WO2014203489A1 - Outer can sealing method and outer can sealing device - Google Patents

Outer can sealing method and outer can sealing device Download PDF

Info

Publication number
WO2014203489A1
WO2014203489A1 PCT/JP2014/003059 JP2014003059W WO2014203489A1 WO 2014203489 A1 WO2014203489 A1 WO 2014203489A1 JP 2014003059 W JP2014003059 W JP 2014003059W WO 2014203489 A1 WO2014203489 A1 WO 2014203489A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
lid
scanner
laser
annular mirror
Prior art date
Application number
PCT/JP2014/003059
Other languages
French (fr)
Japanese (ja)
Inventor
▲高▼弘 内田
秀寛 島田
Original Assignee
株式会社アマダミヤチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダミヤチ filed Critical 株式会社アマダミヤチ
Publication of WO2014203489A1 publication Critical patent/WO2014203489A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/206Laser sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for sealing an outer can that contains a battery or other electric component, and more particularly, an outer sheath for joining a seam formed on a side surface between a square outer can and a lid by laser seam welding.
  • the present invention relates to a can sealing method and apparatus.
  • a rectangular outer can having a flat rectangular parallelepiped shape is often used.
  • a seam 104 is formed on the side surfaces of the outer can 100 and the lid 102 as shown in FIGS.
  • the outer can 100 contains battery contents (not shown) such as a battery assembly and an electrolytic solution.
  • the corner of the outer can 100 is processed into a curved surface, that is, a rounded corner.
  • FIG. 14 shows a conventional technique for joining the seam 104 formed on the side surface of the outer can 100 and the lid 102 as described above by laser seam welding.
  • an outer can 100 covered with a lid 102 stands vertically on a moving stage 106, and a laser oscillator or a laser beam is emitted beside the outer can 100 so as to irradiate the side joint 104 with the laser beam LB.
  • the unit 108 is fixed horizontally, and the outer can 100 is moved on the moving stage 106 so that the beam spot BS of the laser beam LB goes around the side surface of the outer can 100 and the lid 102 relatively on the joint 104. .
  • the outer can 100 is linearly moved and swung on the moving stage 106 so that the joint 104 makes a round traversing the beam spot BS (fixed focusing position) of the laser beam LB horizontally.
  • the moving stage 106 includes a multi-axis moving mechanism, can move in the horizontal direction (X direction and Y direction), and can also move around the central axis ( ⁇ direction). ing.
  • the outer can 100 is square and the inertia of the moving stage 106 is large, it is very difficult to move the outer can 100 on the moving stage 106 by mixing linear motion and swivel motion. The speed cannot be moved.
  • a jig (not shown) for supporting the outer can 100 in a vertical posture is placed on the moving stage 106, and this jig also moves together with the outer can 100.
  • the beam spot BS of the laser beam LB is formed on the joint 104 (the outer can 100 with the lid 102, hereinafter referred to as “outer can 100 / lid”).
  • the beam spot moving speed when the side surface of the body 102 is relatively moved is divided into a plurality of small sections M 1 to M 10 as shown in FIG. However, independent speed control must be performed for each small section.
  • the workpiece (exterior can 100 / lid 102) is moved from a stationary state to a relatively high first for straight running. accelerate to reach the reference speed V 1.
  • the first reference speed V 1 for straight traveling is set. maintain.
  • the moving speed of the workpiece (the outer can 100 / the lid 102) is lowered (decelerated) from the first reference speed V 1 for straight traveling to the second reference speed V 2 for lower turning.
  • the fourth passing point E located at the starting end of the first short side SS 1 (curved section M 4 ) is for turning.
  • the second reference speed V 2 is maintained.
  • the vehicle travels straight from the second reference speed V 2 for turning to the fifth passing point F (straight section M 5 ) ahead of the fourth passing point E by a certain distance.
  • the first reference speed V 1 for straight traveling is set. maintain.
  • the section (straight section M 10 ) from the ninth passing point J to the passing point K on the second long side LS 2 maintains the first reference speed V 1 for straight traveling, Even after passing, the first reference speed V 1 is maintained from the end of the second long side LS 2 to a passing point (not shown) that is a certain distance ahead. Thereafter, independent speed control is performed for each small section in the same manner as described above, and when the beam spot BS of the laser beam LB returns to the start point A, the workpiece (the outer can 100 / the lid 102) is processed. The movement, that is, the moving operation of the moving stage 106 is stopped. At the same time, the laser oscillator or laser emission unit 108 stops the output of the laser beam LB.
  • the moving stage 106 is moved at a high speed, a low speed, and a high speed. Complicated speed control with deceleration must be performed.
  • the beam spot BS of the laser beam LB is made to make a round on the joint 104 on the side surface of the workpiece (exterior can 100 / lid 102) (that is, from the start to the end of laser seam welding). Even if a high-performance high-speed moving stage is used, a long time of 10 to 15 seconds is required, and there is a problem in the tact surface of exterior can sealing.
  • the present invention solves the problems of the prior art as described above, and greatly shortens the tact time in the outer can sealing process in which the seam formed on the side surface of the outer can and the lid is joined by laser seam welding.
  • an outer can sealing method and an outer can sealing device that make it easy to determine conditions and improve processing accuracy and reproducibility are provided.
  • a seam formed on a side surface between a rectangular outer can that accommodates a battery or other electric component and a lid that closes an opening of the outer can is joined by laser seam welding.
  • An outer can sealing method wherein a scanner is disposed above the outer can that is vertically covered with the lid, and the light incident from the scanner is reflected toward the joint.
  • An annular mirror is inclined and arranged around the lid, and a laser beam for laser seam welding output from a laser oscillation unit is irradiated to the joint through the scanner and the annular mirror, and the beam of the laser beam The scanning operation of the scanner is controlled so that the spot makes a round around the side surface of the outer can and the lid on the seam.
  • the outer can sealing device of the present invention uses laser seam welding to form a seam formed on the side surface between a rectangular outer can that accommodates a battery or other electrical component and a lid that closes the opening of the outer can.
  • An outer can sealing device to be joined wherein a can support that vertically supports the outer can covered with the lid, a laser oscillation unit that generates a laser beam for laser seam welding, and the can support
  • a scanner disposed above the supported outer can and the lid and directing the laser beam from the laser oscillation unit to a reflecting surface provided around the outer can; and the outer can and the lid
  • An annular mirror disposed in an annular shape on the periphery, having the reflection surface, and having the reflection surface directed obliquely upward so that the laser beam incident from the scanner is reflected to the joint; and the laser The laser beam from the vibrating section is irradiated to the joint through the scanner and the annular mirror, and the beam spot of the laser beam goes around the side surface of the outer can and the lid on the joint.
  • the laser beam from the scanner is incident on the annular mirror disposed around the workpiece (exterior can / lid) and is reflected and reflected from the side surface of the workpiece (external can / lid). It is incident on the seam.
  • the workpiece material at the position where the laser beam is incident is instantaneously melted by the energy of the laser beam, and when the laser beam spot is moved to the other side, the melt is solidified to form a nugget.
  • the scanner scans the laser beam so that the incident position (or reflection position) of the laser beam makes one turn in the circumferential direction on the annular mirror, and thereby the work piece (external can / lid)
  • the beam spot of the laser beam makes one turn (one turn) in the rotation direction on the joint of the side surface of the body.
  • the seam of the side surface of the workpiece is joined at each position in the circumferential direction by laser seam welding of optical scanning, and the external can is sealed with a short tact.
  • the optical scanning method makes it easy to determine the conditions for laser seam welding.
  • the scanner includes a first-axis and second-axis galvano scanner for scanning the laser beam in a two-dimensional direction intersecting the optical axis of the laser beam.
  • the scanner includes a condensing lens arranged in front of the galvano scanner, and the focal length of the condensing lens is variable in the circumferential direction so that the laser beam is condensed at each joint in the circumferential direction.
  • a third-axis focusing control unit for controlling the three-dimensional laser scanning. In this case, not only the time or tact time required for laser seam welding is shortened, but also the optical path length variation in the circumferential direction is optically corrected, and the mechanical error of the laser irradiation system is also optically corrected. Can also be done easily. Furthermore, even if the size of the workpiece (outer can / lid) is different, the laser irradiation unit of the same hardware can be used.
  • a non-telecentric f ⁇ lens is disposed between the scanner and the annular mirror.
  • the non-telecentric f ⁇ lens may be used in combination with the third axis focusing control unit, but can be used even when the third axis focusing control unit is not provided. In that case, the distance interval between the reflection point on the annular mirror and the joint is variably adjusted in the circulation direction so that the laser beam is condensed at each position in the circulation direction.
  • a telecentric f ⁇ lens is disposed between the scanner and the annular mirror.
  • This telecentric f ⁇ lens focuses the laser beam incident from the scanner at a position on the optical path that is always parallel to the optical axis of the lens and directed vertically downward with a fixed focal length regardless of the incident position or angle of incidence. Shine. Therefore, in this case, the inclination angle formed with the horizontal line of the annular mirror is uniform in the circumferential direction so that the laser beam is condensed at each position in the circumferential direction, and the reflection point on the annular mirror and the joint are An arrangement configuration of annular mirrors is adopted so that the distance between them is uniform in the circumferential direction.
  • a configuration is adopted in which the annular mirror is divided into a plurality of plate mirrors in the circumferential direction.
  • the inclination angle formed with the horizontal line of the annular mirror is adjusted for each plate mirror.
  • the angle in plan view facing the outer can of the annular mirror and the side surface of the lid is adjusted for each plate mirror.
  • a hollow and bottomed laser light path housing having a circular cross section or a corridor shape is provided in order to shield the optical path of the laser beam from the scanner to the annular mirror from the outside.
  • a protective glass that transmits the laser beam reflected by the annular mirror to the outside may be attached to the inner peripheral wall of the laser beam path housing.
  • the shielding gas is supplied around the joint from above the outer can and the lid inside the laser beam path housing.
  • a partition for maintaining an atmosphere of shielding gas around the outer can and the lid is provided.
  • the outer can sealing method or the outer can sealing device of the present invention in the outer can sealing process in which the seam formed on the side surface of the outer can and the lid is joined by laser seam welding by the above-described configuration and operation. As well as making it easy to determine conditions and improving machining accuracy and reproducibility.
  • FIG. 1 shows the structure of the armored can sealing apparatus in one Embodiment of this invention.
  • FIG. 1 shows the structure of the laser irradiation part in a 1st Example.
  • FIG. 1 shows the structure of the scanner optical system in a 1st Example, and the effect
  • FIG. 1 shows the arrangement
  • FIG. 1 shows a configuration of an outer can sealing device according to an embodiment of the present invention.
  • This outer can sealing device can be applied to, for example, an outer can sealing process for a prismatic lithium ion battery, and a rectangular outer can 100 as shown in FIG. 13 and a lid 102 for closing the opening of the outer can 100.
  • the seam 104 formed on the side surface between the two is joined by laser seam welding.
  • the material of the outer can 100 and the lid 102 as the workpieces may be any metal, but typically both are aluminum or an aluminum alloy.
  • the outer can sealing device includes a laser oscillator 10, a laser power source 12, a laser transmission system 14, a laser irradiation unit 16, a main control unit 18, a scanning control unit 20, a shield gas supply unit 22, a stage 24, and a touch panel 26. .
  • the laser oscillator 10 is, for example, a single mode fiber laser oscillator, and includes an oscillation optical fiber having a core doped with, for example, rare earth element ions as a light emitting element, and pumping light for pumping on one end face of the oscillation optical fiber. And a pair of optical resonator mirrors that resonately amplify and output light of a predetermined wavelength that is emitted in the axial direction from both ends of the oscillation optical fiber.
  • Laser beam LB with a high frequency is output by Q-switched pulse oscillation. Alternatively, a long pulse or continuous wave laser beam LB is also possible.
  • the laser power source 12 supplies an excitation current to the light source (generally a laser diode) of the electro-optic excitation unit of the laser oscillator 10 under the control of the main control unit 18.
  • the light source generally a laser diode
  • the laser beam LB output from the laser oscillator 10 is folded back in a predetermined direction by, for example, a vent mirror 30 in the laser transmission system 14, and then condensed by the condenser lens 34 in the incident unit 32 to be transmitted by the transmission optical fiber 36. It is incident on one end face of.
  • the transmission optical fiber 36 is made of, for example, an SI (step index) type fiber, and transmits the laser beam LB input from one end surface in the incident unit 32 to the laser irradiation unit 16.
  • the laser irradiation unit 16 is disposed with the reflecting surface obliquely upward around the scanner housing 38 connected to the end of the transmission optical fiber 36 and the workpiece (the outer can 100 / the lid 102) on the stage 24.
  • An annular mirror 42 is provided.
  • a scanner optical system 44 (FIGS. 3 and 7), which will be described later, for scanning the laser beam LB received from the transmission optical fiber 36 toward the annular mirror 42 in a two-dimensional direction or a three-dimensional direction. ) Is provided.
  • the annular mirror 42 has a height that faces the seam 104 on the side surface of the workpiece (the outer can 100 / the lid 102) supported by the can support 46 in a posture standing vertically on the moving stage 24, substantially horizontally.
  • the workpiece (the outer can 100 / the lid 102) is arranged in an annular or corridor shape in a loop of a substantially rectangular shape or a substantially elliptic shape in plan view so as to surround the periphery of the workpiece (the outer can 100 / the lid body 102) (FIGS. 10).
  • the configuration and operation of the scanner optical system 44 (FIGS. 3 and 7) and the annular mirror 42 in the scanner housing 38 will be described in detail later.
  • the stage 24 puts a workpiece (exterior can 100 / lid 102) integrally with the can support portion 46, preferably in the horizontal direction (X direction, Y direction), the vertical direction (Z direction) and / or the rotating direction ( It is possible to move in the ⁇ direction).
  • the moving mechanism provided in the stage 24 is mainly used for positioning of the workpiece (exterior can 100 / lid 102), and the workpiece (exterior can 100 / lid) when performing laser seam welding. 102) It is not used as a scanning means for relatively moving the beam spot BS of the laser beam LB. Therefore, the stage 24 does not need to be expensive and can be moved at a high speed, and may be a low-speed and low-priced one.
  • the can support portion 46 has a workpiece (exterior can 100 / lid 102). ) May be a stage that can only be moved up and down or adjusted in height.
  • the shield gas supply unit 22 is connected to the workpiece (exterior can 100 / lid 102) via the gas supply pipe 48.
  • 100 / cover body 102) is supplied with shielding gas.
  • an inert gas such as helium gas or argon gas or nitrogen gas is used.
  • the main control unit 18 includes a CPU (microcomputer), and controls the entire apparatus or each unit according to various programs (software) stored in the memory.
  • the scanner optical of the laser irradiation unit 16 through the scanning control unit 20 is controlled.
  • the operation of the system 44 (FIGS. 3 and 7) is controlled.
  • the main control unit 18 exchanges information (setting values, monitor information, etc.) with the user (workers, maintenance personnel, etc.) via the input unit 26a and the display unit 26b of the touch panel 26.
  • Example 1 relating to laser irradiation unit
  • FIG. 2 shows the configuration of the laser irradiation section 16 in the first embodiment, and particularly shows the configuration of the laser beam path housing 50 and the configuration in which the annular mirror 42 is attached in the laser beam path housing 50, together with the can support section.
  • 46 shows a specific configuration example.
  • 3 and 4 show the configuration of the scanner optical system 44 and the arrangement configuration (layout) of the annular mirror 42 in this embodiment, and the action of laser scanning in this embodiment.
  • the scanner optical system 44 includes a first axis galvano scanner 52 and a second axis galvano scanner 54 for scanning the laser beam LB in a two-dimensional direction intersecting the optical axis of the laser beam LB, and a galvano scanner (52 , 54), and a third-axis focusing controller 58 for variably controlling the focal length of the condensing lens 56.
  • the condensing lens 56 is disposed on the optical path of the laser beam LB. It is configured as a three-dimensional scanner.
  • a collimating lens 60 a collimating lens 60, a movable diverging (concave) lens 62, a condenser lens 56, a first axis galvano scanner 52, and a second axis galvano scanner 54 are provided.
  • the arrangement is as shown in FIG.
  • the collimating lens 60 is disposed near the side wall of the scanner housing 38 with the optical axis being horizontal.
  • the galvanometer mirror 52a of the first axis galvano scanner 52 faces the collimating lens 60 horizontally in an inclined posture of about 45 °.
  • the rotation driving unit of the first axis galvano scanner 52 is housed in a cylindrical galvano casing 52b and connected to the scanning control unit 20 (FIG. 1) via an electric cable 64 (1).
  • the galvano mirror 54a of the second-axis galvano scanner 54 faces vertically downward in an inclined posture of about 45 ° in the vicinity of the exit on the lower surface of the scanner housing 38.
  • the first-axis galvanometer mirror 52a and the second-axis galvanometer mirror 54a are also diagonally opposed to each other at a predetermined intersecting angle.
  • the rotation drive unit of the second axis galvano scanner 54 is housed in the galvano casing 54b and connected to the scanning control unit 20 via the electric cable 64 (2).
  • the focusing control unit 58 includes a condenser lens 56, a diverging (concave) lens 62, and a linear actuator 66 that moves the diverging lens 62 in the optical axis direction.
  • the drive unit of the linear actuator 66 is connected to the scanning control unit 20 via an electric cable 64 (3).
  • the laser beam LB emitted from the end face of the transmission optical fiber 36 with a predetermined divergence angle is converted into parallel light by the collimator lens 60, and the diverging lens 62 and the condenser lens 56 of the focusing control unit 58 are passed through.
  • the light passes through the first axis galvanometer mirror 52a and the second axis galvanometer mirror 54a and sequentially reflects and reflects from the lower surface of the scanner housing 38 through the laser beam path housing 50 (FIG. 2). It is made to enter.
  • a protective glass (not shown) is provided at the exit of the lower surface of the scanner housing 38 to shield the atmosphere from the laser beam path housing 50 side.
  • the parallel laser beam LB from the collimating lens 60 is diverged by a diverging lens 62 at a constant divergence angle, and is then condensed by a condensing lens 56.
  • the diverging lens 62 in the optical axis direction by the linear actuator 66, that is, by changing the relative distance between the diverging lens 62 and the condensing lens 56, the focal length of the condensing lens 56 can be varied. Can be controlled.
  • the laser beam LB incident on the annular mirror 42 through the laser beam path housing 50 (FIG. 2) from the second-axis galvanometer mirror 54a provided at the final stage of the scanner optical system 44 is The light is reflected substantially horizontally toward the workpiece (exterior can 100 / lid 102) at a reflection angle corresponding to the incident angle, and travels straight and enters the joint 104.
  • the workpiece material at the position where the laser beam LB is incident is instantaneously melted by the energy of the laser beam LB, and when the beam spot BS of the laser beam LB moves to another (lateral), the melt is solidified. Nuggets are formed.
  • the joint 104 is joined by laser seam welding at all the sites in the circumferential direction. Sealed.
  • the first axis galvano scanner 52 and the second axis galvano scanner 54 of the scanner optical system 44 perform two-dimensional laser scanning under the control of the main control unit 18 or the scanning control unit 20 (FIG. 1).
  • the position P LB of the laser beam LB incident on the annular mirror 42 that is, the position of reflection
  • P LB makes one turn (one turn) in the circulation direction.
  • the beam spot BS makes one turn (one turn) in the turning direction.
  • the focusing control unit 58 is positioned on the optical axis of the diverging lens 62 (under the control of the main control unit 18 and the scanning control unit 20 (FIG. 1)).
  • the laser beam LB reaches the joint 104 at each position in the circumferential direction as shown in FIGS. 5A and 5B. Condensed.
  • Software for causing the scanner optical system 44 to perform the three-dimensional laser scanning as described above is stored in the memory in the main control unit 18 and / or in the scanning control unit 20. It is stored in the memory and executed by the CPU in the main control unit 18 and / or the CPU in the scanning control unit 20.
  • Condition data and scanning position data are acquired by simulation, calculation, experiment, test, or the like.
  • visible light can be used instead of the laser beam LB.
  • the annular mirror 42 in this embodiment is constituted by a plurality of divided, for example, eight plate mirrors MR 1 to MR 8 .
  • the first plate mirror MR 1 is a straight seam 104 LS extending to the first long side (long side on the left side of the drawing) LS 1 of the workpiece (the outer can 100 / the lid 102). Opposite to 1 .
  • the second plate mirror MR 2 faces the curved joint 104CN 1 extending to the first corner (lower left corner in the figure) CN 1 of the workpiece (the outer can 100 / the lid 102). To do.
  • the third plate mirror MR 3 includes a straight seam 104SS 1 extending to the first short side (the lower short side in the figure) SS 1 of the workpiece (the outer can 100 / the lid 102). opposite.
  • the fourth plate mirror MR 4 includes a curved seam 104CN 2 extending to the second corner (the lower right corner in the figure) CN 2 of the workpiece (the outer can 100 / the lid 102). opposite.
  • the fifth plate mirror MR 5 is the workpiece a second long side (the right side of the long side of the figure) seam 104LS 2 straight lines extending in the LS 2 and opposite (outer can 100 / lid 102) To do.
  • the sixth plate mirror MR 6 faces the curved joint 104CN 3 extending to the third corner (the upper right corner in the figure) CN 3 of the workpiece (the outer can 100 / the lid 102). To do.
  • the plate mirror MR 7 The seventh workpiece (exterior can 100 / lid 102) a second short side of the seam of a straight line that extends SS 2 (short sides of the upper side in FIG.) 104SS 2 Opposite.
  • the eighth plate mirror MR 8 has a curved seam 104CN extending to the fourth corner (upper left corner of the figure) CN 4 of the workpiece (exterior can 100 / lid 102). Opposite to 4 .
  • the inclination angles ⁇ 1 to ⁇ 8 formed with the horizontal lines of the plate mirrors MR 1 to MR 8 may all be uniform in the circumferential direction, but may be set or adjusted individually. From another viewpoint, as shown in FIGS. 5A and 5B, even if there is a difference or error in the inclination angles ⁇ 1 to ⁇ 8 of the plate mirrors MR 1 to MR 8 , the scanner optical system 44 as described above.
  • the laser beam LB reflected by any of the plate mirrors MR 1 to MR 8 can be condensed and incident on the joints 104 LS 1 to 104 CN 4 facing each other.
  • the annular beam 42 having the arrangement shown in FIG. 4 is used to make the beam spot BS of the laser beam LB go around in the circulation direction on the joint 104 on the side surface of the workpiece (the outer can 100 / the lid 102).
  • the laser scanning operation is controlled for each of the plate mirrors MR 1 to MR 8 .
  • the reflection point P LB of the laser beam LB is set on the first plate mirror MR 1. Move. Then, when moving the laser beam spot BS over the seam 104CN 1 of the first corner portion CN 1 moves the reflection point P LB of the laser beam LB on the second plate mirror MR 2.
  • the laser beam irradiation from two plate mirrors facing each other may overlap.
  • the laser beam spot BS in order to move the reflection point P LB of the laser beam LB on the second plate mirror MR 2, even as the laser beam spot BS starts to move from the seam 104LS 1 of the first long side LS 1 Good.
  • the beam spot BS of the laser beam LB needs to make at least one round in the circumferential direction without creating a space on the joint 104 on the side surface of the workpiece (the outer can 100 / the lid 102). Irradiation with the laser beam LB may overlap several times at a certain location.
  • the laser beam LB can make a round on the annular mirror 42 at a scanning speed of 200 mm / sec.
  • the cycle time of exterior can sealing can be shortened to about 1/10 of the prior art.
  • control of condensing and irradiating the laser beam LB to the joint 104 on the side surface of the workpiece is flexible and can be performed by adjusting the two-dimensional or three-dimensional optical scanning of the scanner optical system 44. It can be done accurately. In particular, according to three-dimensional laser scanning, even if the optical path length of the laser beam LB fluctuates in the circulation direction, it can be optically corrected using the focusing control unit 58.
  • the laser irradiation unit 16 of the same hardware may be used even if the size of the long side and / or the short side is different. Can respond.
  • the side seam 104 can be adjusted to the reference height position by using the lifting mechanism of the stage 24.
  • the tact time can be greatly shortened, but also the versatility, reproducibility and quality of exterior can sealing can be improved.
  • annular mirror 42 is provided at a predetermined inclination angle at the bottom of a hollow (hollow) and bottomed laser light path housing 50 extending in a skirt shape from the lower surface of the scanner housing 38 in an annular or corridor-like cross section. It is done.
  • the laser light path housing 50 is made of a light shielding plate material such as an aluminum plate, and shields the laser light path from the scanner optical system 44 to the annular mirror 42 from the outside.
  • the annular mirror 42 is provided with a heat dissipation mechanism that is made of a metal member having a high thermal conductivity, such as copper or aluminum, in the laser beam path housing 50, and has a flow path 71 through which a cooling medium (for example, cooling water) passes. Attached to the mirror support 70.
  • a protective glass 72 is attached to the inner peripheral wall of the laser beam path housing 50 at a height position facing the annular mirror 42.
  • the laser beam LB reflected by the annular mirror 42 passes through the protective glass 72 and enters the seam 104 on the side surface of the workpiece (the outer can 100 / the lid 102).
  • the protective glass 72 is attached in a replaceable or detachable manner because the evaporant generated from the welded portion (the joint 104) is likely to adhere and become dirty. Therefore, the protective glass 72 may be formed of double glass, the inner glass may be fixed and attached to block the atmosphere, and the outer glass may be detachably attached.
  • the can support portion 46 includes a base portion 74 on which a workpiece (exterior can 100 / lid 102) is placed, and the outer can 100 sandwiched from both sides near the joint 104, and the workpiece (exterior can 100 / lid 102). ) In a vertical posture, and a drive unit 82 for moving the movable clamp 78 forward and backward on the guide rail 80. As described above, the can support portion 46 has a function of positioning the workpiece (exterior can 100 / lid 102) and supporting it vertically.
  • the can support part 46 is made of a metal having a high thermoelectric power, such as copper, for the clamps 76 and 78, and the upper end of the clamps 76 and 78 is brought into contact with the vicinity of the joint 104, so The excess heat generated at the seam 104 can be efficiently released without causing any heat.
  • the can support portion 46 has four side wall portions 84 extending vertically upward from the base portion 74 to the vicinity of the lower end surface of the laser beam path housing 50.
  • the side wall 84 extends in a ring shape along the lower end surface of the laser beam path housing 50, and in combination with the laser beam path housing 50, a partition wall 85 is formed around the workpiece (exterior can 100 / lid body 102). Form.
  • a through-hole 83 is formed in the lower portion of the side wall portion 84 for allowing the shield gas to escape to the outside.
  • the shield gas is supplied from the shield gas supply unit 22 to the inside of the partition wall 85 via the gas supply pipe 48, so that the workpiece (the outer can 100 / the lid 102) is made of the shield gas. It is wrapped in an atmosphere and shielded from the atmosphere.
  • the partition wall 85 has a function of maintaining a shield gas atmosphere around the workpiece (the outer can 100 / the lid 102).
  • 6 and 7 show the configurations of the laser irradiation unit 16 and the scanner optical system 44 in the second embodiment.
  • the scanner optical system 44 of this embodiment does not include the third axis focusing control unit 58 (FIG. 3), and performs two-dimensional laser scanning by the first axis galvano scanner 52 and the second axis galvano scanner 54. It is configured as a two-dimensional scanner.
  • a telecentric-f ⁇ lens 86 is optically disposed between the scanner optical system 44 and the annular mirror 42 and near the exit of the scanner housing 38 in terms of hardware.
  • the laser beam path housing 50 extends vertically downward with the atmosphere blocking glass 88 sandwiched between the telecentric-f ⁇ lens 86.
  • the telecentric-f ⁇ lens 86 causes the laser beam LB incident from the scanner optical system 44 to always be directed vertically downward parallel to the optical axis of the lens regardless of the incident position or angle of incidence, on an optical path. It concentrates on the position of.
  • a laser beam LB transmitted through the telecentric-f ⁇ lens 86 and having its optical path directed vertically downward passes through the laser optical path housing 50 and enters the annular mirror 42 from directly above, where it is reflected in the horizontal direction. Then, the light passes through the protective glass 72 and is focused and incident on the joint 104 of the workpiece (the outer can 100 / the lid 102).
  • the arrangement configuration (layout) of the annular mirror 42 is adopted so as to be uniform in the circumferential direction.
  • the laser beam LB is applied to the side surface of the workpiece (the outer can 100 / the lid 102) at each position in the circumferential direction.
  • the seam 104 can be focused and irradiated, and laser seam welding of the seam 104 can be completed within a few seconds as in the first embodiment. [Embodiment 2 regarding laser irradiation section]
  • FIG. 8 shows the configuration of the laser irradiation unit 16 and the scanner optical system 44 in the third embodiment.
  • the scanner optical system 44 in the scanner housing 38 is configured by a two-dimensional scanner similar to the second embodiment, and a non-telecentric f ⁇ lens 90 is provided between the scanner optical system 44 and the annular mirror 42. Deploy.
  • the optical path length from the non-telecentric-f ⁇ lens 90 to the workpiece (exterior can 100 / lid 102) through the annular mirror 42 at the angular position in the circumferential direction is the focal length of the non-telecentric-f ⁇ lens 90.
  • the arrangement configuration (layout) of the annular mirror 42 may be devised so as to substantially match the above.
  • each of the plate mirrors MR 1 to MR 8 constituting the annular mirror 42 is finely divided into a plurality or a plurality of plate piece mirrors mr giving a continuous reflecting surface in the circumferential direction.
  • the inclination angle ⁇ formed with the horizontal line of the annular mirror 42 is set to each plate so that the laser beam LB is focused on the joint 104 on the side surface of the workpiece (exterior can 100 / lid 102) at each position in the circumferential direction.
  • the distance between the reflection point P LB on the annular mirror 42 and the joint 104 may be set or adjusted for each individual plate mirror mr.
  • non-telecentric- is provided between the three-dimensional scanner optical system 44 and the annular mirror 42 (in the vicinity of the exit of the scanner housing 38 in terms of hardware).
  • An f ⁇ lens 90 can be disposed. Even in that case, the focusing position on the optical axis of the laser beam LB is variably controlled by the focusing control unit 58.
  • the focusing control unit 58 can be modified in various ways.
  • the focusing control unit 58 of the first embodiment is a Galileo type that uses a diverging (concave) lens 62 for the first stage lens, but a Kepler type that uses a converging (convex) lens for the first stage lens is also possible.
  • a beam expander can be used as the focusing control unit 58.
  • the beam spot BS of the laser beam LB only needs to make at least one round in the circulation direction without creating a space on the joint 104 on the side surface of the workpiece (the outer can 100 / the lid 102). Therefore, irradiation with the laser beam LB may overlap a plurality of times at a certain location on the joint 104. Therefore, for example, as shown in FIG. 10, it is possible to adopt a configuration in which the reflecting surface of the annular mirror 42 extends continuously and endlessly in the circumferential direction.
  • the incident point (or reflection point) P LB of the laser beam LB is made to make a round on the endless reflection surface of the annular mirror 42, the irradiation of the laser beam LB to the joint 104 is not interrupted, and the laser beam LB
  • the beam spot BS goes around the side surface of the workpiece (the outer can 100 / the lid 102).
  • a mechanism for adjusting the separation distance and / or height position of the annular mirror 42 from the workpiece As shown in FIG. 12, it is possible to provide a mechanism for variably adjusting the inclination angle ⁇ formed with the horizontal line of the annular mirror 42.
  • a partition structure of the laser beam path housing 50 surrounding the periphery and the upper part of the joint 104 on the side surface of the workpiece can be used. More specifically, as shown in FIG. 8, a nozzle 92 that ejects a shielding gas vertically downward can be provided inside the laser beam path housing 50.
  • the illustrated nozzle 92 is configured, for example, as a planar nozzle having a slit-like outlet 94 having a slightly larger outline than the joint 104 in plan view, and sprays a shielding gas so as to flow vertically below the joint 104.
  • the shielding effect of the shielding gas can be enhanced, and the evaporated material generated from the welded portion (seam 104) can be dropped to the bottom of the partition wall 85 without being scattered in the lateral direction (the protective glass 72 side). Thereby, the stain
  • the laser oscillator 10 is not limited to a single mode fiber laser oscillator, and may be another type of fiber laser oscillator, YAG laser oscillator, or the like.
  • the laser transmission system 14 may be configured such that the transmission optical fiber 36 is omitted.
  • the present invention is not limited to the outer can sealing process of the prismatic lithium ion battery as in the above embodiment, and any prismatic battery or a prismatic cell other than the battery in which a seam is formed on the side surface.
  • the present invention can be applied to exterior can sealing processing (for example, a rectangular lithium ion capacitor).

Abstract

[Problem] To achieve significant shortening of tact while facilitating condition-setting and improving processing precision and reproducibility in outer can sealing in which the joint formed on the side surface of the outer can and lid is welded by laser seam welding. [Solution] The outer can sealing device comprises: a scanner (38), which is disposed above an outer can (100) and a lid (102) that are supported by a can support (46) on a moving stage (24); a ring-shaped mirror (42) disposed around the outer can (100) and the lid (102) with the reflecting surface aimed diagonally upward; and a control unit for irradiating a laser beam (LB) from a laser oscillation unit onto the joint (104) via the scanner (38) and the ring-shaped mirror (42) and controlling the scanning motion of the scanner (38) so that the beam spot of the laser beam (LB) circles the side surface of the outer can (100) and the lid (102) on the joint (104).

Description

外装缶封口方法及び外装缶封口装置Exterior can sealing method and exterior can sealing device
 本発明は、電池または他の電気部品を収容する外装缶を封口する技術に係り、特に角型の外装缶と蓋体との間の側面に形成される継目をレーザシーム溶接により接合するための外装缶封口方法および装置に関する。 The present invention relates to a technique for sealing an outer can that contains a battery or other electric component, and more particularly, an outer sheath for joining a seam formed on a side surface between a square outer can and a lid by laser seam welding. The present invention relates to a can sealing method and apparatus.
 たとえば、リチウムイオン電池では、扁平な直方体形状を有する角型の外装缶が多く用いられている。角型の外装缶を封口するには、外装缶とその開口を閉塞する蓋体との間に形成される継目を接合する必要がある。この場合、図13の(a),(b)に示すように、外装缶100および蓋体102の側面に継目104が形成されるタイプがある。なお、外装缶100の中には、電池組立体や電界液等の電池内容物(図示せず)が収容されている。また、一般に、外装缶100の角部は湾曲面つまり角丸に加工されている。 For example, in a lithium ion battery, a rectangular outer can having a flat rectangular parallelepiped shape is often used. In order to seal a rectangular outer can, it is necessary to join a seam formed between the outer can and a lid that closes the opening. In this case, there is a type in which a seam 104 is formed on the side surfaces of the outer can 100 and the lid 102 as shown in FIGS. The outer can 100 contains battery contents (not shown) such as a battery assembly and an electrolytic solution. In general, the corner of the outer can 100 is processed into a curved surface, that is, a rounded corner.
 図14に、上記のように外装缶100および蓋体102の側面に形成される継目104をレーザシーム溶接により接合するための従来技術を示す。この従来技術は、蓋体102を被せた外装缶100を移動ステージ106の上に垂直に立てて、側面の継目104にレーザビームLBを照射するように外装缶100の横にレーザ発振器またはレーザ出射ユニット108を水平に固定し、レーザビームLBのビームスポットBSが継目104の上で外装缶100および蓋体102の側面を相対的に一周するように、移動ステージ106上で外装缶100を移動させる。この場合、理論的には、継目104がレーザビームLBのビームスポットBS(固定の集光位置)を水平に横切って一回りするように、移動ステージ106上で外装缶100に直線運動と旋回運動を行わせればよい。このために、移動ステージ106は、多軸の移動機構を備えており、水平方向(X方向およびY方向)に移動可能であり、さらには中心軸の回り(θ方向)にも移動可能となっている。 FIG. 14 shows a conventional technique for joining the seam 104 formed on the side surface of the outer can 100 and the lid 102 as described above by laser seam welding. In this prior art, an outer can 100 covered with a lid 102 stands vertically on a moving stage 106, and a laser oscillator or a laser beam is emitted beside the outer can 100 so as to irradiate the side joint 104 with the laser beam LB. The unit 108 is fixed horizontally, and the outer can 100 is moved on the moving stage 106 so that the beam spot BS of the laser beam LB goes around the side surface of the outer can 100 and the lid 102 relatively on the joint 104. . In this case, theoretically, the outer can 100 is linearly moved and swung on the moving stage 106 so that the joint 104 makes a round traversing the beam spot BS (fixed focusing position) of the laser beam LB horizontally. You just have to do. For this reason, the moving stage 106 includes a multi-axis moving mechanism, can move in the horizontal direction (X direction and Y direction), and can also move around the central axis (θ direction). ing.
特開平11-77347号公報Japanese Patent Laid-Open No. 11-77347
 しかしながら、外装缶100が角型であることと、移動ステージ106の慣性が大きいために、移動ステージ106上で外装缶100を直線運動と旋回運動を織り混ぜて移動させることは非常に難しく、高速度の移動ができない。なお、移動ステージ106上には、外装缶100を垂直な姿勢に支持するための治具(図示せず)が載っており、この治具も外装缶100と一緒に移動する。 However, because the outer can 100 is square and the inertia of the moving stage 106 is large, it is very difficult to move the outer can 100 on the moving stage 106 by mixing linear motion and swivel motion. The speed cannot be moved. Note that a jig (not shown) for supporting the outer can 100 in a vertical posture is placed on the moving stage 106, and this jig also moves together with the outer can 100.
 上記従来技術によれば、たとえば図15に示すように第1の長辺LS1の中間に設定された開始点Aから第1の短辺SS1を経由して第2(反対側)の長辺LS2の中間の通過点Kに至る半周のレーザシーム溶接において、レーザビームLBのビームスポットBSが継目104の上で被加工物(蓋体102付きの外装缶100、以下「外装缶100/蓋体102」と表記する。)の側面を相対的に移動するときのビームスポット移動速度についてみると、図16に示すようにA~Kの半周区間を多数の小区間M1~M10に分割し、各々の小区間毎に独立した速度制御を行わなければならない。 According to the above prior art, for example, as shown in FIG. 15, the second (opposite) long side from the starting point A set in the middle of the first long side LS 1 via the first short side SS 1. In laser seam welding of a half circumference reaching the intermediate passing point K of the side LS 2 , the beam spot BS of the laser beam LB is formed on the joint 104 (the outer can 100 with the lid 102, hereinafter referred to as “outer can 100 / lid”). The beam spot moving speed when the side surface of the body 102 is relatively moved is divided into a plurality of small sections M 1 to M 10 as shown in FIG. However, independent speed control must be performed for each small section.
 すなわち、スタート点Aより一定距離だけ前方の第1の通過点Bまで(直線区間M1)は、被加工物(外装缶100/蓋体102)を静止状態から直進用の比較的高い第1基準速度V1に達するまで加速する。そして、上記第1の通過点Bより第1の長辺LS1の終端から一定距離だけ手前の第2の通過点Cまで(直線区間M2)は、直進用の第1基準速度V1を維持する。そして、上記第2の通過点Cより第1の長辺LS1の終端つまり第1の角部(角丸)CN1の始端に位置する第3の通過点Dまで(直線区間M3)は、被加工物(外装缶100/蓋体102)の移動速度を直進用の第1基準速度V1から旋回用の低い第2基準速度V2まで落とす(減速する)。 That is, from the start point A to the first passing point B forward by a certain distance (straight section M 1 ), the workpiece (exterior can 100 / lid 102) is moved from a stationary state to a relatively high first for straight running. accelerate to reach the reference speed V 1. From the end point of the first long side LS 1 to the second passing point C just before a certain distance from the first passing point B (straight section M 2 ), the first reference speed V 1 for straight traveling is set. maintain. From the second passing point C to the end of the first long side LS 1 , that is, the third passing point D located at the starting end of the first corner (rounded corner) CN 1 (straight section M 3 ) Then, the moving speed of the workpiece (the outer can 100 / the lid 102) is lowered (decelerated) from the first reference speed V 1 for straight traveling to the second reference speed V 2 for lower turning.
 次に、上記第3の通過点Dより第1の角丸CN1の終端つまり第1の短辺SS1の始端に位置する第4の通過点Eまで(湾曲区間M4)は、旋回用の第2基準速度V2を維持する。そして、第1の短辺SS1上で上記第4の通過点Eより一定距離だけ前方の第5の通過点Fまで(直線区間M5)は、旋回用の第2基準速度V2から直進用の第1基準速度V1に加速する。そして、上記第5の通過点Fより第1の短辺SS1の終端から一定距離だけ手前の第6の通過点Gまで(直線区間M6)は、直進用の第1基準速度V1を維持する。そして、上記第6の通過点Gより第1の短辺SS1の終端つまり第2の角部CN2の始端に位置する第7の通過点Hまで(直線区間M7)は、再び第1基準速度V1から旋回用の第2基準速度V2まで減速する。 Next, from the third passing point D to the end of the first rounded corner CN 1 , that is, the fourth passing point E located at the starting end of the first short side SS 1 (curved section M 4 ) is for turning. The second reference speed V 2 is maintained. Then, on the first short side SS 1 , the vehicle travels straight from the second reference speed V 2 for turning to the fifth passing point F (straight section M 5 ) ahead of the fourth passing point E by a certain distance. To a first reference speed V 1 for use. Then, from the fifth passing point F to the sixth passing point G that is a certain distance before the end of the first short side SS 1 (straight section M 6 ), the first reference speed V 1 for straight traveling is set. maintain. Then, from the sixth passing point G to the end of the first short side SS 1 , that is, the seventh passing point H located at the starting end of the second corner portion CN 2 (straight section M 7 ), the first pass again. Decelerate from the reference speed V 1 to the second reference speed V 2 for turning.
 次に、上記第7の通過点Hより第2の角部CN2の終端つまり第2の長辺LS2の始端に位置する第8の通過点Iまで(湾曲区間M8)は、旋回用の第2基準速度V2を維持する。そして、第2の長辺LS2上で上記第8の通過点Iより一定距離だけ前方の第9の通過点Jまで(直線区間M9)は、再び第2基準速度V2から直進用の第1基準速度V1に加速する。そして、第2の長辺LS2上で上記第9の通過点Jより通過点Kまでの区間(直線区間M10)は、直進用の第1基準速度V1を維持し、通過点Kを通過した後も第2の長辺LS2の終端から一定距離だけ手前の通過点(図示せず)まで第1基準速度V1を維持する。その後も、上記と同様にして各々の小区間毎に独立した速度制御を行い、レーザビームLBのビームスポットBSがスタート点Aに戻ったところで、被加工物(外装缶100/蓋体102)の移動つまり移動ステージ106の移動動作を停止する。これと同時に、レーザ発振器またはレーザ出射ユニット108においてレーザビームLBの出力を停止する。 Next, from the seventh passing point H to the end of the second corner CN 2 , that is, the eighth passing point I located at the starting end of the second long side LS 2 (curving section M 8 ) The second reference speed V 2 is maintained. Then, on the second long side LS 2 , the vehicle travels straight from the second reference speed V 2 to the ninth passing point J (straight section M 9 ) ahead of the eighth passing point I by a certain distance. Accelerate to the first reference speed V 1 . The section (straight section M 10 ) from the ninth passing point J to the passing point K on the second long side LS 2 maintains the first reference speed V 1 for straight traveling, Even after passing, the first reference speed V 1 is maintained from the end of the second long side LS 2 to a passing point (not shown) that is a certain distance ahead. Thereafter, independent speed control is performed for each small section in the same manner as described above, and when the beam spot BS of the laser beam LB returns to the start point A, the workpiece (the outer can 100 / the lid 102) is processed. The movement, that is, the moving operation of the moving stage 106 is stopped. At the same time, the laser oscillator or laser emission unit 108 stops the output of the laser beam LB.
 上記のように、被加工物(外装缶100/蓋体102)の側面の継目104の上でレーザビームLBのビームスポットBSを一周させるために、移動ステージ106上では高速移動、低速移動および加減速を織り混ぜた複雑な速度制御を行わなければならない。さらに、角部(CN1,CN2,・・)で継目104をシーム溶接する時は、移動ステージ106において3軸(X軸、Y軸、θ軸)の移動機構を同時に制御して、レーザビームLBのビームスポットBSを継目104から離さずかつ逸らさずに被加工物(外装缶100/蓋体102)を直角に旋回移動させなければならず、この旋回移動の制御は極度に難しい。このため、レーザシーム溶接の条件出しが非常に難しい。 As described above, in order to make the beam spot BS of the laser beam LB go around the joint 104 on the side surface of the workpiece (the outer can 100 / the lid 102), the moving stage 106 is moved at a high speed, a low speed, and a high speed. Complicated speed control with deceleration must be performed. Further, when the seam 104 is seam-welded at the corners (CN 1 , CN 2 ,...), The moving mechanism of the three axes (X axis, Y axis, θ axis) is simultaneously controlled by the moving stage 106 so that the laser The workpiece (exterior can 100 / lid 102) must be swung at right angles without leaving and deflecting the beam spot BS of the beam LB, and control of this swiveling movement is extremely difficult. For this reason, it is very difficult to determine the conditions for laser seam welding.
 こうしたことから、上記従来技術においては、被加工物(外装缶100/蓋体102)の側面の継目104の上でレーザビームLBのビームスポットBSを一周させるのに(つまりレーザシーム溶接の開始から終了までに)、高性能の高速移動ステージを用いても10~15秒の長時間を要しており、外装缶封口加工のタクト面でも課題があった。 For this reason, in the above-described prior art, the beam spot BS of the laser beam LB is made to make a round on the joint 104 on the side surface of the workpiece (exterior can 100 / lid 102) (that is, from the start to the end of laser seam welding). Even if a high-performance high-speed moving stage is used, a long time of 10 to 15 seconds is required, and there is a problem in the tact surface of exterior can sealing.
 本発明は、上記のような従来技術の問題点を解決するものであり、外装缶および蓋体の側面に形成される継目をレーザシーム溶接により接合する外装缶封口加工において、タクトの大幅な短縮化を実現するとともに、条件出しを容易にし、加工精度および再現性を向上させる外装缶封口方法および外装缶封口装置を提供する。 The present invention solves the problems of the prior art as described above, and greatly shortens the tact time in the outer can sealing process in which the seam formed on the side surface of the outer can and the lid is joined by laser seam welding. In addition, an outer can sealing method and an outer can sealing device that make it easy to determine conditions and improve processing accuracy and reproducibility are provided.
 本発明の外装缶封口方法は、電池または他の電気部品を収容する角型の外装缶と前記外装缶の開口を閉塞する蓋体との間の側面に形成される継目をレーザシーム溶接により接合する外装缶封口方法であって、前記蓋体を被せて垂直に立てた前記外装缶の上方にスキャナを配置するとともに、前記スキャナから入射した光線が前記継目へ向かって反射するように、前記外装缶および前記蓋体の周囲に環状ミラーを傾けて配置し、レーザ発振部より出力されたレーザシーム溶接用のレーザビームを前記スキャナおよび前記環状ミラーを介して前記継目に照射し、かつ前記レーザビームのビームスポットが前記継目の上で前記外装缶および前記蓋体の側面を一周するように、前記スキャナのスキャニング動作を制御する。 In the outer can sealing method of the present invention, a seam formed on a side surface between a rectangular outer can that accommodates a battery or other electric component and a lid that closes an opening of the outer can is joined by laser seam welding. An outer can sealing method, wherein a scanner is disposed above the outer can that is vertically covered with the lid, and the light incident from the scanner is reflected toward the joint. An annular mirror is inclined and arranged around the lid, and a laser beam for laser seam welding output from a laser oscillation unit is irradiated to the joint through the scanner and the annular mirror, and the beam of the laser beam The scanning operation of the scanner is controlled so that the spot makes a round around the side surface of the outer can and the lid on the seam.
 また、本発明の外装缶封口装置は、電池または他の電気部品を収容する角型の外装缶と前記外装缶の開口を閉塞する蓋体との間の側面に形成される継目をレーザシーム溶接により接合する外装缶封口装置であって、前記蓋体を被せた前記外装缶を垂直に立てて支持する缶支持部と、レーザシーム溶接用のレーザビームを生成するレーザ発振部と、前記缶支持部に支持されている前記外装缶および前記蓋体の上方に配置され、前記レーザ発振部からの前記レーザビームを前記外装缶の周囲に設けられる反射面に向けるスキャナと、前記外装缶および前記蓋体の周囲に環状に配置され、前記反射面を有し、前記スキャナから入射する前記レーザビームが前記継目へ反射するように、前記反射面を斜め上方に向けている環状ミラーと、前記レーザ発振部からの前記レーザビームを前記スキャナおよび前記環状ミラーを介して前記継目に照射し、かつ前記レーザビームのビームスポットが前記継目の上で前記外装缶および前記蓋体の側面を一周するように、前記スキャナのスキャニング動作を制御する制御部とを有する。 In addition, the outer can sealing device of the present invention uses laser seam welding to form a seam formed on the side surface between a rectangular outer can that accommodates a battery or other electrical component and a lid that closes the opening of the outer can. An outer can sealing device to be joined, wherein a can support that vertically supports the outer can covered with the lid, a laser oscillation unit that generates a laser beam for laser seam welding, and the can support A scanner disposed above the supported outer can and the lid and directing the laser beam from the laser oscillation unit to a reflecting surface provided around the outer can; and the outer can and the lid An annular mirror disposed in an annular shape on the periphery, having the reflection surface, and having the reflection surface directed obliquely upward so that the laser beam incident from the scanner is reflected to the joint; and the laser The laser beam from the vibrating section is irradiated to the joint through the scanner and the annular mirror, and the beam spot of the laser beam goes around the side surface of the outer can and the lid on the joint. And a control unit for controlling the scanning operation of the scanner.
 本発明においては、スキャナからのレーザビームが被溶接物(外装缶/蓋体)の周囲に配置されている環状ミラーに入射し、そこで反射して被溶接物(外装缶/蓋体)の側面の継目に入射する。継目上では、レーザビームが入射した位置の被加工物材料がレーザビームのエネルギーにより瞬時に溶融し、レーザビームのビームスポットが他(横)に移ると、溶融物が凝固してナゲットが形成される。制御部の制御の下で、スキャナが、環状ミラー上でレーザビームの入射位置(または反射位置)が周回方向に一周するように、レーザビームをスキャニングすることにより、被溶接物(外装缶/蓋体)の側面の継目上でレーザビームのビームスポットが周回方向で一回り(一周)する。こうして、被溶接物(外装缶/蓋体)の側面の継目が光学的スキャニングのレーザシーム溶接により周回方向の各位置で接合され、外装缶は短いタクトで封口される。光学的スキャニング方式なので、レーザシーム溶接の条件出しも簡単に行える。 In the present invention, the laser beam from the scanner is incident on the annular mirror disposed around the workpiece (exterior can / lid) and is reflected and reflected from the side surface of the workpiece (external can / lid). It is incident on the seam. On the seam, the workpiece material at the position where the laser beam is incident is instantaneously melted by the energy of the laser beam, and when the laser beam spot is moved to the other side, the melt is solidified to form a nugget. The Under the control of the control unit, the scanner scans the laser beam so that the incident position (or reflection position) of the laser beam makes one turn in the circumferential direction on the annular mirror, and thereby the work piece (external can / lid) The beam spot of the laser beam makes one turn (one turn) in the rotation direction on the joint of the side surface of the body. In this way, the seam of the side surface of the workpiece (exterior can / lid) is joined at each position in the circumferential direction by laser seam welding of optical scanning, and the external can is sealed with a short tact. The optical scanning method makes it easy to determine the conditions for laser seam welding.
 本発明の好適な一態様においては、スキャナが、レーザビームの光軸と交差する2次元方向にレーザビームをそれぞれスキャニングするための第1軸および第2軸のガルバノスキャナを有する。これによって、2次元のレーザスキャニングを高速かつ精細に行うことができる。 In a preferred aspect of the present invention, the scanner includes a first-axis and second-axis galvano scanner for scanning the laser beam in a two-dimensional direction intersecting the optical axis of the laser beam. As a result, two-dimensional laser scanning can be performed at high speed and with high precision.
 さらに好ましくは、スキャナは、ガルバノスキャナよりも前段に配置される集光レンズを含み、周回方向の各位置でレーザビームが継目に集光するように、集光レンズの焦点距離を周回方向で可変に制御する第3軸のフォーカシング制御部を有し、3次元のレーザスキャニングを行う。この場合は、レーザシーム溶接の所要時間またはタクトを短縮化するだけでなく、周回方向におけるレーザ光路長の変動を光学的に補正することや、レーザ照射系の機械的誤差も光学的に補正することも容易に行える。さらには、被加工物(外装缶/蓋体)のサイズが違っても、同じハードウェアのレーザ照射部で対応することができる。 More preferably, the scanner includes a condensing lens arranged in front of the galvano scanner, and the focal length of the condensing lens is variable in the circumferential direction so that the laser beam is condensed at each joint in the circumferential direction. A third-axis focusing control unit for controlling the three-dimensional laser scanning. In this case, not only the time or tact time required for laser seam welding is shortened, but also the optical path length variation in the circumferential direction is optically corrected, and the mechanical error of the laser irradiation system is also optically corrected. Can also be done easily. Furthermore, even if the size of the workpiece (outer can / lid) is different, the laser irradiation unit of the same hardware can be used.
 本発明の別の好適な一態様においては、スキャナと環状ミラーとの間に非テレセントリックのfθレンズが配置される。この非テレセントリックのfθレンズは、第3軸のフォーカシング制御部と併用されてもよいが、第3軸のフォーカシング制御部を備えない場合でも使える。その場合は、周回方向の各位置でレーザビームが継目に集光するように、環状ミラー上の反射点と継目との間の距離間隔が周回方向で可変に調整される。 In another preferred embodiment of the present invention, a non-telecentric fθ lens is disposed between the scanner and the annular mirror. The non-telecentric fθ lens may be used in combination with the third axis focusing control unit, but can be used even when the third axis focusing control unit is not provided. In that case, the distance interval between the reflection point on the annular mirror and the joint is variably adjusted in the circulation direction so that the laser beam is condensed at each position in the circulation direction.
 また、別の好適な一態様においては、スキャナと環状ミラーとの間にテレセントリックのfθレンズが配置される。このテレセントリックのfθレンズは、スキャナより入射するレーザビームを、その入射位置または入射角に関係なく常にレンズの光軸と平行に垂直下方に向けて一定の焦点距離を隔てた光路上の位置に集光する。したがって、この場合は、周回方向の各位置でレーザビームが継目に集光するように、環状ミラーの水平線となす傾斜角度が周回方向で一定に揃い、かつ環状ミラー上の反射点と継目との間の距離間隔が周回方向で一定に揃うように、環状ミラーの配置構成が採られる。 In another preferred embodiment, a telecentric fθ lens is disposed between the scanner and the annular mirror. This telecentric fθ lens focuses the laser beam incident from the scanner at a position on the optical path that is always parallel to the optical axis of the lens and directed vertically downward with a fixed focal length regardless of the incident position or angle of incidence. Shine. Therefore, in this case, the inclination angle formed with the horizontal line of the annular mirror is uniform in the circumferential direction so that the laser beam is condensed at each position in the circumferential direction, and the reflection point on the annular mirror and the joint are An arrangement configuration of annular mirrors is adopted so that the distance between them is uniform in the circumferential direction.
 別の好適な一態様においては、環状ミラーが周回方向で複数個の板ミラーに分割される構成が採られる。この場合は、環状ミラーの水平線となす傾斜角度が、個々の板ミラー毎に調整される。また、環状ミラーの外装缶および蓋体の側面と向き合う平面視上の角度が、個々の板ミラー毎に調整される。 In another preferred embodiment, a configuration is adopted in which the annular mirror is divided into a plurality of plate mirrors in the circumferential direction. In this case, the inclination angle formed with the horizontal line of the annular mirror is adjusted for each plate mirror. Also, the angle in plan view facing the outer can of the annular mirror and the side surface of the lid is adjusted for each plate mirror.
 別の好適な一態様においては、スキャナから環状ミラーまでのレーザビームの光路を外部から遮光するために、横断面が環状または回廊状に形成された空洞かつ有底のレーザ光路筺体が備えられる。この場合、レーザ光路筺体の内周壁には、環状ミラーで反射したレーザビームを外部へ透過させる保護ガラスが取り付けられてよい。 In another preferred embodiment, a hollow and bottomed laser light path housing having a circular cross section or a corridor shape is provided in order to shield the optical path of the laser beam from the scanner to the annular mirror from the outside. In this case, a protective glass that transmits the laser beam reflected by the annular mirror to the outside may be attached to the inner peripheral wall of the laser beam path housing.
 別の好適な一態様においては、レーザ光路筺体の内側で外装缶および蓋体の上方から継目の周囲にシールドガスが供給される。好ましくは、外装缶および蓋体の周囲でシールドガスの雰囲気を保つための隔壁が設けられる。 In another preferred embodiment, the shielding gas is supplied around the joint from above the outer can and the lid inside the laser beam path housing. Preferably, a partition for maintaining an atmosphere of shielding gas around the outer can and the lid is provided.
 本発明の外装缶封口方法または外装缶封口装置によれば、上記のような構成および作用により、外装缶および蓋体の側面に形成される継目をレーザシーム溶接により接合する外装缶封口加工において、タクトの大幅な短縮化を実現するとともに、条件出しを容易にし、加工精度および再現性を向上させることができる。 According to the outer can sealing method or the outer can sealing device of the present invention, in the outer can sealing process in which the seam formed on the side surface of the outer can and the lid is joined by laser seam welding by the above-described configuration and operation. As well as making it easy to determine conditions and improving machining accuracy and reproducibility.
本発明の一実施形態における外装缶封口装置の構成を示す図である。It is a figure which shows the structure of the armored can sealing apparatus in one Embodiment of this invention. 第1の実施例におけるレーザ照射部の構成を示す断面図である。It is sectional drawing which shows the structure of the laser irradiation part in a 1st Example. 第1の実施例におけるスキャナ光学系の構成とレーザスキャニングの作用を示す斜視図である。It is a perspective view which shows the structure of the scanner optical system in a 1st Example, and the effect | action of a laser scanning. 第1の実施例における環状ミラーの配置構成(レイアウト)とレーザスキャニングの作用を示す平面図である。It is a top view which shows the arrangement | positioning structure (layout) of the annular mirror in 1st Example, and the effect | action of a laser scanning. 環状ミラーを分割式の板ミラーで構成する場合の一作用を示す側面図である。It is a side view which shows one effect | action at the time of comprising an annular mirror with a division | segmentation type plate mirror. 環状ミラーを分割式の板ミラーで構成する場合の一作用を示す側面図である。It is a side view which shows one effect | action at the time of comprising an annular mirror with a division | segmentation type plate mirror. 第2の実施例におけるレーザ照射部の構成を示す断面図である。It is sectional drawing which shows the structure of the laser irradiation part in a 2nd Example. 第2の実施例におけるスキャナ光学系の構成とレーザスキャニングの作用を示す斜視図である。It is a perspective view which shows the structure of the scanner optical system in a 2nd Example, and the effect | action of a laser scanning. 第3の実施例におけるレーザ照射部の構成を示す断面図である。It is sectional drawing which shows the structure of the laser irradiation part in a 3rd Example. 第3の実施例における環状ミラーの配置構成を示す平面図である。It is a top view which shows the arrangement configuration of the annular mirror in a 3rd Example. 一変形例における環状ミラーの配置構成を示す平面図である。It is a top view which shows the arrangement configuration of the annular mirror in one modification. 一実施例における環状ミラーの位置調整機構を示す略断面図である。It is a schematic sectional drawing which shows the position adjustment mechanism of the annular mirror in one Example. 一実施例における環状ミラーの傾斜角度調整機構を示す略断面図である。It is a schematic sectional drawing which shows the inclination angle adjustment mechanism of the annular mirror in one Example. 角型の外装缶および蓋体の側面の継目をレーザシーム溶接により接合するための従来技術を示す図である。It is a figure which shows the prior art for joining the joint of the side surface of a square-shaped exterior can and a cover body by laser seam welding. 側面に継目を有する角型の外装缶および蓋体の構成を示す図である。It is a figure which shows the structure of the square-shaped exterior can and lid which have a seam in the side surface. 上記従来技術におけるレーザシーム溶接の作用を説明するための斜視図である。It is a perspective view for demonstrating the effect | action of the laser seam welding in the said prior art. 図15のレーザシーム溶接においてレーザビームの相対移動速度が継目上で変化する特性を示す図である。It is a figure which shows the characteristic in which the relative moving speed of a laser beam changes on a joint in the laser seam welding of FIG.
 以下、図1~図13を参照して本発明の実施形態を説明する。
[装置全体の構成]
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[Configuration of the entire device]
 図1に、本発明の一実施形態における外装缶封口装置の構成を示す。この外装缶封口装置は、たとえば角型リチウムイオン電池の外装缶封口加工に適用可能であり、図13に示したような角型の外装缶100とこの外装缶100の開口を閉塞する蓋体102との間の側面に形成される継目104をレーザシーム溶接により接合するように構成されている。被加工物としての外装缶100および蓋体102の材質は、任意の金属であってよいが、典型的にはどちらもアルミニウムまたはアルミニウム合金である。 FIG. 1 shows a configuration of an outer can sealing device according to an embodiment of the present invention. This outer can sealing device can be applied to, for example, an outer can sealing process for a prismatic lithium ion battery, and a rectangular outer can 100 as shown in FIG. 13 and a lid 102 for closing the opening of the outer can 100. The seam 104 formed on the side surface between the two is joined by laser seam welding. The material of the outer can 100 and the lid 102 as the workpieces may be any metal, but typically both are aluminum or an aluminum alloy.
 この外装缶封口装置は、レーザ発振器10、レーザ電源12、レーザ伝送系14、レーザ照射部16、主制御部18、スキャニング制御部20、シールドガス供給部22、ステージ24およびタッチパネル26を備えている。 The outer can sealing device includes a laser oscillator 10, a laser power source 12, a laser transmission system 14, a laser irradiation unit 16, a main control unit 18, a scanning control unit 20, a shield gas supply unit 22, a stage 24, and a touch panel 26. .
 レーザ発振器10は、たとえばシングルモードのファイバレーザ発振器であり、発光元素としてたとえば希土類元素のイオンをドープしたコアを有する発振用の光ファイバと、この発振用光ファイバの一端面にポンピング用の励起光を照射する電気光学励起部と、発振用光ファイバの両端より軸方向に出る所定波長の光を共振増幅して出力する一対の光共振器ミラーとを有しており、高出力で集光性の高いレーザビームLBをQスイッチ方式のパルス発振で出力する。別の形態として、ロングパルスまたは連続波のレーザビームLBも可能である。 The laser oscillator 10 is, for example, a single mode fiber laser oscillator, and includes an oscillation optical fiber having a core doped with, for example, rare earth element ions as a light emitting element, and pumping light for pumping on one end face of the oscillation optical fiber. And a pair of optical resonator mirrors that resonately amplify and output light of a predetermined wavelength that is emitted in the axial direction from both ends of the oscillation optical fiber. Laser beam LB with a high frequency is output by Q-switched pulse oscillation. Alternatively, a long pulse or continuous wave laser beam LB is also possible.
 レーザ電源12は、主制御部18の制御の下で、レーザ発振器10の電気光学励起部の光源(一般にレーザダイオード)に励起電流を供給する。図示省略するが、レーザ発振器10より発振出力されるレーザビームLBのパワーをレーザ電源12にフィードバックして励起電流を制御するパワーフィードバック機構を備えることも可能である。 The laser power source 12 supplies an excitation current to the light source (generally a laser diode) of the electro-optic excitation unit of the laser oscillator 10 under the control of the main control unit 18. Although not shown, it is possible to provide a power feedback mechanism that feeds back the power of the laser beam LB oscillated and output from the laser oscillator 10 to the laser power source 12 to control the excitation current.
 レーザ発振器10より出力されたレーザビームLBは、レーザ伝送系14において、たとえばベントミラー30で所定方向に折り返され、次いで入射ユニット32内で集光レンズ34により集光されて伝送用の光ファイバ36の一端面に入射する。この伝送用光ファイバ36は、たとえばSI(ステップインデックス)形ファイバからなり、入射ユニット32内で一端面より入力したレーザビームLBをレーザ照射部16まで伝送する。 The laser beam LB output from the laser oscillator 10 is folded back in a predetermined direction by, for example, a vent mirror 30 in the laser transmission system 14, and then condensed by the condenser lens 34 in the incident unit 32 to be transmitted by the transmission optical fiber 36. It is incident on one end face of. The transmission optical fiber 36 is made of, for example, an SI (step index) type fiber, and transmits the laser beam LB input from one end surface in the incident unit 32 to the laser irradiation unit 16.
 レーザ照射部16は、伝送用光ファイバ36の終端に接続されるスキャナ筺体38と、ステージ24上の被加工物(外装缶100/蓋体102)の周囲で反射面を斜め上方に向けて配置される環状ミラー42とを備えている。 The laser irradiation unit 16 is disposed with the reflecting surface obliquely upward around the scanner housing 38 connected to the end of the transmission optical fiber 36 and the workpiece (the outer can 100 / the lid 102) on the stage 24. An annular mirror 42 is provided.
 スキャナ筺体38の中には、伝送用光ファイバ36より受け取ったレーザビームLBを環状ミラー42に向けて2次元方向または3次元方向にスキャニングするための後述するスキャナ光学系44(図3、図7)が設けられている。環状ミラー42は、移動ステージ24上で垂直に立った姿勢で缶支持部46により支持されている被加工物(外装缶100/蓋体102)の側面の継目104と略水平に対向する高さ位置で、被加工物(外装缶100/蓋体102)の周囲を囲むように平面視上で略矩形または略楕円のループで環状または回廊状に配置されている(図4、図9、図10)。スキャナ筺体38内のスキャナ光学系44(図3、図7)および環状ミラー42の構成および作用は、後に詳しく説明する。 In the scanner housing 38, a scanner optical system 44 (FIGS. 3 and 7), which will be described later, for scanning the laser beam LB received from the transmission optical fiber 36 toward the annular mirror 42 in a two-dimensional direction or a three-dimensional direction. ) Is provided. The annular mirror 42 has a height that faces the seam 104 on the side surface of the workpiece (the outer can 100 / the lid 102) supported by the can support 46 in a posture standing vertically on the moving stage 24, substantially horizontally. In a position, the workpiece (the outer can 100 / the lid 102) is arranged in an annular or corridor shape in a loop of a substantially rectangular shape or a substantially elliptic shape in plan view so as to surround the periphery of the workpiece (the outer can 100 / the lid body 102) (FIGS. 10). The configuration and operation of the scanner optical system 44 (FIGS. 3 and 7) and the annular mirror 42 in the scanner housing 38 will be described in detail later.
 ステージ24は、被加工物(外装缶100/蓋体102)を缶支持部46と一体に載せ、好ましくは水平方向(X方向、Y方向)、鉛直方向(Z方向)および/または周回方向(θ方向)に移動可能となっている。もっとも、この実施形態においてステージ24に備わる移動機構は、主に被加工物(外装缶100/蓋体102)の位置決めに用いられ、レーザシーム溶接を行う際に被加工物(外装缶100/蓋体102)上でレーザビームLBのビームスポットBSを相対的に移動させるための走査手段として用いられることはない。したがって、ステージ24は、高速移動を行える高価なものである必要はなく、低速の安価なものであってもよく、後述するように缶支持部46が被加工物(外装缶100/蓋体102)を水平方向で位置決めする機能を有する場合は、昇降移動または高さ調整のみを行えるステージであってもよい。 The stage 24 puts a workpiece (exterior can 100 / lid 102) integrally with the can support portion 46, preferably in the horizontal direction (X direction, Y direction), the vertical direction (Z direction) and / or the rotating direction ( It is possible to move in the θ direction). However, in this embodiment, the moving mechanism provided in the stage 24 is mainly used for positioning of the workpiece (exterior can 100 / lid 102), and the workpiece (exterior can 100 / lid) when performing laser seam welding. 102) It is not used as a scanning means for relatively moving the beam spot BS of the laser beam LB. Therefore, the stage 24 does not need to be expensive and can be moved at a high speed, and may be a low-speed and low-priced one. As described later, the can support portion 46 has a workpiece (exterior can 100 / lid 102). ) May be a stage that can only be moved up and down or adjusted in height.
 シールドガス供給部22は、この外装缶封口装置において被加工物(外装缶100/蓋体102)に対する封止加工またはレーザシーム溶接が行われる時に、ガス供給管48を介して被加工物(外装缶100/蓋体102)の周囲にシールドガスを供給する。シールドガスには、ヘリウムガスやアルゴンガス等の不活性ガスまたは窒素ガスが用いられる。 When the sealing process or laser seam welding is performed on the workpiece (exterior can 100 / lid 102) in the outer can sealing device, the shield gas supply unit 22 is connected to the workpiece (external can) via the gas supply pipe 48. 100 / cover body 102) is supplied with shielding gas. As the shielding gas, an inert gas such as helium gas or argon gas or nitrogen gas is used.
 主制御部18は、CPU(マイクロコンピュータ)を含んでおり、メモリに格納している各種プログラム(ソフトウェア)にしたがって装置全体ないし各部を制御し、特にスキャニング制御部20を通じてレーザ照射部16のスキャナ光学系44(図3、図7)の動作を制御する。また、主制御部18は、タッチパネル26の入力部26aおよび表示部26bを介してユーザ(作業員、保守員等)と情報(設定値、モニタ情報等)をやりとりする。
 
[レーザ照射部に関する実施例1]
The main control unit 18 includes a CPU (microcomputer), and controls the entire apparatus or each unit according to various programs (software) stored in the memory. In particular, the scanner optical of the laser irradiation unit 16 through the scanning control unit 20 is controlled. The operation of the system 44 (FIGS. 3 and 7) is controlled. Further, the main control unit 18 exchanges information (setting values, monitor information, etc.) with the user (workers, maintenance personnel, etc.) via the input unit 26a and the display unit 26b of the touch panel 26.

[Example 1 relating to laser irradiation unit]
 図2に、第1の実施例におけるレーザ照射部16の構成を示し、特にレーザ光路筺体50の構成と、このレーザ光路筺体50内に環状ミラー42を取り付ける構成とを示し、併せて缶支持部46の具体的な構成例を示している。また、図3および図4に、この実施例におけるスキャナ光学系44の構成および環状ミラー42の配置構成(レイアウト)と、この実施例におけるレーザスキャニングの作用を示す。 FIG. 2 shows the configuration of the laser irradiation section 16 in the first embodiment, and particularly shows the configuration of the laser beam path housing 50 and the configuration in which the annular mirror 42 is attached in the laser beam path housing 50, together with the can support section. 46 shows a specific configuration example. 3 and 4 show the configuration of the scanner optical system 44 and the arrangement configuration (layout) of the annular mirror 42 in this embodiment, and the action of laser scanning in this embodiment.
 図3において、スキャナ光学系44は、レーザビームLBの光軸と交差する2次元方向でレーザビームLBをスキャニングするための第1軸ガルバノスキャナ52および第2軸ガルバノスキャナ54と、ガルバノスキャナ(52,54)の前段でレーザビームLBの光路上に配置される集光レンズ56を含み、この集光レンズ56の焦点距離を可変に制御するための第3軸のフォーカシング制御部58とを備えており、3次元スキャナとして構成されている。 In FIG. 3, the scanner optical system 44 includes a first axis galvano scanner 52 and a second axis galvano scanner 54 for scanning the laser beam LB in a two-dimensional direction intersecting the optical axis of the laser beam LB, and a galvano scanner (52 , 54), and a third-axis focusing controller 58 for variably controlling the focal length of the condensing lens 56. The condensing lens 56 is disposed on the optical path of the laser beam LB. It is configured as a three-dimensional scanner.
 より詳細には、スキャナ筺体38(図1)の中には、コリメートレンズ60、可動の発散(凹)レンズ62、集光レンズ56、第1軸ガルバノスキャナ52および第2軸ガルバノスキャナ54が、図3に示すような配置構成で設けられている。 More specifically, in the scanner housing 38 (FIG. 1), a collimating lens 60, a movable diverging (concave) lens 62, a condenser lens 56, a first axis galvano scanner 52, and a second axis galvano scanner 54 are provided. The arrangement is as shown in FIG.
 コリメートレンズ60は、スキャナ筐体38の側壁付近に光軸を水平にして配置されている。このコリメートレンズ60に対して、第1軸ガルバノスキャナ52のガルバノミラー52aが、約45°斜めの姿勢で水平に向き合っている。第1軸ガルバノスキャナ52の回転駆動部は、円筒状のガルバノケーシング52b内に収められ、電気ケーブル64(1)を介してスキャニング制御部20(図1)に接続されている。 The collimating lens 60 is disposed near the side wall of the scanner housing 38 with the optical axis being horizontal. The galvanometer mirror 52a of the first axis galvano scanner 52 faces the collimating lens 60 horizontally in an inclined posture of about 45 °. The rotation driving unit of the first axis galvano scanner 52 is housed in a cylindrical galvano casing 52b and connected to the scanning control unit 20 (FIG. 1) via an electric cable 64 (1).
 一方、スキャナ筐体38の下面の出口に近接して、第2軸ガルバノスキャナ54のガルバノミラー54aが約45°斜めの姿勢で垂直下方に向き合っている。スキャナ筐体38の中で、第1軸のガルバノミラー52aと第2軸のガルバノミラー54a同士も互いに所定の交差する角度で斜めに対向している。第2軸ガルバノスキャナ54の回転駆動部は、ガルバノケーシング54b内に収められ、電気ケーブル64(2)を介してスキャニング制御部20に接続されている。 On the other hand, the galvano mirror 54a of the second-axis galvano scanner 54 faces vertically downward in an inclined posture of about 45 ° in the vicinity of the exit on the lower surface of the scanner housing 38. In the scanner housing 38, the first-axis galvanometer mirror 52a and the second-axis galvanometer mirror 54a are also diagonally opposed to each other at a predetermined intersecting angle. The rotation drive unit of the second axis galvano scanner 54 is housed in the galvano casing 54b and connected to the scanning control unit 20 via the electric cable 64 (2).
 フォーカシング制御部58は、集光レンズ56と、発散(凹)レンズ62と、発散レンズ62を光軸方向で移動させるリニアアクチエータ66とを有している。リニアアクチエータ66の駆動部は、電気ケーブル64(3)を介してスキャニング制御部20に接続されている。 The focusing control unit 58 includes a condenser lens 56, a diverging (concave) lens 62, and a linear actuator 66 that moves the diverging lens 62 in the optical axis direction. The drive unit of the linear actuator 66 is connected to the scanning control unit 20 via an electric cable 64 (3).
 スキャナ光学系44において、伝送用光ファイバ36の終端面から所定の拡がり角で出たレーザビームLBは、コリメートレンズ60により平行光になってフォーカシング制御部58の発散レンズ62および集光レンズ56を通り抜け、第1軸のガルバノミラー52aおよび第2軸のガルバノミラー54aに順次入射して反射し、スキャナ筐体38の下面の出口からレーザ光路筺体50(図2)の中を通って環状ミラー42に入射するようになっている。なお、スキャナ筐体38の下面の出口には、レーザ光路筺体50側と雰囲気を遮断するための保護ガラス(図示せず)が設けられている。 In the scanner optical system 44, the laser beam LB emitted from the end face of the transmission optical fiber 36 with a predetermined divergence angle is converted into parallel light by the collimator lens 60, and the diverging lens 62 and the condenser lens 56 of the focusing control unit 58 are passed through. The light passes through the first axis galvanometer mirror 52a and the second axis galvanometer mirror 54a and sequentially reflects and reflects from the lower surface of the scanner housing 38 through the laser beam path housing 50 (FIG. 2). It is made to enter. Note that a protective glass (not shown) is provided at the exit of the lower surface of the scanner housing 38 to shield the atmosphere from the laser beam path housing 50 side.
 フォーカシング制御部58においては、コリメートレンズ60からの平行光のレーザビームLBが発散レンズ62により一定の拡がり角で発散し、次いで集光レンズ56により集光させられる。リニアアクチエータ66により発散レンズ62を光軸方向で移動させることにより、つまり発散レンズ62と集光レンズ56との間の相対的な距離間隔を変えることにより、集光レンズ56の焦点距離を可変に制御することができる。 In the focusing control unit 58, the parallel laser beam LB from the collimating lens 60 is diverged by a diverging lens 62 at a constant divergence angle, and is then condensed by a condensing lens 56. By moving the diverging lens 62 in the optical axis direction by the linear actuator 66, that is, by changing the relative distance between the diverging lens 62 and the condensing lens 56, the focal length of the condensing lens 56 can be varied. Can be controlled.
 図3に示すように、スキャナ光学系44の最終段に設けられる第2軸のガルバノミラー54aよりレーザ光路筺体50(図2)の中を通って環状ミラー42に入射したレーザビームLBは、その入射角に応じた反射角で被加工物(外装缶100/蓋体102)側に略水平に反射し、そのまま直進して継目104に入射する。継目104上では、レーザビームLBが入射した位置の被加工物材料がレーザビームLBのエネルギーにより瞬時に溶融し、レーザビームLBのビームスポットBSが他(横)に移ると、溶融物が凝固してナゲットが形成される。レーザビームLBのビームスポットBSが継目104上で被加工物(外装缶100/蓋体102)の側面を一周すると、継目104が周回方向の全ての部位でレーザシーム溶接により接合され、外装缶100は封口される。 As shown in FIG. 3, the laser beam LB incident on the annular mirror 42 through the laser beam path housing 50 (FIG. 2) from the second-axis galvanometer mirror 54a provided at the final stage of the scanner optical system 44 is The light is reflected substantially horizontally toward the workpiece (exterior can 100 / lid 102) at a reflection angle corresponding to the incident angle, and travels straight and enters the joint 104. On the joint 104, the workpiece material at the position where the laser beam LB is incident is instantaneously melted by the energy of the laser beam LB, and when the beam spot BS of the laser beam LB moves to another (lateral), the melt is solidified. Nuggets are formed. When the beam spot BS of the laser beam LB goes around the side surface of the workpiece (exterior can 100 / lid 102) on the joint 104, the joint 104 is joined by laser seam welding at all the sites in the circumferential direction. Sealed.
 この実施形態では、主制御部18ないしスキャニング制御部20(図1)の制御の下で、スキャナ光学系44の第1軸ガルバノスキャナ52および第2軸ガルバノスキャナ54が2次元のレーザスキャニングを行うことにより、図4に示すようにレーザビームLBの環状ミラー42上に入射する位置(つまり反射する位置)PLBが周回方向で一回り(一周)し、それにより継目104上でレーザビームLBのビームスポットBSが周回方向で一回り(一周)するようになっている。 In this embodiment, the first axis galvano scanner 52 and the second axis galvano scanner 54 of the scanner optical system 44 perform two-dimensional laser scanning under the control of the main control unit 18 or the scanning control unit 20 (FIG. 1). As a result, as shown in FIG. 4, the position P LB of the laser beam LB incident on the annular mirror 42 (that is, the position of reflection) P LB makes one turn (one turn) in the circulation direction. The beam spot BS makes one turn (one turn) in the turning direction.
 また、そのような2次元的なレーザスキャニングの最中に、主制御部18およびスキャニング制御部20(図1)の制御の下で、フォーカシング制御部58が発散レンズ62の光軸上の位置(つまり集光レンズ56との距離間隔)ひいては集光レンズ56の焦点距離を動的に可変制御することにより、図5Aおよび図5Bに示すように周回方向の各位置でレーザビームLBが継目104に集光するようになっている。 During such two-dimensional laser scanning, the focusing control unit 58 is positioned on the optical axis of the diverging lens 62 (under the control of the main control unit 18 and the scanning control unit 20 (FIG. 1)). In other words, by dynamically variably controlling the focal length of the condensing lens 56 and thus the focal distance of the condensing lens 56, the laser beam LB reaches the joint 104 at each position in the circumferential direction as shown in FIGS. 5A and 5B. Condensed.
 スキャナ光学系44に上記のような3次元のレーザスキャニングを行わせるためのソフトウェア(制御プログラム、条件データ、スキャニング位置データ等)は、主制御部18内のメモリおよび/またはスキャニング制御部20内のメモリに格納され、主制御部18内のCPUおよび/またはスキャニング制御部20内のCPUによって実行される。条件データやスキャニング位置データは、シミュレーション、計算、実験、試験等によって取得される。スキャニング位置データの取得のために実験または試験を行う場合は、レーザビームLBの代わりに可視光(モニタ光)を用いることも可能である。 Software (control program, condition data, scanning position data, etc.) for causing the scanner optical system 44 to perform the three-dimensional laser scanning as described above is stored in the memory in the main control unit 18 and / or in the scanning control unit 20. It is stored in the memory and executed by the CPU in the main control unit 18 and / or the CPU in the scanning control unit 20. Condition data and scanning position data are acquired by simulation, calculation, experiment, test, or the like. When an experiment or test is performed for obtaining scanning position data, visible light (monitor light) can be used instead of the laser beam LB.
 図4に示すように、この実施例における環状ミラー42は、分割された複数枚たとえば8枚の板ミラーMR1~MR8によって構成されている。ここで、第1の板ミラーMR1は、被加工物(外装缶100/蓋体102)の第1の長辺(図の左側の長辺)LS1に延在している直線の継目104LS1と対向する。第2の板ミラーMR2は、被加工物(外装缶100/蓋体102)の第1の角部(図の左下の角丸)CN1に延在している湾曲の継目104CN1と対向する。 As shown in FIG. 4, the annular mirror 42 in this embodiment is constituted by a plurality of divided, for example, eight plate mirrors MR 1 to MR 8 . Here, the first plate mirror MR 1 is a straight seam 104 LS extending to the first long side (long side on the left side of the drawing) LS 1 of the workpiece (the outer can 100 / the lid 102). Opposite to 1 . The second plate mirror MR 2 faces the curved joint 104CN 1 extending to the first corner (lower left corner in the figure) CN 1 of the workpiece (the outer can 100 / the lid 102). To do.
 第3の板ミラーMR3は、被加工物(外装缶100/蓋体102)の第1の短辺(図の下側の短辺)SS1に延在している直線の継目104SS1と対向する。第4の板ミラーMR4は、被加工物(外装缶100/蓋体102)の第2の角部(図の右下の角丸)CN2に延在している湾曲の継目104CN2と対向する。 The third plate mirror MR 3 includes a straight seam 104SS 1 extending to the first short side (the lower short side in the figure) SS 1 of the workpiece (the outer can 100 / the lid 102). opposite. The fourth plate mirror MR 4 includes a curved seam 104CN 2 extending to the second corner (the lower right corner in the figure) CN 2 of the workpiece (the outer can 100 / the lid 102). opposite.
 第5の板ミラーMR5は、被加工物(外装缶100/蓋体102)の第2の長辺(図の右側の長辺)LS2に延在している直線の継目104LS2と対向する。第6の板ミラーMR6は、被加工物(外装缶100/蓋体102)の第3の角部(図の右上の角丸)CN3に延在している湾曲の継目104CN3と対向する。 The fifth plate mirror MR 5 is the workpiece a second long side (the right side of the long side of the figure) seam 104LS 2 straight lines extending in the LS 2 and opposite (outer can 100 / lid 102) To do. The sixth plate mirror MR 6 faces the curved joint 104CN 3 extending to the third corner (the upper right corner in the figure) CN 3 of the workpiece (the outer can 100 / the lid 102). To do.
 そして、第7の板ミラーMR7は、被加工物(外装缶100/蓋体102)の第2の短辺(図の上側の短辺)SS2に延在している直線の継目104SS2と対向する。最後に、第8の板ミラーMR8は、被加工物(外装缶100/蓋体102)の第4の角部(図の左上の角丸)CN4に延在している湾曲の継目104CN4と対向する。 Then, the plate mirror MR 7 The seventh workpiece (exterior can 100 / lid 102) a second short side of the seam of a straight line that extends SS 2 (short sides of the upper side in FIG.) 104SS 2 Opposite. Finally, the eighth plate mirror MR 8 has a curved seam 104CN extending to the fourth corner (upper left corner of the figure) CN 4 of the workpiece (exterior can 100 / lid 102). Opposite to 4 .
 これら板ミラーMR1~MR8の水平線となす傾斜角度θ1~θ8は、周回方向で全部一定に揃っていてもよいが、個々独立に設定または調整されてもよい。別な見方をすれば、図5Aおよび図5Bに示すように、各板ミラーMR1~MR8の傾斜角度θ1~θ8に違いや誤差があっても、上記のようなスキャナ光学系44による3次元のレーザスキャニングにより、いずれの板ミラーMR1~MR8においてもそこで反射するレーザビームLBを各々対向する継目104LS1~104CN4に集光入射させることができる。 The inclination angles θ 1 to θ 8 formed with the horizontal lines of the plate mirrors MR 1 to MR 8 may all be uniform in the circumferential direction, but may be set or adjusted individually. From another viewpoint, as shown in FIGS. 5A and 5B, even if there is a difference or error in the inclination angles θ 1 to θ 8 of the plate mirrors MR 1 to MR 8 , the scanner optical system 44 as described above. By the three-dimensional laser scanning by, the laser beam LB reflected by any of the plate mirrors MR 1 to MR 8 can be condensed and incident on the joints 104 LS 1 to 104 CN 4 facing each other.
 図4に示すような配置構成の環状ミラー42を用いて、被加工物(外装缶100/蓋体102)の側面の継目104上でレーザビームLBのビームスポットBSを周回方向で一周させる場合は、個々の板ミラーMR1~MR8毎にレーザスキャニング動作が制御される。 When the annular beam 42 having the arrangement shown in FIG. 4 is used to make the beam spot BS of the laser beam LB go around in the circulation direction on the joint 104 on the side surface of the workpiece (the outer can 100 / the lid 102). The laser scanning operation is controlled for each of the plate mirrors MR 1 to MR 8 .
 すなわち、図4に示すように、第1の長辺LS1の継目104LS1上でレーザビームスポットBSを移動させるときは、第1の板ミラーMR1上でレーザビームLBの反射点PLBを移動させる。そして、第1の角部CN1の継目104CN1上でレーザビームスポットBSを移動させるときは、第2の板ミラーMR2上でレーザビームLBの反射点PLBを移動させる。 That is, as shown in FIG. 4, when the laser beam spot BS is moved on the joint 104LS 1 of the first long side LS 1 , the reflection point P LB of the laser beam LB is set on the first plate mirror MR 1. Move. Then, when moving the laser beam spot BS over the seam 104CN 1 of the first corner portion CN 1 moves the reflection point P LB of the laser beam LB on the second plate mirror MR 2.
 次に、第1の短辺SS1の継目104SS1上でレーザビームスポットBSを移動させるときは、第3の板ミラーMR3上でレーザビームLBの反射点PLBを移動させる。そして、第2の角部CN2の継目104CN2上でレーザビームスポットBSを移動させるときは、第4の板ミラーMR4上でレーザビームLBの反射点PLBを移動させる。 Then, when moving the laser beam spot BS in the first upper seam 104SS 1 of the short side SS 1 moves the reflection point P LB of the laser beam LB on the third plate mirror MR 3. Then, when moving the laser beam spot BS over the seam 104CN 2 of the second corner portion CN 2 moves the reflection point P LB of the laser beam LB on the fourth plate mirror MR 4.
 その後も、上記と同様の仕方で、各区間の継目104LS2・・上でレーザビームスポットBSを移動させるときは、その区間と対向する板ミラーMR5・・上でレーザビームLBの反射点PLBを移動させる。 Thereafter, when the laser beam spot BS is moved on the joint 104LS 2 ... In each section in the same manner as described above, the reflection point P of the laser beam LB on the plate mirror MR 5. Move LB.
 もっとも、隣接する継目区間の境界付近では、それらと対向する2つの板ミラーからのレーザビーム照射が重なってもよい。たとえば、第1の板ミラーMR1上でレーザビームLBの反射点PLBを移動させる場合に、その終盤でレーザビームスポットBSが第1の長辺LS1の継目104LS1を通り越して第1の角部CN1の継目104CN1に入ってもよい。あるいは、第2の板ミラーMR2上でレーザビームLBの反射点PLBを移動させる場合に、レーザビームスポットBSが第1の長辺LS1の継目104LS1から移動を開始するようにしてもよい。要するに、被加工物(外装缶100/蓋体102)の側面の継目104上で空きを作らずにレーザビームLBのビームスポットBSが周回方向で少なくとも一周すればよいのであって、継目104上のある箇所でレーザビームLBの照射が複数回重なっても構わない。 However, in the vicinity of the boundary between adjacent seam sections, the laser beam irradiation from two plate mirrors facing each other may overlap. For example, in the case of moving the reflection point P LB of the laser beam LB on the first plate mirror MR 1, the laser beam spot BS in the late the first past the first seam 104LS 1 long side LS 1 it may enter the seam 104CN 1 corner CN 1. Alternatively, in order to move the reflection point P LB of the laser beam LB on the second plate mirror MR 2, even as the laser beam spot BS starts to move from the seam 104LS 1 of the first long side LS 1 Good. In short, the beam spot BS of the laser beam LB needs to make at least one round in the circumferential direction without creating a space on the joint 104 on the side surface of the workpiece (the outer can 100 / the lid 102). Irradiation with the laser beam LB may overlap several times at a certain location.
 また、環状ミラー42上でレーザビームLBの反射点PLBを周回方向に移動させる速度、つまり被加工物(外装缶100/蓋体102)の側面の継目104上でレーザビームLBのビームスポットBSを周回方向に移動させる速度を可変に制御することも可能である。さらに、レーザビームLBが許容範囲内のデフォーカスで継目104に入射してもよい。 The speed of moving the reflection point P LB of the laser beam LB on the annular mirror 42 in the circumferential direction, that the workpiece beam spot BS of the laser beam LB on the seam 104 of the side surface of the (exterior can 100 / lid 102) It is also possible to variably control the speed at which the is moved in the circulation direction. Further, the laser beam LB may be incident on the joint 104 with defocus within an allowable range.
 この実施形態においては、スキャナ光学系44の慣性が無視できるほど小さいため、たとえば200mm/秒のスキャニング速度でレーザビームLBを環状ミラー42上で一周させることができる。これにより、たとえば長辺150mm、短辺20mmの被加工物(外装缶100/蓋体102)に対しては、側面の継目104のレーザシーム溶接を数秒以内で済ますことができる。これにより、外装缶封口加工のタクト時間を従来技術の1/10程度に短縮することができる。 In this embodiment, since the inertia of the scanner optical system 44 is so small that it can be ignored, for example, the laser beam LB can make a round on the annular mirror 42 at a scanning speed of 200 mm / sec. Thereby, for example, for a workpiece (external can 100 / lid 102) having a long side of 150 mm and a short side of 20 mm, laser seam welding of the side seam 104 can be completed within a few seconds. Thereby, the cycle time of exterior can sealing can be shortened to about 1/10 of the prior art.
 また、被加工物(外装缶100/蓋体102)の側面の継目104にレーザビームLBを集光照射する制御は、スキャナ光学系44の2次元ないし3次元の光学的なスキャニング調整によりフレキシブルかつ正確に行える。特に、3次元のレーザスキャニングによれば、周回方向でレーザビームLBの光路長が変動してもフォーカシング制御部58を用いて光学的に補正することができる。また、レーザ照射部16内の機械的な誤差、たとえば上記のような環状ミラー42の配置位置や傾斜角度の誤差を光学的に補正することが可能であり、被加工物(外装缶100/蓋体102)の側面の継目104に対するレーザシーム溶接を安定かつ正確に行うことができる。また、レーザシーム溶接の条件出しも簡単である。 Further, the control of condensing and irradiating the laser beam LB to the joint 104 on the side surface of the workpiece (exterior can 100 / lid 102) is flexible and can be performed by adjusting the two-dimensional or three-dimensional optical scanning of the scanner optical system 44. It can be done accurately. In particular, according to three-dimensional laser scanning, even if the optical path length of the laser beam LB fluctuates in the circulation direction, it can be optically corrected using the focusing control unit 58. Further, it is possible to optically correct mechanical errors in the laser irradiation unit 16, for example, errors in the arrangement position and inclination angle of the annular mirror 42 as described above, and the workpiece (exterior can 100 / lid Laser seam welding to the seam 104 on the side of the body 102) can be performed stably and accurately. It is also easy to determine the conditions for laser seam welding.
 さらには、側面に継目104がある被加工物(外装缶100/蓋体102)に対しては、長辺および/または短辺のサイズが違っていても、同じハードウェアのレーザ照射部16で対応することができる。なお、被加工物(外装缶100/蓋体102)の高さサイズが変わった場合は、ステージ24の昇降機構を用いて、側面の継目104を基準の高さ位置に合わせることができる。 Furthermore, for a workpiece (exterior can 100 / lid 102) having a seam 104 on the side surface, the laser irradiation unit 16 of the same hardware may be used even if the size of the long side and / or the short side is different. Can respond. When the height size of the workpiece (the outer can 100 / the lid 102) changes, the side seam 104 can be adjusted to the reference height position by using the lifting mechanism of the stage 24.
 この実施形態においては、タクトの大幅な短縮化だけでなく、外装缶封口加工の汎用性、再現性および品質の向上も実現できる。 In this embodiment, not only the tact time can be greatly shortened, but also the versatility, reproducibility and quality of exterior can sealing can be improved.
 なお、図2において、環状ミラー42は、スキャナ筺体38の下面より環状または回廊状の横断面でスカート状に延びる空洞(中空)かつ有底のレーザ光路筺体50の底部に所定の傾斜角度で設けられる。レーザ光路筺体50は、遮光性の板材たとえばアルミニウム板で構成され、スキャナ光学系44から環状ミラー42までのレーザ光路を外部から遮光する。 In FIG. 2, an annular mirror 42 is provided at a predetermined inclination angle at the bottom of a hollow (hollow) and bottomed laser light path housing 50 extending in a skirt shape from the lower surface of the scanner housing 38 in an annular or corridor-like cross section. It is done. The laser light path housing 50 is made of a light shielding plate material such as an aluminum plate, and shields the laser light path from the scanner optical system 44 to the annular mirror 42 from the outside.
 環状ミラー42は、レーザ光路筺体50の中で、熱伝導率の高い金属部材たとえば銅またはアルミニウムからなり、内部に冷却媒体(たとえば冷却水)を通す流路71が形成されている放熱機構付きのミラー支持体70に取り付けられる。 The annular mirror 42 is provided with a heat dissipation mechanism that is made of a metal member having a high thermal conductivity, such as copper or aluminum, in the laser beam path housing 50, and has a flow path 71 through which a cooling medium (for example, cooling water) passes. Attached to the mirror support 70.
 レーザ光路筺体50の内周壁には、環状ミラー42と対向する高さ位置に保護ガラス72が取り付けられている。環状ミラー42で反射したレーザビームLBは、この保護ガラス72を透過して被加工物(外装缶100/蓋体102)の側面の継目104に入射するようになっている。一方で、保護ガラス72は、溶接部(継目104)より発生する蒸発物が付着して汚れやすいので、交換可能または着脱可能に取り付けられるのが好ましい。したがって、保護ガラス72を二重ガラスに構成して、内側のガラスを雰囲気遮断用に固定して取り付け、外側のガラスを着脱可能に取り付けてもよい。 A protective glass 72 is attached to the inner peripheral wall of the laser beam path housing 50 at a height position facing the annular mirror 42. The laser beam LB reflected by the annular mirror 42 passes through the protective glass 72 and enters the seam 104 on the side surface of the workpiece (the outer can 100 / the lid 102). On the other hand, it is preferable that the protective glass 72 is attached in a replaceable or detachable manner because the evaporant generated from the welded portion (the joint 104) is likely to adhere and become dirty. Therefore, the protective glass 72 may be formed of double glass, the inner glass may be fixed and attached to block the atmosphere, and the outer glass may be detachably attached.
 缶支持部46は、被加工物(外装缶100/蓋体102)を載せるベース部74と、継目104の近くで外装缶100を両側から挟み付けて被加工物(外装缶100/蓋体102)を垂直の姿勢に保持する固定クランプ76および可動クランプ78と、可動クランプ78をガイドレール80上で進退移動させるための駆動部82とを備えている。このように、缶支持部46は、被加工物(外装缶100/蓋体102)を位置決めし、かつ垂直に立てて支持する機能を有している。 The can support portion 46 includes a base portion 74 on which a workpiece (exterior can 100 / lid 102) is placed, and the outer can 100 sandwiched from both sides near the joint 104, and the workpiece (exterior can 100 / lid 102). ) In a vertical posture, and a drive unit 82 for moving the movable clamp 78 forward and backward on the guide rail 80. As described above, the can support portion 46 has a function of positioning the workpiece (exterior can 100 / lid 102) and supporting it vertically.
 さらに、缶支持部46は、クランプ76,78を熱電率の高い金属たとえば銅で構成しており、クランプ76,78の上端を継目104の近傍に当てることで、レーザシーム溶接の際に溶接部の継目104で発生する余分な熱を篭らせずに効率よく逃がすことができる。 Further, the can support part 46 is made of a metal having a high thermoelectric power, such as copper, for the clamps 76 and 78, and the upper end of the clamps 76 and 78 is brought into contact with the vicinity of the joint 104, so The excess heat generated at the seam 104 can be efficiently released without causing any heat.
 さらに、缶支持部46は、ベース部74からレーザ光路筺体50の下端面の近くまで垂直上方に延びる四辺の側壁部84を有している。この側壁部84は、レーザ光路筺体50の下端面に沿って環状に延在しており、レーザ光路筺体50と組み合わさって被加工物(外装缶100/蓋体102)の周囲に隔壁85を形成する。一方で、側壁部84の下部にはシールドガスを外へ逃がすための貫通孔83が形成されている。 Further, the can support portion 46 has four side wall portions 84 extending vertically upward from the base portion 74 to the vicinity of the lower end surface of the laser beam path housing 50. The side wall 84 extends in a ring shape along the lower end surface of the laser beam path housing 50, and in combination with the laser beam path housing 50, a partition wall 85 is formed around the workpiece (exterior can 100 / lid body 102). Form. On the other hand, a through-hole 83 is formed in the lower portion of the side wall portion 84 for allowing the shield gas to escape to the outside.
 レーザシーム溶接が行われる時、シールドガス供給部22よりガス供給管48を介して隔壁85の内側にシールドガスが供給されることにより、被加工物(外装缶100/蓋体102)はシールドガスの雰囲気に包まれ、大気からシールドされるようになっている。隔壁85は、被加工物(外装缶100/蓋体102)の周囲でシールドガスの雰囲気を保つ機能を有している。
 
[レーザ照射部に関する実施例2]
When laser seam welding is performed, the shield gas is supplied from the shield gas supply unit 22 to the inside of the partition wall 85 via the gas supply pipe 48, so that the workpiece (the outer can 100 / the lid 102) is made of the shield gas. It is wrapped in an atmosphere and shielded from the atmosphere. The partition wall 85 has a function of maintaining a shield gas atmosphere around the workpiece (the outer can 100 / the lid 102).

[Embodiment 2 regarding laser irradiation section]
 図6および図7に、第2の実施例におけるレーザ照射部16およびスキャナ光学系44の構成を示す。 6 and 7 show the configurations of the laser irradiation unit 16 and the scanner optical system 44 in the second embodiment.
 この実施例のスキャナ光学系44は、第3軸のフォーカシング制御部58(図3)を備えておらず、第1軸ガルバノスキャナ52と第2軸ガルバノスキャナ54によって2次元方向のレーザスキャニングを行う2次元スキャナとして構成されている。一方で、この実施例では、光学的にはスキャナ光学系44と環状ミラー42との間に、ハードウェア的にはスキャナ筺体38の出口付近に、テレセントリック-fθレンズ86を配置している。 The scanner optical system 44 of this embodiment does not include the third axis focusing control unit 58 (FIG. 3), and performs two-dimensional laser scanning by the first axis galvano scanner 52 and the second axis galvano scanner 54. It is configured as a two-dimensional scanner. On the other hand, in this embodiment, a telecentric-fθ lens 86 is optically disposed between the scanner optical system 44 and the annular mirror 42 and near the exit of the scanner housing 38 in terms of hardware.
 この場合、レーザ光路筺体50は、テレセントリック-fθレンズ86の下に雰囲気遮断用のガラス88を挟んで垂直下方に延びる。テレセントリック-fθレンズ86は、スキャナ光学系44より入射するレーザビームLBを、その入射位置または入射角に関係なく常にレンズの光軸と平行に垂直下方に向けて一定の焦点距離を隔てた光路上の位置に集光するようになっている。この実施例では、テレセントリック-fθレンズ86を透過して光路を垂直下方に向けたレーザビームLBが、レーザ光路筺体50の中を通って環状ミラー42に真上から入射し、そこで水平方向に反射し、保護ガラス72を透過して被加工物(外装缶100/蓋体102)の継目104に集光入射するようになっている。 In this case, the laser beam path housing 50 extends vertically downward with the atmosphere blocking glass 88 sandwiched between the telecentric-fθ lens 86. The telecentric-fθ lens 86 causes the laser beam LB incident from the scanner optical system 44 to always be directed vertically downward parallel to the optical axis of the lens regardless of the incident position or angle of incidence, on an optical path. It concentrates on the position of. In this embodiment, a laser beam LB transmitted through the telecentric-fθ lens 86 and having its optical path directed vertically downward passes through the laser optical path housing 50 and enters the annular mirror 42 from directly above, where it is reflected in the horizontal direction. Then, the light passes through the protective glass 72 and is focused and incident on the joint 104 of the workpiece (the outer can 100 / the lid 102).
 この実施例においては、環状ミラー42の水平線となす傾斜角度θが周回方向で一定(一般にθ=45°)に揃い、かつ環状ミラー42上の反射点PLBと継目104との間の距離間隔も周回方向で一定に揃うように、環状ミラー42の配置構成(レイアウト)が採られる。これにより、上記のように2次元型のスキャナ光学系44とテレセントリック-fθレンズ86とを用いて、周回方向の各位置でレーザビームLBを被加工物(外装缶100/蓋体102)の側面の継目104に集光照射し、上記第1の実施例と同様に継目104のレーザシーム溶接を数秒以内で済ますことができる。
 
[レーザ照射部に関する実施例2]
In this embodiment, the inclination angle θ formed with the horizontal line of the annular mirror 42 is constant (generally θ = 45 °) in the circumferential direction, and the distance interval between the reflection point P LB on the annular mirror 42 and the joint 104. Also, the arrangement configuration (layout) of the annular mirror 42 is adopted so as to be uniform in the circumferential direction. As a result, using the two-dimensional scanner optical system 44 and the telecentric-fθ lens 86 as described above, the laser beam LB is applied to the side surface of the workpiece (the outer can 100 / the lid 102) at each position in the circumferential direction. The seam 104 can be focused and irradiated, and laser seam welding of the seam 104 can be completed within a few seconds as in the first embodiment.

[Embodiment 2 regarding laser irradiation section]
 図8に、第3の実施例におけるレーザ照射部16およびスキャナ光学系44の構成を示す。 FIG. 8 shows the configuration of the laser irradiation unit 16 and the scanner optical system 44 in the third embodiment.
 この実施例では、スキャナ筺体38内のスキャナ光学系44を上記第2の実施例と同様の2次元スキャナで構成し、スキャナ光学系44と環状ミラー42との間に非テレセントリックのfθレンズ90を配置する。 In this embodiment, the scanner optical system 44 in the scanner housing 38 is configured by a two-dimensional scanner similar to the second embodiment, and a non-telecentric fθ lens 90 is provided between the scanner optical system 44 and the annular mirror 42. Deploy.
 この場合は、周回方向の角位置で非テレセントリック-fθレンズ90から環状ミラー42を経由して被加工物(外装缶100/蓋体102)に至る光路長が非テレセントリック-fθレンズ90の焦点距離に略一致するように、環状ミラー42の配置構成(レイアウト)に工夫を施せばよい。たとえば、図9に示すように、環状ミラー42を構成する板ミラーMR1~MR8の各々を、周回方向で連続した反射面を与える複数または多数の板片ミラーmrに細かく分割する。また、周回方向の各位置でレーザビームLBが被加工物(外装缶100/蓋体102)の側面の継目104に集光するように、環状ミラー42の水平線となす傾斜角度θを個々の板片ミラーmr毎に設定または調整する。そして、環状ミラー42上の反射点PLBと継目104との間の距離間隔についても、個々の板片ミラーmr毎に設定または調整する構成を採ればよい。
 
[他の実施形態または変形例]
In this case, the optical path length from the non-telecentric-fθ lens 90 to the workpiece (exterior can 100 / lid 102) through the annular mirror 42 at the angular position in the circumferential direction is the focal length of the non-telecentric-fθ lens 90. The arrangement configuration (layout) of the annular mirror 42 may be devised so as to substantially match the above. For example, as shown in FIG. 9, each of the plate mirrors MR 1 to MR 8 constituting the annular mirror 42 is finely divided into a plurality or a plurality of plate piece mirrors mr giving a continuous reflecting surface in the circumferential direction. In addition, the inclination angle θ formed with the horizontal line of the annular mirror 42 is set to each plate so that the laser beam LB is focused on the joint 104 on the side surface of the workpiece (exterior can 100 / lid 102) at each position in the circumferential direction. Set or adjust for each mirror mr. The distance between the reflection point P LB on the annular mirror 42 and the joint 104 may be set or adjusted for each individual plate mirror mr.

[Other Embodiments or Modifications]
 上記第1の実施例(図2、図3)においても、3次元型のスキャナ光学系44と環状ミラー42との間に(ハードウェア的にはスキャナ筺体38の出口付近に)、非テレセントリック-fθレンズ90を配置することができる。その場合でも、レーザビームLBの光軸上の集光位置は、フォーカシング制御部58により可変に制御される。 Also in the first embodiment (FIGS. 2 and 3), non-telecentric- is provided between the three-dimensional scanner optical system 44 and the annular mirror 42 (in the vicinity of the exit of the scanner housing 38 in terms of hardware). An fθ lens 90 can be disposed. Even in that case, the focusing position on the optical axis of the laser beam LB is variably controlled by the focusing control unit 58.
 フォーカシング制御部58も種種の変形が可能である。たとえば、上記第1の実施例のフォーカシング制御部58は初段のレンズに発散(凹)レンズ62を用いるガリレオタイプであったが、初段レンズに集束(凸)レンズを用いるケプラータイプも可能である。また、フォーカシング制御部58として、ビームエキスパンダを用いることも可能である。 The focusing control unit 58 can be modified in various ways. For example, the focusing control unit 58 of the first embodiment is a Galileo type that uses a diverging (concave) lens 62 for the first stage lens, but a Kepler type that uses a converging (convex) lens for the first stage lens is also possible. Further, a beam expander can be used as the focusing control unit 58.
 本発明においては、上記のように、被加工物(外装缶100/蓋体102)の側面の継目104上で空きを作らずにレーザビームLBのビームスポットBSが周回方向で少なくとも一周すればよいのであって、継目104上のある箇所でレーザビームLBの照射が複数回重なってもよい。したがって、たとえば図10に示すように、環状ミラー42の反射面が周回方向で途切れずに連続して無端状に延びている構成も可能である。この場合は、環状ミラー42の無端状の反射面上でレーザビームLBの入射点(または反射点)PLBを一周させると、継目104に対するレーザビームLBの照射が途切れずに、レーザビームLBのビームスポットBSが被加工物(外装缶100/蓋体102)の側面を一周する。 In the present invention, as described above, the beam spot BS of the laser beam LB only needs to make at least one round in the circulation direction without creating a space on the joint 104 on the side surface of the workpiece (the outer can 100 / the lid 102). Therefore, irradiation with the laser beam LB may overlap a plurality of times at a certain location on the joint 104. Therefore, for example, as shown in FIG. 10, it is possible to adopt a configuration in which the reflecting surface of the annular mirror 42 extends continuously and endlessly in the circumferential direction. In this case, when the incident point (or reflection point) P LB of the laser beam LB is made to make a round on the endless reflection surface of the annular mirror 42, the irradiation of the laser beam LB to the joint 104 is not interrupted, and the laser beam LB The beam spot BS goes around the side surface of the workpiece (the outer can 100 / the lid 102).
 また、被加工物(外装缶100/蓋体102)の角部CN1,CN2,CN3,CN4の半径Rが大きい場合は、それと対向する板ミラーMR2,MR4,MR6,MR8の反射面を周回方向で湾曲させてもよい。 Further, when the corners CN 1 , CN 2 , CN 3 , CN 4 of the workpiece (exterior can 100 / lid 102) have a large radius R, plate mirrors MR 2 , MR 4 , MR 6 , The reflecting surface of MR 8 may be curved in the circumferential direction.
 さらに、環状ミラー42回りにハードウェア的なスキャニング調整機構として、図11に示すように環状ミラー42の被加工物(図示せず)との離間距離および/または高さ位置を調整する機構や、図12に示すように環状ミラー42の水平線となす傾斜角度θを可変に調整する機構を備えることも可能である。 Further, as a hardware scanning adjustment mechanism around the annular mirror 42, as shown in FIG. 11, a mechanism for adjusting the separation distance and / or height position of the annular mirror 42 from the workpiece (not shown), As shown in FIG. 12, it is possible to provide a mechanism for variably adjusting the inclination angle θ formed with the horizontal line of the annular mirror 42.
 シールドガス供給系の一変形例として、被加工物(外装缶100/蓋体102)の側面の継目104の周囲および上方を囲むレーザ光路筺体50の隔壁構造を利用することができる。より詳細には、図8に示すように、レーザ光路筺体50の内側に、シールドガスを垂直下方に向けて噴出するノズル92を設けることができる。図示のノズル92は、たとえば平面視で継目104より幾らか大きな輪郭のスリット状噴出口94を有する面状のノズルとして構成され、継目104の傍らを垂直下方に流れるようにシールドガスを噴き下ろす。これにより、シールドガスのシールド効果を高められるとともに、溶接部(継目104)から発生した蒸発物を横方向(保護ガラス72側)に飛散させずに隔壁85の底部に落とすことができる。これにより、保護ガラス72の汚れが少なくなる。別な観点からすれば、保護ガラス72および環状ミラー42を被加工物(外装缶100/蓋体102)に近づけて配置することもできる。 As a modified example of the shield gas supply system, a partition structure of the laser beam path housing 50 surrounding the periphery and the upper part of the joint 104 on the side surface of the workpiece (exterior can 100 / lid 102) can be used. More specifically, as shown in FIG. 8, a nozzle 92 that ejects a shielding gas vertically downward can be provided inside the laser beam path housing 50. The illustrated nozzle 92 is configured, for example, as a planar nozzle having a slit-like outlet 94 having a slightly larger outline than the joint 104 in plan view, and sprays a shielding gas so as to flow vertically below the joint 104. Accordingly, the shielding effect of the shielding gas can be enhanced, and the evaporated material generated from the welded portion (seam 104) can be dropped to the bottom of the partition wall 85 without being scattered in the lateral direction (the protective glass 72 side). Thereby, the stain | pollution | contamination of the protective glass 72 decreases. From another point of view, the protective glass 72 and the annular mirror 42 can be disposed close to the workpiece (the outer can 100 / the lid 102).
 上記実施形態において、レーザ発振器10は、シングルモードのファイバレーザ発振器に限定されず、他の型式のファイバレーザ発振器やYAGレーザ発振器等であってもよい。レーザ伝送系14において、伝送用光ファイバ36を省く構成も可能である。 In the above embodiment, the laser oscillator 10 is not limited to a single mode fiber laser oscillator, and may be another type of fiber laser oscillator, YAG laser oscillator, or the like. The laser transmission system 14 may be configured such that the transmission optical fiber 36 is omitted.
 また、本発明は、上記実施形態のような角型リチウムイオン電池の外装缶封口加工に限定されるものでは決してなく、側面に継目が形成される任意の角型電池あるいは電池以外の角型セル(たとえば角型リチウムイオンキャパシタ)の外装缶封口加工に適用可能である。 Further, the present invention is not limited to the outer can sealing process of the prismatic lithium ion battery as in the above embodiment, and any prismatic battery or a prismatic cell other than the battery in which a seam is formed on the side surface. The present invention can be applied to exterior can sealing processing (for example, a rectangular lithium ion capacitor).
  10  レーザ発振器
  12  レーザ電源
  16  レーザ照射部
  18  主制御部
  20  スキャニング制御部
  22  シールドガス供給部
  24  ステージ
  42  環状ミラー
  44  スキャナ光学系
  46  缶支持部
  50  レーザ光路筺体
  52  第1軸ガルバノスキャナ
  54  第2軸ガルバノスキャナ
  56  集光レンズ
  58  フォーカシング制御部
  60  コリメートレンズ
  62  発散レンズ
  70  ミラー支持体
  72  保護ガラス
  85  隔壁
  86  テレセントリック-fθレンズ
  90  非テレセントリック-fθレンズ
  92  ノズル
DESCRIPTION OF SYMBOLS 10 Laser oscillator 12 Laser power supply 16 Laser irradiation part 18 Main control part 20 Scanning control part 22 Shield gas supply part 24 Stage 42 Annular mirror 44 Scanner optical system 46 Can support part 50 Laser optical path housing | casing 52 1st axis | shaft galvano scanner 54 2nd axis Galvano scanner 56 Condensing lens 58 Focusing control unit 60 Collimating lens 62 Diverging lens 70 Mirror support 72 Protective glass 85 Bulkhead 86 Telecentric-fθ lens 90 Non-telecentric-fθ lens 92 Nozzle

Claims (24)

  1.  電池または他の電気部品を収容する角型の外装缶と前記外装缶の開口を閉塞する蓋体との間の側面に形成される継目をレーザシーム溶接により接合する外装缶封口方法であって、
     前記蓋体を被せて垂直に立てた前記外装缶の上方にスキャナを配置するとともに、前記スキャナから入射した光線が前記継目へ向かって反射するように、前記外装缶および前記蓋体の周囲に環状ミラーを傾けて配置し、
     レーザ発振部より出力されたレーザシーム溶接用のレーザビームを前記スキャナおよび前記環状ミラーを介して前記継目に照射し、かつ前記レーザビームのビームスポットが前記継目の上で前記外装缶および前記蓋体の側面を一周するように、前記スキャナのスキャニング動作を制御する、
     ことを特徴とする外装缶封口方法。
    An outer can sealing method in which a seam formed on a side surface between a rectangular outer can that contains a battery or other electric component and a lid that closes an opening of the outer can is joined by laser seam welding,
    A scanner is disposed above the outer can that is vertically covered with the lid, and an annular ring is formed around the outer can and the lid so that light incident from the scanner is reflected toward the joint. Tilt the mirror and place it
    A laser beam for laser seam welding output from a laser oscillation unit is irradiated to the joint through the scanner and the annular mirror, and a beam spot of the laser beam is applied to the outer can and the lid on the joint. Controlling the scanning operation of the scanner so as to go around the side surface;
    An outer can sealing method characterized by that.
  2.  前記スキャナの前段に集光レンズを配置し、
     周回方向の各位置で前記レーザビームが前記継目に集光するように、前記集光レンズの焦点距離を周回方向で可変に制御する、
     請求項1に記載の外装缶封口方法。
    A condenser lens is arranged in front of the scanner,
    The focal length of the condenser lens is variably controlled in the circulation direction so that the laser beam is condensed at the joint at each position in the circulation direction.
    The outer can sealing method according to claim 1.
  3.  前記スキャナと前記環状ミラーとの間に非テレセントリックのfθレンズを配置する、請求項2に記載の外装缶封口方法。 The exterior can sealing method according to claim 2, wherein a non-telecentric fθ lens is disposed between the scanner and the annular mirror.
  4.  前記スキャナと前記環状ミラーとの間に非テレセントリックのfθレンズを配置し、
     周回方向の各位置で前記レーザビームが前記継目に集光するように、前記ミラー上の反射点と前記継目との間の距離間隔を周回方向で可変に調整する、
     請求項1に記載の外装缶封口方法。
    A non-telecentric fθ lens is disposed between the scanner and the annular mirror;
    The distance between the reflection point on the mirror and the seam is variably adjusted in the circumference direction so that the laser beam is condensed at the seam at each position in the circumference direction.
    The outer can sealing method according to claim 1.
  5.  前記環状ミラーの水平線となす傾斜角度が、周回方向で可変に調整される、請求項1に記載の外装缶封口方法。 The outer can sealing method according to claim 1, wherein an inclination angle formed with a horizontal line of the annular mirror is variably adjusted in a rotating direction.
  6.  前記環状ミラーの前記外装缶および前記蓋体の側面と向き合う平面視上の角度が、周回方向で可変に調整される、請求項1に記載の外装缶封口方法。 The exterior can sealing method according to claim 1, wherein an angle in a plan view of the annular mirror facing the side surface of the exterior can and the lid body is variably adjusted in a circumferential direction.
  7.  前記スキャナと前記環状ミラーとの間にテレセントリックのfθレンズを配置し、
     周回方向の各位置で前記レーザビームが前記継目に集光するように、前記環状ミラーの水平線となす傾斜角度および前記環状ミラー上の反射点と前記継目との間の距離間隔を周回方向で一定に揃える、
     請求項1に記載の外装缶封口方法。
    A telecentric fθ lens is disposed between the scanner and the annular mirror;
    The angle of inclination formed with the horizontal line of the annular mirror and the distance between the reflection point on the annular mirror and the joint are constant in the circulation direction so that the laser beam is focused on the joint at each position in the circumference direction. To align,
    The outer can sealing method according to claim 1.
  8.  前記継目に対する前記レーザビームの照射が途切れずに、前記レーザビームのビームスポットが前記外装缶および前記蓋体の側面を一周する、請求項1に記載の外装缶封口方法。 The outer can sealing method according to claim 1, wherein irradiation of the laser beam to the joint is not interrupted, and a beam spot of the laser beam goes around the side surface of the outer can and the lid.
  9.  前記レーザビームのビームスポットが前記外装缶および前記蓋体の側面を一周する間に、前記継目に対する前記レーザビームの照射が前記外装缶および前記蓋体の角部付近でいったん途切れる、請求項1に記載の外装缶封口方法。 The laser beam irradiation with respect to the joint is temporarily interrupted in the vicinity of the corners of the outer can and the lid while the beam spot of the laser beam goes around the side surfaces of the outer can and the lid. The outer can sealing method described.
  10.  電池または他の電気部品を収容する角型の外装缶と前記外装缶の開口を閉塞する蓋体との間の側面に形成される継目をレーザシーム溶接により接合する外装缶封口装置であって、
     前記蓋体を被せた前記外装缶を垂直に立てて支持する缶支持部と、
     レーザシーム溶接用のレーザビームを生成するレーザ発振部と、
     前記缶支持部に支持されている前記外装缶および前記蓋体の上方に配置され、前記レーザ発振部からの前記レーザビームを前記外装缶および前記蓋体の周囲に設けられる反射面に向けるスキャナと、
     前記外装缶および前記蓋体の周囲に環状に配置され、前記反射面を有し、前記スキャナから入射する前記レーザビームが前記継目へ反射するように、前記反射面を斜め上方に向けている環状ミラーと、
     前記レーザ発振部からの前記レーザビームを前記スキャナおよび前記環状ミラーを介して前記継目に照射し、かつ前記レーザビームのビームスポットが前記継目の上で前記外装缶および前記蓋体の側面を一周するように、前記スキャナのスキャニング動作を制御する制御部と
     を有する外装缶封口装置。
    An outer can sealing device that joins a seam formed on a side surface between a rectangular outer can that contains a battery or other electrical component and a lid that closes an opening of the outer can by laser seam welding,
    A can support portion that vertically supports the outer can covered with the lid;
    A laser oscillation unit for generating a laser beam for laser seam welding;
    A scanner that is disposed above the outer can and the lid supported by the can support, and directs the laser beam from the laser oscillation unit to a reflective surface provided around the outer can and the lid; ,
    Annularly arranged around the outer can and the lid, has the reflective surface, and the reflective surface is directed obliquely upward so that the laser beam incident from the scanner is reflected to the joint Mirror,
    The laser beam from the laser oscillation unit is irradiated to the joint through the scanner and the annular mirror, and a beam spot of the laser beam goes around the side surface of the outer can and the lid on the joint. Thus, an outer can sealing device comprising: a control unit that controls a scanning operation of the scanner.
  11.  前記スキャナは、前記レーザビームの光軸と交差する2次元方向に前記レーザビームをそれぞれスキャニングするための第1軸および第2軸のガルバノスキャナを有する、請求項10に記載の外装缶封口装置。 11. The outer can sealing apparatus according to claim 10, wherein the scanner includes a first axis and a second axis galvano scanner for scanning the laser beam in a two-dimensional direction intersecting with an optical axis of the laser beam.
  12.  前記スキャナは、前記ガルバノスキャナよりも前段に配置される集光レンズを含み、周回方向の各位置で前記レーザビームが前記継目に集光するように、前記集光レンズの焦点距離を周回方向で可変に制御する第3軸のフォーカシング制御部を有する、請求項10に記載の外装缶封口装置。 The scanner includes a condensing lens arranged in front of the galvano scanner, and the focal length of the condensing lens is set in the revolving direction so that the laser beam is condensed at the joint at each position in the revolving direction. The outer can sealing device according to claim 10, further comprising a third-axis focusing control unit that is variably controlled.
  13.  前記スキャナと前記環状ミラーとの間に配置される非テレセントリックのfθレンズを有する、請求項11に記載の外装缶封口装置。 The outer can sealing apparatus according to claim 11, further comprising a non-telecentric fθ lens disposed between the scanner and the annular mirror.
  14.  前記スキャナと前記環状ミラーとの間に非テレセントリックのfθレンズが配置され、
     周回方向の各位置で前記レーザビームが前記継目に集光するように、前記環状ミラー上の反射点と前記継目との間の距離間隔が周回方向で可変に調整されている、
     請求項10に記載の外装缶封口装置。
    A non-telecentric fθ lens is disposed between the scanner and the annular mirror;
    The distance interval between the reflection point on the annular mirror and the seam is variably adjusted in the circumference direction so that the laser beam is condensed at the seam at each position in the circumference direction.
    The outer can sealing apparatus according to claim 10.
  15.  前記環状ミラーが、周回方向で複数個の板ミラーに分割されている、請求項10に記載の外装缶封口装置。 The outer can sealing device according to claim 10, wherein the annular mirror is divided into a plurality of plate mirrors in a circumferential direction.
  16.  前記環状ミラーの水平線となす傾斜角度が、個々の前記板ミラー毎に調整される、請求項15に記載の外装缶封口装置。 The outer can sealing device according to claim 15, wherein an inclination angle formed with a horizontal line of the annular mirror is adjusted for each of the plate mirrors.
  17.  前記環状ミラーの前記外装缶および前記蓋体の側面と向き合う平面視上の角度が、個々の前記板ミラー毎に調整される、請求項15に記載の外装缶封口装置。 The outer can sealing device according to claim 15, wherein an angle in a plan view of the annular mirror facing the side surface of the outer can and the lid is adjusted for each of the plate mirrors.
  18.  前記スキャナと前記環状ミラーとの間にテレセントリックのfθレンズが配置され、
     周回方向の各位置で前記レーザビームが前記継目に集光するように、前記環状ミラーの水平線となす傾斜角度が周回方向で一定に揃い、かつ前記環状ミラー上の反射点と前記継目との間の距離間隔が周回方向で一定に揃っている、
     請求項10に記載の外装缶封口装置。
    A telecentric fθ lens is disposed between the scanner and the annular mirror;
    The angle of inclination formed with the horizontal line of the annular mirror is uniform in the circumferential direction so that the laser beam is condensed at each position in the circumferential direction, and between the reflection point on the annular mirror and the joint. The distance interval of
    The outer can sealing apparatus according to claim 10.
  19.  前記環状ミラーの反射面は、周回方向において途切れずに連続して延びている、請求項10に記載の外装缶封口装置。 The outer can sealing device according to claim 10, wherein the reflection surface of the annular mirror continuously extends without interruption in a circumferential direction.
  20.  前記環状ミラーの反射面は、周回方向において前記外装缶および前記蓋体の角部と対向する位置またはその付近で分断されている、請求項10に記載の外装缶封口装置。 The outer can sealing device according to claim 10, wherein the reflecting surface of the annular mirror is divided at a position facing the corner of the outer can and the lid in the circumferential direction or in the vicinity thereof.
  21.  前記スキャナから前記環状ミラーまでの前記レーザビームの光路を外部から遮光するために、横断面が環状または回廊状に形成された空洞かつ有底のレーザ光路筺体を有する、請求項10に記載の外装缶封口装置。 The exterior according to claim 10, further comprising a hollow and bottomed laser optical path housing having a circular cross section or a corridor shape in order to shield the optical path of the laser beam from the scanner to the annular mirror from the outside. Can sealing device.
  22.  前記レーザ光路筺体の内周壁に、前記環状ミラーで反射した前記レーザビームを外部へ透過させる保護ガラスが取り付けられている、請求項21に記載の外装缶封口装置。 The outer can sealing device according to claim 21, wherein a protective glass for transmitting the laser beam reflected by the annular mirror to the outside is attached to an inner peripheral wall of the laser beam path housing.
  23.  前記レーザ光路筺体の内側で前記外装缶および前記蓋体の上方から前記継目の周囲にシールドガスを供給するシールドガス供給部を有する請求項21に記載の外装缶封口装置。 The exterior can sealing device according to claim 21, further comprising a shield gas supply unit configured to supply a shield gas around the joint from above the exterior can and the lid inside the laser beam path housing.
  24.  前記外装缶および前記蓋体の周囲で前記シールドガスの雰囲気を保つための隔壁を有する請求項23に記載の外装缶封口装置。 24. The outer can sealing device according to claim 23, further comprising a partition for maintaining an atmosphere of the shielding gas around the outer can and the lid.
PCT/JP2014/003059 2013-06-17 2014-06-09 Outer can sealing method and outer can sealing device WO2014203489A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013126843A JP2015000423A (en) 2013-06-17 2013-06-17 Exterior can sealing method and exterior can sealing apparatus
JP2013-126843 2013-06-17

Publications (1)

Publication Number Publication Date
WO2014203489A1 true WO2014203489A1 (en) 2014-12-24

Family

ID=52104241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003059 WO2014203489A1 (en) 2013-06-17 2014-06-09 Outer can sealing method and outer can sealing device

Country Status (2)

Country Link
JP (1) JP2015000423A (en)
WO (1) WO2014203489A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193665A (en) * 2019-06-19 2019-09-03 广东风华新能源股份有限公司 A kind of fixture for laser welding of lithium battery
CN112864525A (en) * 2019-11-27 2021-05-28 丰田自动车株式会社 Nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020151758A (en) * 2019-03-20 2020-09-24 株式会社フジクラ Laser processing device, laser processing method and method for manufacturing secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135080A (en) * 1997-10-28 1999-05-21 Toshiba Corp Square sealed battery and its manufacture
JP2005088585A (en) * 2003-09-20 2005-04-07 Leister Process Technologies Method and apparatus for joining components by laser beam
JP2009226474A (en) * 2008-03-25 2009-10-08 Towa Corp Processing apparatus and processing method
JP2010051983A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Manufacturing apparatus of microwave circuit substrate and manufacturing method of the same
JP2012110905A (en) * 2010-11-22 2012-06-14 Panasonic Corp Method and apparatus for welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135080A (en) * 1997-10-28 1999-05-21 Toshiba Corp Square sealed battery and its manufacture
JP2005088585A (en) * 2003-09-20 2005-04-07 Leister Process Technologies Method and apparatus for joining components by laser beam
JP2009226474A (en) * 2008-03-25 2009-10-08 Towa Corp Processing apparatus and processing method
JP2010051983A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Manufacturing apparatus of microwave circuit substrate and manufacturing method of the same
JP2012110905A (en) * 2010-11-22 2012-06-14 Panasonic Corp Method and apparatus for welding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193665A (en) * 2019-06-19 2019-09-03 广东风华新能源股份有限公司 A kind of fixture for laser welding of lithium battery
CN112864525A (en) * 2019-11-27 2021-05-28 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
CN112864525B (en) * 2019-11-27 2023-06-09 丰田自动车株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2015000423A (en) 2015-01-05

Similar Documents

Publication Publication Date Title
RU2750313C2 (en) Method for laser processing of metal material with a high level of dynamic control of the axes of movement of the laser beam along a pre-selected processing path, as well as a machine and a computer program for implementing this method
US5841097A (en) Process and apparatus for welding workpieces with two or more laser beams whose spots are oscillated across welding direction
US20050258152A1 (en) Laser beam machining method
JP2005088585A (en) Method and apparatus for joining components by laser beam
JPS6068185A (en) Spot welding method by laser beam
KR101416411B1 (en) Laser welder
US11331752B2 (en) Backside surface welding system and method
Kah et al. Remote laser welding with high power fiber lasers
WO2014203489A1 (en) Outer can sealing method and outer can sealing device
JP2011224618A (en) Laser beam welding method
JP2016150384A (en) Laser welding system and laser welding method
JP2005254618A (en) Resin welding apparatus
JP2006326640A (en) Laser welding method and equipment for laser welding
JP2013154365A (en) Welding apparatus and welding method
KR20210042398A (en) Gas shielding device for use with laser processing heads
CN113977078B (en) Handheld laser welding device and method for cooperatively controlling laser position and power
WO2022075212A1 (en) Laser welding method and laser welding device
JP2001191189A (en) Laser beam welding equipment
JP2015178118A (en) Welding method and welding device
KR100650922B1 (en) A laser welding device
WO2022075209A1 (en) Laser welding method and laser welding device
JP6186049B1 (en) Laser machining equipment with easy multi-axis control
JP5013720B2 (en) Laser processing method
WO2020184516A1 (en) Optical scanner, optical scanning method, and method for manufacturing lithium-ion battery
US20220395925A1 (en) Method for laser machining a workpiece and associated laser machining system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14814013

Country of ref document: EP

Kind code of ref document: A1