2010-07-30 2012-02-02 Messer Cutting & Welding Gmbh Method and device for the thermal processing of a workpiece by means of a laser beam
JP5568026B2 (en) * 2011-01-20 2014-08-06 トヨタ自動車株式会社 Brazing method and brazing structure
CN102176085B (en) * 2011-03-09 2013-07-03 清华大学 Mechanism for achieving large-range movement and scanning of laser beam
JP5902400B2 (en) * 2011-04-26 2016-04-13 トヨタ自動車株式会社 LASER WELDING DEVICE, LASER WELDING METHOD, MANUFACTURING METHOD FOR STEEL SHEET LAMINATE, AND WELDING STRUCTURE BY LASER WELDING LAMINATE
WO2015161081A1 (en) * 2014-04-17 2015-10-22 Baxter International Inc. Laser device for performing an annular circumferential welding on a workpiece using optical reflectors
CN108406112B (en) * 2015-02-09 2021-07-27 通快激光英国有限公司 Laser weld
DE102018202797B4 (en) * 2018-02-23 2022-07-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laser processing head designed for laser wire build-up welding
CN108326425B (en) * 2018-03-20 2021-01-01 北京工业大学 Focal plane rotation laser spot welding method
BE1026484B1 (en) 2018-07-24 2020-02-25 Laser Eng Applications Optical method and device for providing two offset laser beams
US10926355B2 (en) 2019-02-05 2021-02-23 Dukane Ias, Llc Systems and methods for laser-welding tubular components using a single, fixed optical reflector with multiple reflecting surfaces
US11931823B2 (en) 2019-02-05 2024-03-19 Dukane Ias, Llc Systems and methods for laser-welding a workpiece with a laser beam that reaches inaccessible areas of the workpiece using multiple reflecting parts
US11819940B2 (en) 2019-02-05 2023-11-21 Dukane Ias, Llc Systems and methods for laser-welding a workpiece with a laser beam that reaches inaccessible areas of the workpiece using multiple reflecting parts

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848970A (en) * 1973-09-07 1974-11-19 Westinghouse Electric Corp Apparatus for measuring and controlling annulus diameters of images formed by a pincushion lens
JPS5919798B2 (en) * 1974-11-01 1984-05-08 株式会社日立製作所 Laser processing equipment
DE2521530C3 (en) * 1975-05-14 1981-07-30 Winkler & Dünnebier, Maschinenfabrik und Eisengießerei GmbH & Co KG, 5450 Neuwied Device for cutting envelope blanks
JPS5819395B2 (en) * 1975-08-27 1983-04-18 株式会社日立製作所 Laser processing method and device
US4088865A (en) * 1976-01-02 1978-05-09 United Technologies Corporation Laser beam welding apparatus
US4099830A (en) * 1976-12-15 1978-07-11 A. J. Bingley Limited Optical systems including polygonal mirrors rotatable about two axes
JPS53140699A (en) * 1977-05-16 1978-12-07 Hitachi Ltd Laser machining device
JPS54116356A (en) * 1978-03-03 1979-09-10 Hitachi Ltd Welding method by laser
US4370540A (en) * 1979-01-04 1983-01-25 United Technologies Corporation Reflective beam rotator
FR2464658A1 (en) * 1980-06-16 1981-03-20 Philip Morris Inc Filter tip prodn. process - using laser pulses directed around spaced positions around circumference to weaken concn.
JPS5744486A (en) * 1980-09-01 1982-03-12 Hitachi Ltd Laser working device
JPS57181789A (en) * 1981-04-30 1982-11-09 Toshiba Corp Spot welder utilizing laser
JPH0325995A (en) * 1989-06-23 1991-02-04 Mitsubishi Gas Chem Co Inc Manufacture of thin copper foil-plated circuit board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9506862B2 (en) 2013-03-29 2016-11-29 Toyota Jidosha Kabushiki Kaisha Welded portion inspection apparatus and inspection method thereof
US9517533B2 (en) 2013-03-29 2016-12-13 Toyota Jidosha Kabushiki Kaisha Welded portion inspection apparatus and inspection method thereof, with inspection in different zones of the molten pool
US9527166B2 (en) 2013-04-15 2016-12-27 Toyota Jidosha Kabushiki Kaisha Welding portion inspection device and inspection method therefore, with extracting portion for extracting evaporation luminescence and thermal radiation
US10137530B2 (en) 2014-04-08 2018-11-27 Toyota Jidosha Kabushiki Kaisha Laser weld method and weld structure
US11084126B2 (en) 2014-04-08 2021-08-10 Toyota Jidosha Kabushiki Kaisha Laser weld method and weld structure

Also Published As

Publication number Publication date
CA1250622A (en) 1989-02-28
FR2547757A1 (en) 1984-12-28
ES8600100A1 (en) 1985-10-16
JPS6068185A (en) 1985-04-18
US4572941A (en) 1986-02-25
DE3463467D1 (en) 1987-06-11
EP0131487A1 (en) 1985-01-16
EP0131487B1 (en) 1987-05-06
ES533626A0 (en) 1985-10-16
FR2547757B1 (en) 1986-10-17

Similar Documents

Publication Publication Date Title
JPH0380596B2 (en)
EP1228835B1 (en) System and method for remote laser welding
US4539462A (en) Robotic laser beam delivery apparatus
EP0130799B1 (en) Apparatus for laser welding pipes and the like
JPH10111471A (en) Laser optical system and laser welding device
US4710606A (en) Two-axis optic wrist for laser applications
JPH03492A (en) Laser device
JP7076048B2 (en) Beam forming and deflection optical system for laser processing equipment, and processing method of workpiece by laser beam
CN110977159A (en) Laser light path component for forming annular light spots
US4659192A (en) Manipulator with four mirrors
JPH0782154B2 (en) Device for delivering parallel beams such as laser beams
WO2014203489A1 (en) Outer can sealing method and outer can sealing device
JPS59107785A (en) Multijoint arm type robot for laser working
JP2000197982A (en) Laser beam welding method and welding equipment
JP7011557B2 (en) Laser light scanning device and laser processing device
CN210908520U (en) Laser light path component for forming annular light spots
JP3153168B2 (en) Water rod / tab welding method
JP7330843B2 (en) Surface treatment apparatus and surface treatment method
CN208051146U (en) Laser processing device
JP3978108B2 (en) Laser processing equipment
JP2000084685A (en) Laser beam cutting and weld equipment for piping
JPS60218Y2 (en) Laser processing equipment
JPS62197289A (en) Laser beam machining device
JP3479876B2 (en) Laser emission optical system
JP2824170B2 (en) Laser processing equipment for robots