JP2013154365A - Welding apparatus and welding method - Google Patents

Welding apparatus and welding method Download PDF

Info

Publication number
JP2013154365A
JP2013154365A JP2012015708A JP2012015708A JP2013154365A JP 2013154365 A JP2013154365 A JP 2013154365A JP 2012015708 A JP2012015708 A JP 2012015708A JP 2012015708 A JP2012015708 A JP 2012015708A JP 2013154365 A JP2013154365 A JP 2013154365A
Authority
JP
Japan
Prior art keywords
laser
welding
welded
laser head
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012015708A
Other languages
Japanese (ja)
Inventor
Yu Goto
悠 後藤
Toshio Kanehara
利雄 金原
Yoshinobu Makino
吉延 牧野
Kazuo Aoyama
和夫 青山
Toshiyuki Minemura
敏幸 峯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012015708A priority Critical patent/JP2013154365A/en
Publication of JP2013154365A publication Critical patent/JP2013154365A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a welding apparatus which can efficiently and readily weld a material to be welded having a gap in a butt joint thereof and difficult to move as appropriate, and to provide a welding method.SOLUTION: A welding apparatus 1 includes: an oscillator 2 for generating laser light; a laser head 3 having an optical waveguide for guiding the laser light and capable of radiating the laser light to a butt joint surface of a plurality of materials B to be welded; a laser displacement gauge 5 for measuring surface profiles of the materials B to be welded; a laser head supporting device 6 that supports the laser head 3 and can change a relative direction between the materials B to be welded and the laser head 3 based on a measurement result of the laser displacement gauge 5 so that the laser light is radiated in a direction along the butt joint surface of the materials B to be welded; a camera 7 for capturing an image of a gap in the butt joint surface; and an arithmetic device 11 that obtains a size of the gap in the butt joint surface from the image captured by the camera 7 to determine a control rate of the laser head 3 and allows the laser light to be radiated to both material sides of the materials B to be welded.

Description

本発明に係る実施形態は溶接装置および溶接方法に関する。   Embodiments according to the present invention relate to a welding apparatus and a welding method.

複数の被溶接材をほぼ同じ面内で突き合わせて突合せ継手を構成し、この突合せ継手を溶接する突合せ溶接が知られている。突合せ継手にレーザー光を照射して被溶接材を溶接するレーザー溶接において、被溶接材間に隙間(ギャップ)がある場合、溶接速度を適正値(被溶接材がほぼ隙間なく接する場合の溶接速度)よりも下げて溶接することによって溶接部にへこみや落ち込みなどの欠陥なく良好に溶接できる。一例として、板厚が1mmの軟鋼をレーザー光で突合せ溶接する場合、レーザー出力が3kw、溶接速度が4m/minのときに約0.05mmの隙間のある被溶接材を良好に溶接できる一方、溶接速度を3m/minに下げることによって約0.1mmの隙間のある被溶接材を良好に溶接できることが知られている(例えば、非特許文献1参照)。   Butt welding is known in which a plurality of materials to be welded are butted in substantially the same plane to form a butt joint, and this butt joint is welded. In laser welding, where the welded material is welded by irradiating the butt joint with laser light, if there is a gap between the welded materials, the welding speed is an appropriate value (the welding speed when the welded material comes in contact with almost no gap). It can be welded satisfactorily without defects such as dents or dents in the welded part. As an example, when butt welding a mild steel with a plate thickness of 1 mm with a laser beam, a welded material having a gap of about 0.05 mm can be favorably welded when the laser output is 3 kw and the welding speed is 4 m / min, It is known that materials to be welded with a gap of about 0.1 mm can be favorably welded by reducing the welding speed to 3 m / min (for example, see Non-Patent Document 1).

この他に、溶接中に溶加材を付加して被溶接材間の隙間を埋める方法も知られている。このような方法には、例えば、レーザー溶接とアーク溶接とを併用するレーザー・アークハイブリッド溶接がある。   In addition, a method of adding a filler material during welding to fill a gap between materials to be welded is also known. Such a method includes, for example, laser-arc hybrid welding using both laser welding and arc welding.

ところで、CCDカメラを備える突合せ溶接の倣い装置が知られている。この倣い装置は、CCDカメラが撮影する画像から被溶接材の開先線を探索し、この探索結果に基づいて溶接トーチを開先線に倣わせる構成となっている(例えば、特許文献1参照。)。   Incidentally, a copying apparatus for butt welding including a CCD camera is known. This copying apparatus is configured to search for a groove line of a material to be welded from an image photographed by a CCD camera and to copy the welding torch to the groove line based on the search result (for example, Patent Document 1). reference.).

また、被溶接材を開先線方向へ相対的に移動して突き合わせ部を摺り合わせ、被溶接材間の隙間を小さくして溶接する溶接装置が知られている(例えば、特許文献2参照)。   Further, there is known a welding apparatus that moves a workpiece to be moved relative to the groove line direction, slides the butted portion, and reduces the gap between the workpieces for welding (see, for example, Patent Document 2). .

特公平5−70553号公報Japanese Patent Publication No. 5-70553 特開2007−105775号公報JP 2007-105775 A

溶接速度を適正値よりも下げて溶接することは、同じ長さを溶接するためにより長い時間を掛けることであり、能率面におけるレーザー溶接の利点を失う。また、溶接速度を適正値よりも下げることは、入熱の増加による溶込み深さの増大や被溶接材の変形、熱影響部の拡大や靭性の低下を招く虞もある。しかも、溶接速度を適正値よりも下げることで対応できる隙間の大きさは高々0.2mm程度であり、これより大きい隙間はレーザー光が通過してしまい、この方法を適用できない。   Welding at a welding speed lower than the proper value takes longer time to weld the same length, and loses the advantages of laser welding in terms of efficiency. In addition, lowering the welding speed below an appropriate value may cause an increase in penetration depth due to an increase in heat input, deformation of a material to be welded, expansion of a heat affected zone, and a decrease in toughness. Moreover, the size of the gap that can be dealt with by lowering the welding speed below the appropriate value is at most about 0.2 mm, and the laser beam passes through a gap larger than this, and this method cannot be applied.

また、溶接中に溶加材を付加して被溶接材間の隙間を埋めることは、溶加材を溶融させる必要が加わるため、同じ長さを溶接するためにより長い時間を掛けることになり、能率面におけるレーザー溶接の利点を失う。しかも、レーザー・アークハイブリッド溶接は、レーザー光以外の熱源(アーク)を併用することによる煩雑性、入熱の増加、これにともなう溶込み深さの増大や被溶接材の変形、熱影響部の拡大や靭性の低下を招く虞がある。   In addition, filling the gap between the welded materials by adding a filler material during welding, it is necessary to melt the filler material, so it takes longer time to weld the same length, Lose the advantages of laser welding in terms of efficiency. Moreover, laser-arc hybrid welding is complicated by using a heat source (arc) other than laser light, increasing heat input, concomitant increase in penetration depth, deformation of the work piece, and heat affected zone. There is a risk of enlarging and lowering toughness.

ところで、容器やボイラーなどの構造物の製缶は、溶接を多用するため、溶接を自動化して生産効率を高めることが望まれる。しかしながら、これら構造物、特に大型の構造物や低廉な規格品の構造物では、被溶接材にあたるそれぞれの部材の寸法精度が低く、被溶接材間に大きい隙間(例えば、0.5mmを超える隙間)を生ずる場合がある。また、これら構造物の溶接作業では、板材を突き合わせて溶接する態様以外に、一方へ開放する箱状の被溶接材に蓋状の被溶接材を嵌め込み(いわゆるインロー構造)、両被溶接材を溶接して一体化する態様がある。   By the way, since cans of structures such as containers and boilers use a lot of welding, it is desired to automate the welding and increase the production efficiency. However, in these structures, particularly large structures and inexpensive standard structures, the dimensional accuracy of each member corresponding to the material to be welded is low, and a large gap between the materials to be welded (for example, a gap exceeding 0.5 mm). ) May occur. In addition, in the welding operation of these structures, in addition to the mode in which the plate materials are butted against each other, a lid-like welded material is fitted into a box-shaped welded material that opens to one side (so-called inlay structure), and both welded materials are used. There is an aspect in which welding is integrated.

これら被溶接材間の隙間が大きくなりがちな構造物にCCDカメラを備える突合せ溶接の倣い装置を適用して溶接の自動化を試みることは、被溶接材間の隙間の大きさが問題になる。仮に溶接速度を適正値より下げてみても、対応できる隙間の大きさは高々0.2mm程度であり、これより大きい隙間ではレーザー光が通過してしまうことに変わりはない。   In order to automate welding by applying a butt welding copying apparatus equipped with a CCD camera to a structure in which the gap between the welded materials tends to be large, the size of the gap between the welded materials becomes a problem. Even if the welding speed is lowered below an appropriate value, the size of the gap that can be handled is at most about 0.2 mm, and there is no change in the laser beam passing through a gap larger than this.

また、被溶接材を溶接線方向へ相対的に移動して突き合わせ部を摺り合わせ、被溶接材間の隙間を小さくして溶接する溶接装置は、箱状の被溶接材に蓋状の被溶接材を嵌め込んで溶接するインロー構造に対して適用が困難である。   In addition, a welding apparatus that moves a workpiece to be welded relative to each other and slides the butt portion to reduce the gap between the workpieces and welds the lid to the box-shaped workpiece. It is difficult to apply to an inlay structure in which a material is fitted and welded.

さらに、定盤上に配置することが困難な大型の構造物を溶接する場合を考える。この場合、構造物の全体を溶接する方法には、溶接装置あるいは溶接箇所を固定して構造物側を適宜に移動させる方法と、構造物側を固定して溶接装置あるいは溶接箇所を適宜に移動させる方法とを取り得る。   Furthermore, consider the case of welding a large structure that is difficult to place on a surface plate. In this case, there are two methods for welding the entire structure: a method in which the welding apparatus or the welding location is fixed and the structure side is appropriately moved; and a structure in which the structure side is fixed and the welding device or the welding position is appropriately moved Can be taken.

まず、溶接装置あるいは溶接箇所を固定して構造物側を適宜に移動させる方法は、移動の都度、溶接装置が照射するレーザー光に対して構造物の位置を定める必要が有る。そうすると、構造物の移動作業、位置決め作業をともなう溶接作業の全体が煩雑になる。   First, in the method of fixing the welding device or the welding location and moving the structure side appropriately, it is necessary to determine the position of the structure with respect to the laser beam irradiated by the welding device each time the device is moved. If it does so, the whole welding operation accompanied with the movement operation | work of a structure and a positioning operation | work will become complicated.

他方、構造物側を固定して溶接装置あるいは溶接箇所を適宜に移動させる方法は、構造物の全体を段階的に溶接することが可能であり簡便である。ただし、この場合でも、突合せ接合面に交差する方向へレーザー光を照射すると継手に良好な溶込みが得られなくなる。   On the other hand, the method of fixing the structure side and appropriately moving the welding apparatus or the welding location is convenient because the entire structure can be welded in stages. However, even in this case, when laser light is irradiated in the direction intersecting the butt joint surface, good penetration cannot be obtained in the joint.

そこで、本発明は、突合せ継手に隙間があり、かつ適宜の移動が困難な被溶接材を効率的かつ簡便に溶接可能な溶接装置および溶接方法を提供することを目的とする。   Then, an object of this invention is to provide the welding apparatus and welding method which can weld the to-be-welded material which has a clearance gap in a butt joint and cannot move appropriately | suitably efficiently and simply.

前記の課題を解決するため本発明の実施形態に係る溶接装置は、レーザー光を発生させる発振器と、前記レーザー光を導く光導波路を有して複数の被溶接材の突合せ接合面へ前記レーザー光を照射可能なレーザーヘッドと、前記被溶接材の表面形状を測定するレーザー変位計と、前記レーザーヘッドを支持するとともに前記レーザー変位計の測定結果に基づいて前記レーザー光が前記接合面に沿う方向へ照射するよう前記被溶接材と前記レーザーヘッドとの相対的な向きを変更可能なレーザーヘッド支持装置と、前記接合面の隙間を撮影するカメラと、前記カメラが撮影する画像から前記隙間の大きさを求め、前記レーザーヘッドの制御量を決定して前記被溶接材の一方側および他方側の両方にレーザー光を照射させる演算装置と、を備えることを特徴とする。   In order to solve the above problems, a welding apparatus according to an embodiment of the present invention includes an oscillator that generates laser light and an optical waveguide that guides the laser light, and the laser light is applied to a butt joint surface of a plurality of materials to be welded. A laser head capable of irradiating a laser beam, a laser displacement meter for measuring the surface shape of the material to be welded, a direction for supporting the laser head and the laser beam along the joint surface based on the measurement result of the laser displacement meter A laser head support device capable of changing the relative orientation of the material to be welded and the laser head so as to irradiate the laser beam, a camera for photographing a gap between the joint surfaces, and a size of the gap from an image photographed by the camera. And an arithmetic unit that determines the control amount of the laser head and irradiates both the one side and the other side of the welded material with laser light. And wherein the door.

また、本発明の実施形態に係る溶接装置は、レーザー光を発生させる発振器と、前記レーザー光を導く光導波路を有して被溶接材の突合せ接合面へ前記レーザー光を照射可能なレーザーヘッドと、前記被溶接材の表面形状を測定するレーザー変位計と、前記レーザーヘッドを支持するとともに前記レーザー変位計の測定結果に基づいて前記レーザー光が前記接合面に沿う方向へ照射するよう前記被溶接材と前記レーザーヘッドとの相対的な向きを変更可能なレーザーヘッド支持装置と、を備えることを特徴とする。   In addition, a welding apparatus according to an embodiment of the present invention includes an oscillator that generates laser light, a laser head that has an optical waveguide that guides the laser light, and can irradiate the butt joint surface of the welded material with the laser light. A laser displacement meter for measuring the surface shape of the material to be welded, and the welding target so as to support the laser head and irradiate the laser light in a direction along the joining surface based on the measurement result of the laser displacement meter. And a laser head support device capable of changing the relative orientation of the material and the laser head.

さらに、本発明の実施形態に係る溶接方法は、被溶接材の表面形状を測定し、前記測定の結果に基づいてレーザー光が前記被溶接材の突合せ接合面に沿う方向へ照射するよう前記被溶接材とレーザーヘッドとの相対的な向きを変更し、前記接合面の隙間の大きさを求め、前記被溶接材の一方側および他方側の両方に前記レーザー光が照射するように前記レーザーヘッドの制御量を決定し、前記被溶接材を溶接することを特徴とする。   Furthermore, the welding method according to the embodiment of the present invention measures the surface shape of the workpiece, and the laser beam is irradiated in a direction along the butt joint surface of the workpiece based on the measurement result. The laser head is configured such that the relative direction between the welding material and the laser head is changed, the size of the gap between the joint surfaces is obtained, and the laser light is irradiated to both one side and the other side of the welding material. The control amount is determined, and the workpiece is welded.

本発明によれば、突合せ継手に隙間があり、かつ適宜の移動が困難な被溶接材を効率的かつ簡便に溶接可能な溶接装置および溶接方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the welding apparatus and welding method which can weld the to-be-welded material which has a clearance gap in a butt joint and cannot move appropriately | suitably efficiently and simply can be provided.

本発明の第1実施形態に係る溶接装置を示す概略的なシステム構成図。1 is a schematic system configuration diagram showing a welding apparatus according to a first embodiment of the present invention. 本発明の第1実施形態に係る溶接装置の制御システムを示す概略図。Schematic which shows the control system of the welding apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る溶接装置および溶接方法を適用する被溶接材を示す斜視図。The perspective view which shows the to-be-welded material which applies the welding apparatus and welding method which concern on 1st Embodiment of this invention. 本発明の第1実施形態に係る溶接装置および溶接方法を適用する被溶接材を示す斜視図。The perspective view which shows the to-be-welded material which applies the welding apparatus and welding method which concern on 1st Embodiment of this invention. 本発明の第1実施形態に係る溶接装置および溶接方法を適用する被溶接材を示す平面図。The top view which shows the to-be-welded material to which the welding apparatus and welding method which concern on 1st Embodiment of this invention are applied. 本発明の第1実施形態に係る溶接装置および溶接方法を適用する被溶接材を示す平面図。The top view which shows the to-be-welded material to which the welding apparatus and welding method which concern on 1st Embodiment of this invention are applied. レーザー光の照射方向が被溶接材Bの突合せ接合面に沿っていない状態で溶接する場合の接合部を示す断面図。Sectional drawing which shows a junction part in the case of welding in the state where the irradiation direction of a laser beam is not along the butt | joint joint surface of the to-be-welded material B. 本発明の第1実施形態に係る溶接装置と被溶接材との配置関係を示す斜視図。The perspective view which shows the arrangement | positioning relationship between the welding apparatus which concerns on 1st Embodiment of this invention, and a to-be-welded material. 本発明の第1実施形態に係る溶接装置のレーザー変位計による被溶接材の測定の様子を示す側面図。The side view which shows the mode of the measurement of the to-be-welded material with the laser displacement meter of the welding apparatus which concerns on 1st Embodiment of this invention. 従来の溶接装置や溶接方法を適用して一体化した被溶接材を示す断面図。Sectional drawing which shows the to-be-welded material integrated by applying the conventional welding apparatus and the welding method. 従来の溶接装置や溶接方法を適用して一体化した被溶接材を示す断面図。Sectional drawing which shows the to-be-welded material integrated by applying the conventional welding apparatus and the welding method. 本発明の第1実施形態に係る溶接装置および溶接方法が被溶接材の一方側および他方側へレーザー光のスポット径を結ぶ態様を示す概略図。Schematic which shows the aspect in which the welding apparatus and welding method which concern on 1st Embodiment of this invention connect the spot diameter of a laser beam to the one side and other side of a to-be-welded material. 本発明の第2実施形態に係る溶接装置を示す概略的なシステム構成図。The schematic system block diagram which shows the welding apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る溶接装置の制御システムを示す概略図。Schematic which shows the control system of the welding apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る溶接装置のレーザーヘッドを示す概略図。Schematic which shows the laser head of the welding apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る溶接装置を示す概略的なシステム構成図。The schematic system block diagram which shows the welding apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る溶接装置のレーザーヘッドを示す概略図。Schematic which shows the laser head of the welding apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る溶接装置を示す概略的なシステム構成図。The schematic system block diagram which shows the welding apparatus which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る溶接装置のレーザーヘッドを示す概略図。Schematic which shows the laser head of the welding apparatus which concerns on 4th Embodiment of this invention.

本発明に係る溶接装置および溶接方法の実施形態について図面を参照して説明する。   An embodiment of a welding apparatus and a welding method according to the present invention will be described with reference to the drawings.

[第1の実施形態]
本発明に係る溶接装置の第1実施形態について、図1から図12を参照して説明する。
[First Embodiment]
1st Embodiment of the welding apparatus which concerns on this invention is described with reference to FIGS.

図1は、本発明の第1実施形態に係る溶接装置を示す概略的なシステム構成図である。   FIG. 1 is a schematic system configuration diagram showing a welding apparatus according to a first embodiment of the present invention.

図1に示すように、本実施形態に係る溶接装置1は、レーザー光を発生させる発振器2と、レーザー光を導く光導波路を有して複数の被溶接材Bの突合せ接合面へレーザー光を照射可能なレーザーヘッド3と、被溶接材Bの表面形状を測定するレーザー変位計5と、レーザーヘッド3を支持するとともにレーザー変位計5の測定結果に基づいてレーザー光が突合せ接合面に沿う方向へ照射するよう被溶接材Bとレーザーヘッド3との相対的な向きを変更可能なレーザーヘッド支持装置6と、突合せ接合面の隙間を撮影するカメラ7と、カメラ7が撮影する画像から突合せ接合面の隙間の大きさを求め、レーザーヘッド3の制御量を決定して被溶接材Bの一方側(被溶接材B1)および他方側(被溶接材B2)の両方へレーザー光を照射させる演算装置11と、を備える。   As shown in FIG. 1, a welding apparatus 1 according to this embodiment includes an oscillator 2 that generates laser light and an optical waveguide that guides the laser light, and emits laser light to a butt joint surface of a plurality of materials to be welded B. Irradiable laser head 3, laser displacement meter 5 for measuring the surface shape of the material B to be welded, and a direction in which the laser beam follows the butt joint surface based on the measurement result of the laser displacement meter 5 while supporting the laser head 3 A laser head support device 6 capable of changing the relative orientation of the workpiece B and the laser head 3 so as to irradiate the laser beam, a camera 7 for photographing the gap between the butt joint surfaces, and a butt joint from an image photographed by the camera 7 The size of the gap between the surfaces is obtained, the control amount of the laser head 3 is determined, and laser light is irradiated to both one side (the material to be welded B1) and the other side (the material to be welded B2) of the material to be welded B. It includes a calculation device 11, the.

また、溶接装置1は、発振器2の運転を制御するレーザー制御装置12と、レーザー変位計5から測定結果を取得し演算装置11へ伝えるインタフェースとしてのレーザー変位計制御装置13と、カメラ7から画像を取得し演算装置11へ伝えるインタフェースとしての画像取得装置14と、レーザーヘッド支持装置6の運転を制御するロボット制御装置15と、を備える。   Further, the welding device 1 includes a laser control device 12 that controls the operation of the oscillator 2, a laser displacement meter control device 13 as an interface that acquires measurement results from the laser displacement meter 5 and transmits the measurement results to the arithmetic device 11, and an image from the camera 7. And an image acquisition device 14 serving as an interface for acquiring the information and transmitting it to the arithmetic device 11, and a robot control device 15 for controlling the operation of the laser head support device 6.

光ファイバ16は発振器2からレーザーヘッド3へレーザー光を導く。   The optical fiber 16 guides laser light from the oscillator 2 to the laser head 3.

レーザーヘッド支持装置6はロボット制御装置15の制御に基づき動作する。レーザーヘッド支持装置6は多軸の関節を備えるロボットアームであり、レーザーヘッド3、レーザー変位計5およびカメラ7を被溶接材Bの近傍に支え、被溶接材Bに対する遠近方向と、この遠近方向に交差する方向(これを「並進方向」と呼ぶ。)へ移動させる。レーザーヘッド支持装置6は多軸の関節を駆使してレーザーヘッド3をその移動可能範囲内で被溶接材Bの突合せ接合面に倣わせて移動させる。レーザーヘッド支持装置6はレーザーヘッド3、レーザー変位計5およびカメラ7の位置座標を特定するために、変位等を計測するセンサ群17を備える。センサ群17は例えばポテンショメータなどの変位計である。   The laser head support device 6 operates based on the control of the robot control device 15. The laser head support device 6 is a robot arm having multi-axis joints, and supports the laser head 3, the laser displacement meter 5 and the camera 7 in the vicinity of the material to be welded B, and the perspective direction with respect to the material to be welded B and the perspective direction. In a direction that intersects (referred to as “translation direction”). The laser head support device 6 moves the laser head 3 along the butt joint surface of the material to be welded B within the movable range by making full use of multi-axis joints. The laser head support device 6 includes a sensor group 17 that measures displacement and the like in order to specify the position coordinates of the laser head 3, the laser displacement meter 5, and the camera 7. The sensor group 17 is a displacement meter such as a potentiometer.

また、レーザーヘッド支持装置6はレーザーヘッド3の向き、すなわちレーザー光の照射方向を変える関節を有する。この関節はレーザーヘッド3の揺動、所謂首振り運動を可能にする。このレーザーヘッド3の揺動は被溶接材Bに対するレーザー光の方向を変更する。   The laser head support device 6 has a joint that changes the direction of the laser head 3, that is, the irradiation direction of the laser light. This joint allows the laser head 3 to swing, so-called swinging motion. The oscillation of the laser head 3 changes the direction of the laser beam with respect to the workpiece B.

さらに、レーザーヘッド支持装置6はレーザーヘッド3の向きを変える駆動装置18を備える。駆動装置18はロボット制御装置15を介して演算装置11の指令にしたがいレーザーヘッド3の向きを変更する。なお、レーザーヘッド3の向きの変更は、レーザー変位計5の測定結果に基づいて手動で行っても良い。   Further, the laser head support device 6 includes a driving device 18 that changes the direction of the laser head 3. The drive device 18 changes the direction of the laser head 3 in accordance with a command from the arithmetic device 11 via the robot control device 15. The orientation of the laser head 3 may be changed manually based on the measurement result of the laser displacement meter 5.

ここで、レーザーヘッド支持装置6によるレーザーヘッド3の移動可能範囲を超えて溶接を施す必要のある被溶接材を大型構造物と呼ぶ。大型構造物を溶接する場合、溶接装置1は少なくともレーザーヘッド支持装置6、レーザーヘッド3、レーザー変位計5およびカメラ7を適宜に移動させて大型構造物全体の溶接箇所を適宜に溶接する。   Here, a material to be welded that needs to be welded beyond the movable range of the laser head 3 by the laser head support device 6 is called a large structure. When welding a large structure, the welding apparatus 1 appropriately moves at least the laser head support device 6, the laser head 3, the laser displacement meter 5, and the camera 7 to appropriately weld the welding portion of the entire large structure.

カメラ7はCCDカメラである。   The camera 7 is a CCD camera.

演算装置11は、被溶接材Bに結ぶレーザー光のスポット径が突合せ接合面の隙間よりも大きくなるレーザーヘッド3の制御量を決定するレーザー光調整部19と、カメラ7が撮影した画像を取得し、この画像の明暗から開先線を探索し、突合せ接合面の位置を求めてレーザー光が開先線に倣うようレーザーヘッド3の並進方向の制御量を定める倣い処理部21と、レーザー変位計5の測定結果を取得してレーザー光が突合せ接合面に沿うようにレーザーヘッド3の揺動方向の制御量を定める揺動処理部22と、を備える。   The arithmetic unit 11 acquires an image photographed by the camera 7 and a laser beam adjusting unit 19 that determines a control amount of the laser head 3 in which the spot diameter of the laser beam to be welded B is larger than the gap between the butt joint surfaces. Then, a scanning line is searched from the brightness of this image, the position of the butt joint surface is obtained, and a scanning processing unit 21 for determining a control amount in the translation direction of the laser head 3 so that the laser beam follows the groove line, and a laser displacement And a swing processing unit 22 that obtains a total of 5 measurement results and determines a control amount in the swing direction of the laser head 3 so that the laser light follows the butt joint surface.

レーザー光調整部19は、カメラ7が撮影した画像を取得し、この画像の明暗から開先線を探索して突合せ接合面の隙間の大きさを求め、この隙間の大きさから被溶接材Bに結ぶレーザー光のスポット径の必要な大きさを求める必要スポット径算出部23と、必要スポット径算出部23が求めるスポット径を結ぶようにレーザーヘッド3の遠近方向の制御量を定める制御量決定部25と、必要スポット径算出部23が求めるスポット径の拡大とともに発振器2の出力を上げるレーザー出力調整部26と、を備える。   The laser light adjusting unit 19 acquires an image taken by the camera 7, searches for a groove line from the brightness of the image, obtains the size of the gap of the butt joint surface, and determines the size of the welded material B from the size of the gap. Control amount determination for determining the control amount in the near and near direction of the laser head 3 so as to connect the required spot diameter calculation unit 23 for obtaining a required size of the spot diameter of the laser beam to be connected to the spot diameter required by the necessary spot diameter calculation unit 23 And a laser output adjustment unit 26 that increases the output of the oscillator 2 as the spot diameter obtained by the required spot diameter calculation unit 23 increases.

ロボット制御装置15は、レーザー制御装置12による発振器2の運転開始あるいは運転停止に応じて、演算装置11からレーザーヘッド3の並進方向の制御量、揺動方向の制御量、遠近方向の制御量を取得し、これら制御量に基づいてレーザーヘッド支持装置6の各関節を駆動し、ひいてはレーザーヘッド3を移動させて被溶接材Bを溶接する。   The robot controller 15 sends the control amount in the translation direction, the control amount in the oscillation direction, and the control amount in the perspective direction of the laser head 3 from the arithmetic unit 11 in accordance with the start or stop of the operation of the oscillator 2 by the laser control device 12. Based on these control amounts, the respective joints of the laser head support device 6 are driven, and as a result, the laser head 3 is moved to weld the material B to be welded.

また、ロボット制御装置15は、レーザーヘッド支持装置6のセンサ群17から計測結果を取得して記憶する教示データ記憶部27と、演算装置11からレーザーヘッド3の並進方向の制御量、揺動方向の制御量、遠近方向の制御量を取得し、これらの制御量と教示データ記憶部27が記憶するセンサ群17の計測結果と比較してレーザーヘッド支持装置6の数値制御を行うロボット制御部28と、を備える。   In addition, the robot control device 15 acquires a measurement result from the sensor group 17 of the laser head support device 6 and stores it, a control amount in the translation direction of the laser head 3 from the arithmetic device 11, and a swing direction. And the control amount in the perspective direction are obtained, and these control amounts are compared with the measurement results of the sensor group 17 stored in the teaching data storage unit 27 to perform numerical control of the laser head support device 6. And comprising.

図2は、本発明の第1実施形態に係る溶接装置の制御システムを示す概略図である。   FIG. 2 is a schematic diagram showing a control system of the welding apparatus according to the first embodiment of the present invention.

図2に示すように、本実施形態に係る溶接装置1の演算装置11は、隙間量演算機能31と、必要スポット径演算機能32と、遠近位置演算機能33と、レーザー出力演算機能35と、レーザーヘッド−被溶接材間距離演算機能36と、レーザーヘッド移動量演算機能37と、接合面傾斜量演算機能38と、レーザーヘッド揺動量演算機能39と、レーザーヘッド支持装置制御量演算機能41と、を備える。   As shown in FIG. 2, the calculation device 11 of the welding apparatus 1 according to the present embodiment includes a gap amount calculation function 31, a necessary spot diameter calculation function 32, a perspective position calculation function 33, a laser output calculation function 35, Laser head-to-be-welded material distance calculation function 36, laser head movement amount calculation function 37, joint surface inclination amount calculation function 38, laser head swing amount calculation function 39, laser head support device control amount calculation function 41, .

隙間量演算機能31はカメラ7が撮影した画像の明暗から開先線、ひいては突合せ接合面の隙間の大きさを求める。必要スポット径算出部23が隙間量演算機能31を備える。   The gap amount calculation function 31 obtains the groove line, and hence the size of the gap between the butt joint surfaces, from the brightness and darkness of the image taken by the camera 7. The necessary spot diameter calculation unit 23 includes a gap amount calculation function 31.

必要スポット径演算機能32は隙間量演算機能31が求める突合せ接合面の隙間の大きさから被溶接材Bに結ぶレーザー光のスポット径の必要な大きさを求める。必要スポット径算出部23が必要スポット径演算機能32を備える。   The required spot diameter calculation function 32 calculates the required size of the spot diameter of the laser beam to be connected to the workpiece B from the size of the gap of the butt joint surface obtained by the gap amount calculation function 31. The required spot diameter calculation unit 23 includes a required spot diameter calculation function 32.

遠近位置演算機能33は必要スポット径演算機能32が求めるスポット径を結ぶためのレーザーヘッド3の遠近方向の位置を求める。制御量決定部25が遠近位置演算機能33を備える。   The perspective position calculation function 33 calculates the position of the laser head 3 in the perspective direction for connecting the spot diameters required by the necessary spot diameter calculation function 32. The control amount determination unit 25 includes a perspective position calculation function 33.

レーザー出力演算機能35は必要スポット径演算機能32が求めるスポット径において効率良く溶接を進めることが可能な適宜のレーザー出力を求め、これに対応する発振器2の制御量を定める。レーザー出力調整部26がレーザー出力演算機能35を備える。   The laser output calculation function 35 obtains an appropriate laser output capable of efficiently proceeding welding at the spot diameter required by the required spot diameter calculation function 32, and determines the control amount of the oscillator 2 corresponding to this. The laser output adjustment unit 26 includes a laser output calculation function 35.

レーザーヘッド−被溶接材間距離演算機能36は、レーザーヘッド支持装置6のセンサ群17から計測結果を取得して被溶接材Bとレーザーヘッド3との相対的な位置関係を求める。制御量決定部25がレーザーヘッド−被溶接材間距離演算機能36を備える。   The laser head-to-be-welded material distance calculation function 36 obtains a measurement result from the sensor group 17 of the laser head support device 6 and obtains a relative positional relationship between the to-be-welded material B and the laser head 3. The control amount determination unit 25 includes a laser head-to-be-welded material distance calculation function 36.

レーザーヘッド移動量演算機能37は、遠近位置演算機能33が求めるレーザーヘッド3の遠近方向の位置と、レーザーヘッド−被溶接材間距離演算機能36が求める被溶接材Bとレーザーヘッド3との相対的な位置関係とから、レーザーヘッド3の遠近方向の制御量を定める。制御量決定部25がレーザーヘッド移動量演算機能37を備える。   The laser head movement amount calculation function 37 includes a position in the perspective direction of the laser head 3 obtained by the perspective position calculation function 33 and a relative relationship between the laser head 3 and the workpiece B to be welded obtained by the laser head-to-be-welded material distance calculation function 36. The amount of control of the laser head 3 in the perspective direction is determined from the specific positional relationship. The control amount determination unit 25 includes a laser head movement amount calculation function 37.

接合面傾斜量演算機能38は、レーザー変位計5の測定結果を取得してレーザーヘッド支持装置6を基準として被溶接材Bがどのように傾いているかを求める。揺動処理部22が接合面傾斜量演算機能38を備える。   The joint surface tilt amount calculation function 38 obtains the measurement result of the laser displacement meter 5 and determines how the workpiece B is tilted with reference to the laser head support device 6. The swing processing unit 22 includes a joint surface inclination amount calculation function 38.

レーザーヘッド揺動量演算機能39は、接合面傾斜量演算機能38が求める被溶接材Bの傾きから突合せ接合面にレーザー光を沿わせるためにレーザーヘッド3の揺動方向の制御量を定める。揺動処理部22がレーザーヘッド揺動量演算機能39を備える。   The laser head swing amount calculation function 39 determines a control amount in the swing direction of the laser head 3 in order to bring the laser light along the butt joint surface from the inclination of the workpiece B required by the joint surface tilt amount calculation function 38. The swing processing unit 22 includes a laser head swing amount calculation function 39.

レーザーヘッド支持装置制御量演算機能41は、レーザーヘッド揺動量演算機能39から取得するレーザーヘッド3の揺動方向の制御量、およびレーザーヘッド移動量演算機能37から取得するレーザーヘッド3の遠近方向の制御量に加えて、倣い処理部21から取得するレーザーヘッド3の並進方向の制御量と、教示データ記憶部27から取得する計測結果とに基づいてレーザーヘッド支持装置6の各関節を駆動する数値制御を行う。ロボット制御部28がレーザーヘッド支持装置制御量演算機能41を備える。   The laser head support device control amount calculation function 41 is a control amount in the swing direction of the laser head 3 acquired from the laser head swing amount calculation function 39 and a perspective direction of the laser head 3 acquired from the laser head movement amount calculation function 37. In addition to the control amount, a numerical value for driving each joint of the laser head support device 6 based on the control amount in the translation direction of the laser head 3 acquired from the copying processing unit 21 and the measurement result acquired from the teaching data storage unit 27 Take control. The robot control unit 28 includes a laser head support device control amount calculation function 41.

溶接装置1は、複数、例えば2つの平板をほぼ同じ面内で突き合わせて突合せ継手を構成し、この突合せ継手を溶接することはもちろん可能であるが、一方へ開放する箱状の被溶接材に蓋状の被溶接材を嵌め込み(いわゆるインロー構造)、両被溶接材を溶接して一体化する、いわゆる製缶に好適である。そこで、製缶される被溶接材Bについて説明する。   The welding apparatus 1 can butt a plurality of, for example, two flat plates in substantially the same plane to form a butt joint, and of course can weld this butt joint. It is suitable for so-called can making, in which a lid-like workpiece is fitted (so-called inlay structure) and both workpieces are welded and integrated. Therefore, the material to be welded B to be manufactured will be described.

図3および図4は、本発明の第1実施形態に係る溶接装置および溶接方法を適用する被溶接材を示す斜視図である。   3 and 4 are perspective views showing a material to be welded to which the welding apparatus and the welding method according to the first embodiment of the present invention are applied.

図5および図6は、本発明の第1実施形態に係る溶接装置および溶接方法を適用する被溶接材を示す平面図である。   5 and 6 are plan views showing a material to be welded to which the welding apparatus and the welding method according to the first embodiment of the present invention are applied.

図3から図6に示すように、本実施形態に係る溶接装置1および溶接方法を適用する被溶接材Bは、一方へ開放する箱状の被溶接材B1と、蓋状の被溶接材B2と、を備える。被溶接材B1は開口縁に嵌め込まれる被溶接材B2を支える段状部b1を備える。   As shown in FIGS. 3 to 6, the welded material B to which the welding apparatus 1 and the welding method according to the present embodiment are applied includes a box-shaped welded material B1 that opens to one side and a lid-shaped welded material B2. And comprising. The welded material B1 includes a stepped portion b1 that supports the welded material B2 fitted into the opening edge.

被溶接材B1と被溶接材B2との突合せ継手形状はI型である。   The shape of the butt joint between the material to be welded B1 and the material to be welded B2 is type I.

被溶接材B2を被溶接材B1の段状部b1に嵌め込むと、被溶接材B2の縁と被溶接材B1の開口との間、すなわち被溶接材B2と被溶接材B1との突合せ接合面に隙間Gが生じる。この隙間Gは被溶接材B1、B2の寸法精度が十分に高くないために生じるが、あまり精度を高めすぎると被溶接材B2を被溶接材B1に嵌め込むことが難しくなったり、それぞれの被溶接材B1、B2が高コスト化してしまったりして好ましくない。   When the work piece B2 is fitted into the stepped portion b1 of the work piece B1, the butt joint between the edge of the work piece B2 and the opening of the work piece B1, that is, the work piece B2 and the work piece B1. A gap G is generated on the surface. The gap G is generated because the dimensional accuracy of the workpieces B1 and B2 is not sufficiently high. However, if the accuracy is too high, it is difficult to fit the workpiece B2 into the workpiece B1. It is not preferable because the welding materials B1 and B2 are expensive.

また、被溶接材Bが大型な構造物である場合、溶接装置1および溶接方法は定置される被溶接材Bとの相対的な位置を変更しつつ被溶接材Bを溶接して一体化する(図6)。   Moreover, when the to-be-welded material B is a large-sized structure, the welding apparatus 1 and the welding method weld and integrate the to-be-welded material B while changing the relative position with respect to the to-be-welded material B to be fixed. (FIG. 6).

このように、被溶接材Bではなく、溶接装置1および溶接方法を適用する溶接箇所を移すことで、被溶接材Bの定置に係る作業回数を抑制し、実質的には被溶接材Bを定置した後、移動させることなく被溶接材B全体の溶接を行うことができる。   In this way, by moving the welding location to which the welding apparatus 1 and the welding method are applied instead of the material to be welded B, the number of operations related to the placement of the material to be welded B is suppressed, and the material to be welded B is substantially reduced. After the placement, the entire workpiece B can be welded without being moved.

ところで、溶接装置1および溶接方法を適用する溶接箇所を移すと、レーザー光の照射方向が被溶接材Bの突合せ接合面内に位置しなくなる場合がある。   By the way, if the welding location to which the welding apparatus 1 and the welding method are applied is moved, the irradiation direction of the laser beam may not be located in the butt joint surface of the material to be welded B.

図7は、レーザー光の照射方向が被溶接材Bの突合せ接合面に沿っていない状態で溶接する場合の接合部を示す断面図である。なお、図7は、説明を簡単にするために隙間Gのない部分を示す。   FIG. 7 is a cross-sectional view showing a joint portion when welding is performed in a state where the irradiation direction of the laser beam is not along the butt joint surface of the material B to be welded. FIG. 7 shows a portion without a gap G for the sake of simplicity.

図7に示すように、溶接装置1および溶接方法を適用する溶接箇所の移動にともなって、レーザー光の照射方向Lが被溶接材Bの突合せ接合面P内に位置しなくなると、溶接部の溶け込みWが突合せ接合面Pに対して傾き、溶け残り領域Zが生じてしまい良好な接合が得られなくなる。   As shown in FIG. 7, if the irradiation direction L of the laser beam is no longer located in the butt joint surface P of the workpiece B as the welding location to which the welding apparatus 1 and the welding method are applied, The penetration W is inclined with respect to the butt joint surface P, and an unmelted region Z is generated, so that a good joint cannot be obtained.

そこで、溶接装置1はレーザー変位計5により被溶接材Bの形状、ひいては突合せ接合面の方向を明らかにし、レーザーヘッド3を揺動させることで突合せ接合面に対してレーザー光の照射方向を沿わせる。   Therefore, the welding apparatus 1 uses the laser displacement meter 5 to clarify the shape of the material to be welded B, and hence the direction of the butt joint surface, and by oscillating the laser head 3, the laser light irradiation direction is applied to the butt joint surface. Make it.

図8は、本発明の第1実施形態に係る溶接装置と被溶接材との配置関係を示す斜視図である。   FIG. 8 is a perspective view showing the positional relationship between the welding apparatus and the material to be welded according to the first embodiment of the present invention.

図9は、本発明の第1実施形態に係る溶接装置のレーザー変位計による被溶接材の測定の様子を示す側面図である。   FIG. 9 is a side view showing a state of measurement of the material to be welded by the laser displacement meter of the welding apparatus according to the first embodiment of the present invention.

図8および図9に示すように、溶接装置1の揺動処理部22は、レーザー変位計5で被溶接材Bの表面形状を測定し、この表面形状と溶接面との位置関係(一般には直交する)から突合せ接合面の向きを特定し、レーザーヘッド3を揺動して突合せ接合面にレーザー光の照射方向を沿わせる。   As shown in FIGS. 8 and 9, the swing processing unit 22 of the welding apparatus 1 measures the surface shape of the material to be welded B with the laser displacement meter 5, and the positional relationship between the surface shape and the welding surface (generally, The direction of the butt joint surface is specified from (perpendicular to), and the laser head 3 is swung so that the laser beam irradiation direction is aligned with the butt joint surface.

なお、レーザー光の照射方向と突合せ接合面とのなす角度θは、4箇所に配置されたレーザー変位計5a、5b、5c、5dと被溶接材Bとの距離a、b、c、dと、測定箇所毎の並進方向の距離eとから次式で求める。   The angle θ formed between the laser beam irradiation direction and the butt joint surface is determined by the distances a, b, c, d between the laser displacement meters 5a, 5b, 5c, 5d arranged at four locations and the material B to be welded. From the distance e in the translation direction for each measurement point, the following equation is used.

θ=tan-1{(b−a)÷e}
ところで、被溶接材Bに従来の溶接装置や溶接方法を適用すると、蓋状の被溶接材B2に熱影響による変形が生じたり、隙間Gが拡大したりする場合がある。
θ = tan −1 {(ba) ÷ e}
By the way, when a conventional welding apparatus or welding method is applied to the material to be welded B, the lid-shaped material to be welded B2 may be deformed by a thermal effect or the gap G may be enlarged.

図10および図11は、従来の溶接装置や溶接方法を適用して一体化した被溶接材を示す断面図である。   10 and 11 are cross-sectional views showing a material to be welded integrated by applying a conventional welding apparatus or welding method.

図10に示すように、溶接速度を適正値よりも下げて隙間Gのある被溶接材Bを溶接することは、溶接部への入熱を増加し、被溶接材B2の板厚に比べて熱影響部が大きくなり、また熱による蓋状の被溶接材B2の膨張を促し、溶接部Wが冷え固まった状態で被溶接材B2の変形を生じる虞がある。   As shown in FIG. 10, welding the workpiece B with the gap G by lowering the welding speed from an appropriate value increases the heat input to the welded portion, compared to the plate thickness of the workpiece B2. There is a possibility that the heat-affected zone becomes large, and the lid-like welded material B2 is expanded by heat, and the welded material B2 is deformed when the welded portion W is cooled and solidified.

また、図11に示すように、従来の溶接装置あるいは溶接方法は、溶接前に被溶接材B2の両縁それぞれの隙間Gが溶接可能な大きさであっても、一方の縁を溶接することで他方の縁に隙間Gが集中してしまい、隙間の大きさが溶接可能な大きさを超える虞もある。   Moreover, as shown in FIG. 11, the conventional welding apparatus or welding method welds one edge even if the gap G of each edge of the workpiece B2 is weldable before welding. Then, the gap G is concentrated on the other edge, and the size of the gap may exceed the size that can be welded.

さらに、従来の溶接装置あるいは溶接方法は、突合せ接合面の隙間の大きさがレーザー光のスポット径に近づいたり、スポット径よりも大きくなったりするとレーザー光が隙間を通過してしまい溶接できなくなる。   Further, in the conventional welding apparatus or welding method, if the size of the gap between the butt joint surfaces approaches the spot diameter of the laser beam or becomes larger than the spot diameter, the laser beam passes through the gap and cannot be welded.

そこで、本実施形態に係る溶接装置1および溶接方法は、突合せ接合面の隙間の大きさに応じてレーザーヘッド3の制御量を決定し、被溶接材Bの一方側(被溶接材B1)および他方側(被溶接材B2)の両方にレーザー光を照射させる。より詳しくは、本実施形態に係る溶接装置1および溶接方法は、レーザーヘッド3の制御量、特に遠近方向の制御量を調整することでレーザー光が突合せ接合面の隙間を通過することを防ぎ、被溶接材B1、B2の双方にスポット径が跨がるようレーザーヘッド3を制御する。   Therefore, in the welding apparatus 1 and the welding method according to the present embodiment, the control amount of the laser head 3 is determined according to the size of the gap between the butt joint surfaces, and one side of the welding material B (the welding material B1) and Both sides of the other side (the material to be welded B2) are irradiated with laser light. More specifically, the welding apparatus 1 and the welding method according to the present embodiment prevent the laser light from passing through the gap of the butt joint surface by adjusting the control amount of the laser head 3, particularly the control amount in the perspective direction, The laser head 3 is controlled so that the spot diameter extends over both the workpieces B1 and B2.

図12は、本発明の第1実施形態に係る溶接装置および溶接方法が被溶接材の一方側および他方側へレーザー光のスポット径を結ぶ態様を示す概略図である。   FIG. 12 is a schematic view showing an aspect in which the welding apparatus and the welding method according to the first embodiment of the present invention connect the spot diameter of laser light to one side and the other side of the workpiece.

図12に示すように、本実施形態に係るレーザーヘッド3の集光レンズ42は、焦点距離Laの位置に焦点fを結ぶ。そこで、溶接装置1は、レーザーヘッド3と被溶接材Bとの離間距離、あるいは集光レンズ42と被溶接材Bとの離間距離Lbを焦点fよりも集光レンズ42側へ近づけて、キーホール形状を大きく、ひいては被溶接材Bに結ぶレーザー光のスポット径W0を拡大する。このとき、溶接装置1は、隙間Gの大きさよりもスポット径W0が大きくなるように被溶接材Bへ集光レンズ42を近づけ、被溶接材B1、B2それぞれの継手部を溶融させ、隙間Gを埋めて被溶接材Bを溶接する。この離間距離Lbは、レーザーヘッド3の遠近方向の制御量で決まり、レーザーヘッド3全体を移動させて制御しても良いし、集光レンズ42のみを移動させて制御しても良い。   As shown in FIG. 12, the condenser lens 42 of the laser head 3 according to the present embodiment focuses the focal point f at the position of the focal length La. Accordingly, the welding apparatus 1 moves the separation distance Lb between the laser head 3 and the workpiece B or the separation distance Lb between the condenser lens 42 and the workpiece B closer to the condenser lens 42 side than the focal point f. The hole shape is enlarged, and the spot diameter W0 of the laser beam to be connected to the workpiece B is increased. At this time, the welding apparatus 1 brings the condensing lens 42 close to the material to be welded B so that the spot diameter W0 is larger than the size of the gap G, melts the joint portions of the materials to be welded B1 and B2, and the gap G And welding the material B to be welded. The separation distance Lb is determined by a control amount in the perspective direction of the laser head 3 and may be controlled by moving the entire laser head 3 or may be controlled by moving only the condenser lens 42.

このとき、被溶接材Bの突合せ接合面は焦点fから外れる、すなわちデフォーカスすることになり、突合せ接合面におけるレーザー光のエネルギー密度が低下し、場合によっては溶接が難しくなるため、溶接装置1は適宜にレーザーの出力を上げる。   At this time, the butt joint surface of the material to be welded B deviates from the focal point f, that is, defocuses, the energy density of the laser beam at the butt joint surface decreases, and in some cases, welding becomes difficult. Increase the laser power appropriately.

また、突合せ接合面の隙間Gの大きさと、被溶接材Bに結ぶレーザー光のスポット径の必要な大きさとの関係は、溶接に先立ち予め実験的に収集するデータを整理して得る。具体的には、約0.2mmの隙間Gに対してスポット径を約0.6mmから約1.2mmに比例的に拡大することで、溶接装置1は隙間Gを有するSUS304(オーステナイト系ステンレス)の被溶接材Bを溶接する。また、スポット径を約1.2mm、溶接速度を約0.75m/min、レーザー出力を約3kW、入熱を約2400J/cmに設定することで、溶接装置1は約0.6mmの隙間Gを有する板厚が8mmのSUS316L(オーステナイト系ステンレス)の被溶接材Bを溶接できる。さらに、スポット径を約0.6mm、溶接速度を約2m/min、レーザー出力を約1kW、入熱を約3000J/cmに設定することで、溶接装置1は約0.2mmの隙間Gを有するSUS304(オーステナイト系ステンレス)の被溶接材Bを溶接することもできる。   Further, the relationship between the size of the gap G between the butt joint surfaces and the required size of the spot diameter of the laser beam to be welded B can be obtained by organizing data collected experimentally in advance prior to welding. Specifically, the welding apparatus 1 is made of SUS304 (austenitic stainless steel) having a gap G by proportionally increasing the spot diameter from about 0.6 mm to about 1.2 mm with respect to the gap G of about 0.2 mm. The welding material B is welded. Further, by setting the spot diameter to about 1.2 mm, the welding speed to about 0.75 m / min, the laser output to about 3 kW, and the heat input to about 2400 J / cm, the welding apparatus 1 has a gap G of about 0.6 mm. SUS316L (austenitic stainless steel) to be welded B having a thickness of 8 mm can be welded. Furthermore, by setting the spot diameter to about 0.6 mm, the welding speed to about 2 m / min, the laser output to about 1 kW, and the heat input to about 3000 J / cm, the welding apparatus 1 has a gap G of about 0.2 mm. It is also possible to weld the material B to be welded of SUS304 (austenitic stainless steel).

さらに、被溶接材Bに結ぶレーザー光のスポット径の大きさと、溶接を効率的に行うことが可能なレーザー出力との関係は、溶接に先立ち予め実験的に収集するデータを整理して得る。   Further, the relationship between the size of the spot diameter of the laser beam connected to the material to be welded B and the laser output capable of performing welding efficiently is obtained by organizing data collected experimentally in advance prior to welding.

なお、溶接装置1は、SUS304、SUS316Lの他のオーステナイト系ステンレス鋼、炭素鋼、インコネル(登録商標、ニッケル基の超合金)を素材とする被溶接材Bに対してほぼ同じ溶接条件を適用して溶接できる。他方、溶接装置1は、アルミニウム合金や銅などレーザー光の反射率が高い素材では入熱条件を大幅に上げる必要が有る。   The welding apparatus 1 applies substantially the same welding conditions to a material to be welded B made of SUS304, SUS316L other austenitic stainless steel, carbon steel, or Inconel (registered trademark, nickel-base superalloy). Can be welded. On the other hand, it is necessary for the welding apparatus 1 to greatly increase the heat input condition for a material having a high laser beam reflectance such as an aluminum alloy or copper.

そして、本実施形態に係る溶接方法は、被溶接材Bの表面形状を測定し、この測定の結果に基づいてレーザー光が被溶接材Bの突合せ接合面に沿う方向へ照射するよう被溶接材Bとレーザーヘッド3との相対的な向きを変更し、突合せ接合面の隙間の大きさを求め、被溶接材Bの一方側(被溶接材B1)および他方側(被溶接材B2)の両方にレーザー光が照射するようにレーザーヘッド3の制御量を決定し、被溶接材Bを溶接する。   And the welding method which concerns on this embodiment measures the surface shape of the to-be-welded material B, and based on the result of this measurement, the to-be-welded material is irradiated in the direction along the butt joint surface of the to-be-welded material B The relative direction between B and the laser head 3 is changed, the size of the gap between the butt joint surfaces is obtained, and both one side (the material to be welded B1) and the other side (the material to be welded B2) of the material to be welded B The control amount of the laser head 3 is determined so that the laser beam is irradiated, and the workpiece B is welded.

また、本実施形態に係る溶接方法は、被溶接材Bに結ぶレーザー光のスポット径が突合せ接合面の隙間よりも大きくなるレーザーヘッド3の制御量を決定する。   Further, in the welding method according to the present embodiment, the control amount of the laser head 3 is determined such that the spot diameter of the laser beam to be connected to the workpiece B is larger than the gap between the butt joint surfaces.

さらに、本実施形態に係る溶接方法は、レーザー光のスポット径の拡大とともにレーザー光を発生させる発振器2の出力を上げる。   Furthermore, the welding method according to the present embodiment increases the output of the oscillator 2 that generates laser light as the spot diameter of the laser light increases.

本実施形態に係る溶接装置1および溶接方法は、レーザー変位計5で被溶接材Bを測定し、レーザー光の照射方向に対する突合せ接合面の傾きを明らかにして、レーザー光の照射方向が突合せ接合面に沿うようレーザーヘッド3を揺動しレーザー光の照射方向を調整する。これによって、溶接装置1および溶接方法は突合せ接合面にレーザー光を確実に照射して溶接部に凹みや落ち込みを生じさせることなく、被溶接材Bを良好に溶接できる。また、このことは、突合せ接合面に隙間がある場合、隙間を隔てる被溶接材Bの一方側(被溶接材B1)と他方側(被溶接材B2)とを均等に溶融させることを可能にし、被溶接材Bを良好に溶接できる。溶接装置1および溶接方法によるこのようなギャップ裕度の向上は、特に製缶のように被溶接材B1、B2間の寸法精度を十分に高めがたい構造物の溶接において、溶接部にへこみや落ち込みを生じさせず、必要な溶込み量を確保して溶接の品質を顕著に向上させる。さらに、このことは、被溶接材Bが大型の構造物である場合に特に有益である。すなわち、溶接装置1および溶接方法は、被溶接材Bを移動させることなく、溶接装置1の使用場所なり溶接方法の適用場所なりを順次移動させることによって被溶接材B全体の溶接を容易化する。しかも、大型の構造物では、中、小型の構造物に比べて溶接部に大きな溶込み深さが要求される。仮に、突合せ接合面に対してレーザー光を非平行に照射してしまうと、溶込み深さは不十分になり、継手部は溶け残る。一方、溶接装置1および溶接方法は、レーザーヘッド3を揺動しレーザー光の照射方向を調整することによって、レーザー光を突合せ接合面内に照射して溶け残りのない良好な溶接を得る。   In the welding apparatus 1 and the welding method according to the present embodiment, the workpiece B is measured by the laser displacement meter 5, the inclination of the butt joint surface with respect to the laser beam irradiation direction is clarified, and the laser beam irradiation direction is the butt joint. The laser head 3 is swung along the surface to adjust the irradiation direction of the laser beam. Thereby, the welding apparatus 1 and the welding method can weld the to-be-welded material B satisfactorily, without irradiating a laser beam to a butt | joining joint surface reliably and producing a dent and a drop in a welding part. In addition, when there is a gap in the butt joint surface, it is possible to evenly melt one side (the material to be welded B1) and the other side (the material to be welded B2) of the material to be welded B that separate the gap. The material to be welded B can be welded satisfactorily. Such improvement of the gap tolerance by the welding apparatus 1 and the welding method is particularly effective in the welding of structures where it is difficult to sufficiently increase the dimensional accuracy between the materials to be welded B1 and B2, such as cans. It does not cause sagging and secures the necessary amount of penetration to significantly improve the quality of welding. Furthermore, this is particularly beneficial when the workpiece B is a large structure. That is, the welding apparatus 1 and the welding method facilitate welding of the entire welded material B by sequentially moving the place where the welding apparatus 1 is used or the place where the welding method is applied without moving the welded material B. . Moreover, a large structure requires a greater penetration depth in the welded portion than a medium or small structure. If the laser light is irradiated non-parallel to the butt joint surface, the penetration depth becomes insufficient and the joint portion remains undissolved. On the other hand, in the welding apparatus 1 and the welding method, the laser head 3 is swung and the irradiation direction of the laser beam is adjusted, whereby the laser beam is irradiated into the butt joint surface to obtain a good weld with no unmelted residue.

[第2の実施形態]
本発明に係る溶接装置および溶接方法の第2実施形態について、図13から図15を参照して説明する。
[Second Embodiment]
A second embodiment of the welding apparatus and the welding method according to the present invention will be described with reference to FIGS.

図13は、本発明の第2実施形態に係る溶接装置を示す概略的なシステム構成図である。   FIG. 13 is a schematic system configuration diagram showing a welding apparatus according to the second embodiment of the present invention.

なお、本実施形態に係る溶接装置1Aにおいて第1実施形態の溶接装置1と同じ構成には同一の符号を付し、重複する説明は省略する。   In addition, in 1 A of welding apparatuses which concern on this embodiment, the same code | symbol is attached | subjected to the same structure as the welding apparatus 1 of 1st Embodiment, and the overlapping description is abbreviate | omitted.

図13に示すように本実施形態に係る溶接装置1Aの演算装置11Aは、被溶接材Bに結ぶレーザー光のスポット径が突合せ接合面の隙間を跨いで往復動するようレーザーヘッド3Aの制御量を決定する。   As shown in FIG. 13, the arithmetic unit 11A of the welding apparatus 1A according to the present embodiment has a control amount of the laser head 3A so that the spot diameter of the laser beam to be welded B reciprocates across the gap of the butt joint surface. To decide.

演算装置11Aは、レーザー光調整部19に代えて、被溶接材Bに結ぶレーザー光のスポット径が突合せ接合面の隙間を跨いで往復動するようレーザーヘッド3Aの制御量を決定する往復動量調整部45を備える。   The arithmetic unit 11A replaces the laser beam adjustment unit 19 and adjusts the amount of reciprocation that determines the control amount of the laser head 3A so that the spot diameter of the laser beam to be welded B reciprocates across the gap between the butt joint surfaces. The unit 45 is provided.

往復動量調整部45は、カメラ7が撮影した画像を取得し、この画像の明暗から開先線を探索して突合せ接合面の隙間の大きさを求め、この隙間の大きさから被溶接材Bに結ぶレーザー光のスポット径の必要な往復動量およびその周期を求める。   The reciprocating amount adjustment unit 45 acquires an image taken by the camera 7, searches for a groove line from the brightness of the image, obtains the size of the gap of the butt joint surface, and determines the size of the welded material B from the size of the gap. The required reciprocating amount and period of the spot diameter of the laser beam to be connected to is obtained.

図14は、本発明の第2実施形態に係る溶接装置の制御システムを示す概略図である。   FIG. 14 is a schematic diagram showing a control system for a welding apparatus according to the second embodiment of the present invention.

図14に示すように、本実施形態に係る溶接装置1Aの演算装置11Aは、演算装置11Aの必要スポット径演算機能32および遠近位置演算機能33に代えて、必要往復動量演算機能46と、往復動範囲演算機能47と、を備える。   As shown in FIG. 14, the calculation device 11A of the welding apparatus 1A according to the present embodiment replaces the necessary spot diameter calculation function 32 and the perspective position calculation function 33 of the calculation device 11A with a required reciprocation amount calculation function 46 and a reciprocation. A moving range calculation function 47.

必要往復動量演算機能46は隙間量演算機能31が求める突合せ接合面の隙間の大きさから被溶接材Bに結ぶレーザー光のスポット径の必要な往復動量およびその周期を求める。往復動量調整部45が必要往復動量演算機能46を備える。   The required reciprocating amount calculating function 46 calculates the required reciprocating amount and the period of the spot diameter of the laser beam to be welded B from the size of the gap of the butt joint surface obtained by the gap amount calculating function 31. The reciprocating amount adjusting unit 45 includes a necessary reciprocating amount calculating function 46.

往復動範囲演算機能47は必要往復動量演算機能46が求めるスポット径を往復動させるためのレーザーヘッド3Aの制御量を求める。往復動量調整部45が往復動範囲演算機能47を備える。   The reciprocation range calculation function 47 obtains a control amount of the laser head 3A for reciprocating the spot diameter obtained by the required reciprocation amount calculation function 46. The reciprocation amount adjustment unit 45 includes a reciprocation range calculation function 47.

レーザー出力演算機能35Aは必要往復動量演算機能46が求めるスポット径において効率良く溶接を進めることが可能な適宜のレーザー出力を求め、これに対応する発振器2の制御量を定める。レーザー出力調整部26がレーザー出力演算機能35Aを備える。   The laser output calculation function 35A calculates an appropriate laser output capable of proceeding with welding efficiently at the spot diameter required by the required reciprocation amount calculation function 46, and determines the control amount of the oscillator 2 corresponding to this. The laser output adjustment unit 26 includes a laser output calculation function 35A.

レーザーヘッド−被溶接材間距離演算機能36Aは、レーザーヘッド支持装置6のセンサ群17から計測結果を取得して被溶接材Bとレーザーヘッド3Aとの相対的な位置関係を求める。往復動量調整部45がレーザーヘッド−被溶接材間距離演算機能36Aを備える。   The laser head-to-be-welded material distance calculation function 36A obtains a measurement result from the sensor group 17 of the laser head support device 6 and obtains a relative positional relationship between the to-be-welded material B and the laser head 3A. The reciprocation amount adjustment unit 45 includes a laser head-to-be-welded material distance calculation function 36A.

レーザーヘッド移動量演算機能37Aは、往復動範囲演算機能47が求めるレーザーヘッド3Aの往復動量およびその周期と、レーザーヘッド−被溶接材間距離演算機能36Aが求める被溶接材Bとレーザーヘッド3Aとの相対的な位置関係とから、レーザーヘッド3Aの制御量を定める。往復動量調整部45がレーザーヘッド移動量演算機能37Aを備える。   The laser head movement amount calculation function 37A includes the reciprocation amount and period of the laser head 3A required by the reciprocation range calculation function 47, the welding material B and the laser head 3A required by the laser head-to-be-welded material distance calculation function 36A. The control amount of the laser head 3 </ b> A is determined from the relative positional relationship. The reciprocation amount adjustment unit 45 includes a laser head movement amount calculation function 37A.

図15は、本発明の第2実施形態に係る溶接装置のレーザーヘッドを示す概略図である。   FIG. 15 is a schematic view showing a laser head of a welding apparatus according to the second embodiment of the present invention.

図15に示すように、本実施形態に係る溶接装置1Aのレーザーヘッド3Aは、レーザー光の進行方向を変える折返しミラー51と、折返しミラー51で進行方向を変えたレーザー光の進行方向をさらに変えるミラー52と、ミラー52で進行方向を変えたレーザー光を集光する集光レンズ42と、折返しミラー51を往復動させる電動機53と、を備える。レーザーヘッド3Aは、演算装置11Aが出力する制御量にしたがって電動機53を運転し、折返しミラー51を適宜の往復動量および往復周期で動かして、レーザー光を往復動させる。   As shown in FIG. 15, the laser head 3 </ b> A of the welding apparatus 1 </ b> A according to the present embodiment further changes the traveling direction of the laser light whose traveling direction is changed by the folding mirror 51 and the folding mirror 51 that changes the traveling direction of the laser light. The mirror 52, the condensing lens 42 which condenses the laser beam which changed the advancing direction with the mirror 52, and the electric motor 53 which reciprocates the folding mirror 51 are provided. The laser head 3A operates the electric motor 53 according to the control amount output from the arithmetic unit 11A, and moves the folding mirror 51 with an appropriate amount of reciprocation and a reciprocation period to reciprocate the laser light.

本実施形態に係る溶接装置1Aおよび溶接方法は、突合せ接合面の隙間の大きさに応じてレーザーヘッド3Aの制御量を決定し、被溶接材Bの一方側(被溶接材B1)および他方側(被溶接材B2、)の両方にレーザー光を照射させる。より詳しくは、本実施形態に係る溶接装置1Aおよび溶接方法は、レーザーヘッド3Aの制御量、特に折返しミラー51の往復動量およびその周期を調整することで突合せ接合面の隙間を横切るようにレーザー光を往復動させて、被溶接材B1、B2の双方にスポット径が跨がるようレーザー光を照射させる(図15中に実線および破線で示すレーザー光)。   In the welding apparatus 1A and the welding method according to the present embodiment, the control amount of the laser head 3A is determined according to the size of the gap between the butt joint surfaces, and one side (the material to be welded B1) and the other side of the material to be welded B are determined. Both (welded material B2,) are irradiated with laser light. More specifically, the welding apparatus 1A and the welding method according to the present embodiment adjust the control amount of the laser head 3A, particularly the reciprocating amount of the folding mirror 51 and the period thereof, so as to cross the gap of the butt joint surface. Are reciprocated to irradiate laser beams so that the spot diameter extends over both of the workpieces B1 and B2 (laser beams indicated by solid lines and broken lines in FIG. 15).

本実施形態に係るレーザーヘッド3Aが照射するレーザー光は、被溶接材Bの突合せ接合面を跨いで被溶接材Bの一方側(被溶接材B1)と他方側(被溶接材B2)とを行き来して往復動する。このとき、溶接装置1Aは、被溶接材Bに結ぶレーザー光のスポット径が突合せ接合面の隙間よりも大きくなくても、被溶接材B1、B2それぞれの継手部を溶融し、隙間を埋めて被溶接材Bを溶接する。   The laser light emitted by the laser head 3A according to the present embodiment straddles the butt joint surface of the material to be welded B and passes through one side (the material to be welded B1) and the other side (the material to be welded B2). Go back and forth and reciprocate. At this time, the welding apparatus 1A melts the joint portions of the materials to be welded B1 and B2 and fills the gaps even if the spot diameter of the laser beam connected to the material to be welded B is not larger than the gap between the butt joint surfaces. The workpiece B is welded.

また、突合せ接合面の隙間Gの大きさと、被溶接材Bに結ぶレーザー光のスポット径の往復動量およびその周期との関係は、溶接に先立ち予め実験的に収集するデータを整理して得る。具体的には、スポット径を約0.4mm、レーザー光の往復動量を約1.25mm、往復動の周期を約100Hz、溶接速度を約1.5m/min、レーザー出力を約2kW、入熱を約800J/cmに設定することで、溶接装置1Aは約0.6mmの隙間Gを有する板厚が約8mmのSUS316L(オーステナイト系ステンレス)の被溶接材Bを溶接できる。   Further, the relationship between the size of the gap G between the butt joint surfaces, the amount of reciprocation of the spot diameter of the laser beam to be welded B, and the period thereof is obtained by organizing data collected experimentally in advance prior to welding. Specifically, the spot diameter is about 0.4 mm, the amount of reciprocation of the laser beam is about 1.25 mm, the period of reciprocation is about 100 Hz, the welding speed is about 1.5 m / min, the laser output is about 2 kW, the heat input Is set to about 800 J / cm, the welding apparatus 1A can weld the workpiece B of SUS316L (austenitic stainless steel) having a thickness G of about 8 mm with a gap G of about 0.6 mm.

そして、本実施形態に係る溶接方法は、被溶接材Bに結ぶレーザー光のスポット径が突合せ接合面の隙間を跨いで往復動するようレーザーヘッド3Aの制御量を決定する。   And the welding method which concerns on this embodiment determines the control amount of 3 A of laser heads so that the spot diameter of the laser beam tied to the to-be-welded material B may reciprocate across the gap | interval of a butt joint surface.

本実施形態に係る溶接装置1Aおよび溶接方法は、レーザー変位計5で被溶接材Bを測定し、レーザー光の照射方向に対する突合せ接合面の傾きを明らかにして、レーザー光の照射方向が突合せ接合面に沿うようレーザーヘッド3Aを揺動しレーザー光の照射方向を調整する。これによって、溶接装置1Aおよび溶接方法は突合せ接合面にレーザー光を確実に照射して溶接部に凹みや落ち込みを生じることなく、被溶接材Bを良好に溶接できる。また、このことは、突合せ接合面に隙間がある場合、隙間を隔てる被溶接材Bの一方側(被溶接材B1)と他方側(被溶接材B2)とを均等に溶融することを可能にし、被溶接材Bを良好に溶接できる。溶接装置1Aおよび溶接方法によるこのようなギャップ裕度の向上は、特に製缶のように被溶接材B1、B2間の寸法精度を十分に高めがたい構造物の溶接において、溶接部にへこみや落ち込みが生じず、必要な溶込み量を確保して溶接の品質を顕著に向上させる。さらに、このことは、被溶接材Bが大型の構造物である場合に特に有益である。すなわち、溶接装置1Aおよび溶接方法は、被溶接材Bを移動させることなく、溶接装置1Aの使用場所なり溶接方法の適用場所なりを順次移動させることによって被溶接材B全体の溶接を容易化する。しかも、大型の構造物では、中、小型の構造物に比べて溶接部に大きな溶込み深さが要求される。仮に、突合せ接合面に対してレーザー光を非平行に照射してしまうと、溶込み深さは不十分になり、継手部は溶け残る。一方、溶接装置1Aおよび溶接方法は、レーザーヘッド3Aを揺動しレーザー光の照射方向を調整することによって、レーザー光を突合せ接合面内に照射して溶け残りのない良好な溶接を得る。   The welding apparatus 1A and the welding method according to the present embodiment measure the workpiece B with the laser displacement meter 5, clarify the inclination of the butt joint surface with respect to the laser beam irradiation direction, and the laser beam irradiation direction is the butt joint. The laser head 3A is swung along the surface to adjust the irradiation direction of the laser beam. As a result, the welding apparatus 1A and the welding method can reliably weld the welded material B without irradiating the butt joint surface with laser light and causing a dent or drop in the welded portion. In addition, when there is a gap in the butt joint surface, it is possible to evenly melt one side (the material to be welded B1) and the other side (the material to be welded B2) of the material to be welded B that separates the gap. The material to be welded B can be welded satisfactorily. Such improvement of the gap margin by the welding apparatus 1A and the welding method is particularly effective in the welding of structures where it is difficult to sufficiently increase the dimensional accuracy between the workpieces B1 and B2, such as cans. No sagging occurs, ensuring the necessary amount of penetration and significantly improving welding quality. Furthermore, this is particularly beneficial when the workpiece B is a large structure. That is, the welding apparatus 1A and the welding method facilitate welding of the entire welded material B by sequentially moving the place where the welding apparatus 1A is used or the place where the welding method is applied without moving the welded material B. . Moreover, a large structure requires a greater penetration depth in the welded portion than a medium or small structure. If the laser light is irradiated non-parallel to the butt joint surface, the penetration depth becomes insufficient and the joint portion remains undissolved. On the other hand, the welding apparatus 1A and the welding method obtain good welding without melting by irradiating the laser beam into the butt joint surface by swinging the laser head 3A and adjusting the irradiation direction of the laser beam.

[第3の実施形態]
本発明に係る溶接装置および溶接方法の第3実施形態について、図16および図17を参照して説明する。
[Third Embodiment]
A third embodiment of the welding apparatus and the welding method according to the present invention will be described with reference to FIGS. 16 and 17.

図16は、本発明の第3実施形態に係る溶接装置を示す概略的なシステム構成図である。   FIG. 16 is a schematic system configuration diagram showing a welding apparatus according to the third embodiment of the present invention.

なお、本実施形態に係る溶接装置1Bにおいて第1実施形態の溶接装置1および第2実施形態の溶接装置1Aと同じ構成には同一の符号を付し、重複する説明は省略する。   In addition, in the welding apparatus 1B according to the present embodiment, the same components as those of the welding apparatus 1 of the first embodiment and the welding apparatus 1A of the second embodiment are denoted by the same reference numerals, and redundant description is omitted.

図16に示すように、本実施形態に係る溶接装置1Bは、溶接装置1のレーザー光調整部19や溶接装置1Aの往復動量調整部45を必ずしも必要とせず(これら調整部のない演算部11Bを備え)、溶接装置1のレーザーヘッド3や溶接装置1Aのレーザーヘッド3Aに代えて、複数の光導波路を有するレーザーヘッド3Bを備える。   As shown in FIG. 16, the welding apparatus 1B according to the present embodiment does not necessarily require the laser light adjustment unit 19 of the welding apparatus 1 or the reciprocation amount adjustment unit 45 of the welding apparatus 1A (the calculation unit 11B without these adjustment units). And a laser head 3B having a plurality of optical waveguides instead of the laser head 3 of the welding apparatus 1 and the laser head 3A of the welding apparatus 1A.

図17は、本発明の第3実施形態に係る溶接装置のレーザーヘッドを示す概略図である。   FIG. 17 is a schematic view showing a laser head of a welding apparatus according to the third embodiment of the present invention.

図17に示すように、本実施形態に係る溶接装置1Bのレーザーヘッド3Bは、所謂ツインスポットレーザー溶接が可能であり、レーザー光を分岐して照射する第一光導波路55と、第二光導波路56と、を備える。また、レーザーヘッド3Bは、レーザー光のうち一部の進行方向を変えるプリズム57を備える。   As shown in FIG. 17, the laser head 3 </ b> B of the welding apparatus 1 </ b> B according to the present embodiment is capable of so-called twin spot laser welding, and includes a first optical waveguide 55 that divides and emits laser light, and a second optical waveguide. 56. Further, the laser head 3B includes a prism 57 that changes a part of the traveling direction of the laser light.

レーザーヘッド3Bは、集光レンズ42に入射するレーザー光のうち一部の進行方向をプリズム57で変える。他方、レーザー光の残部は進行方向を変えることなく集光レンズ42へ入射する。プリズム57を通過して集光レンズ42へ入射するレーザー光の経路が第一光導波路55であり、直接的に集光レンズ42へ入射するレーザー光の経路が第二光導波路56である。   The laser head 3 </ b> B changes the traveling direction of a part of the laser light incident on the condenser lens 42 with the prism 57. On the other hand, the remainder of the laser light enters the condenser lens 42 without changing the traveling direction. The path of the laser light that passes through the prism 57 and enters the condenser lens 42 is the first optical waveguide 55, and the path of the laser light that directly enters the condenser lens 42 is the second optical waveguide 56.

第一光導波路55が被溶接材Bの一方側(被溶接材B1)へ照射するレーザー光(のうち一部)のスポット径と第二光導波路56が被溶接材Bの他方側(被溶接材B2)へ照射するレーザー光(のうち残部)のスポット径とは、被溶接材Bの隙間とほぼ同じ距離だけ離間する。溶接装置1Bは、第一光導波路55から被溶接材B1へ照射するレーザー光で被溶接材B1の継手部を溶融し、第二光導波路56から被溶接材B2へ照射するレーザー光で被溶接材B2の継手部を溶融し、隙間を埋めて被溶接材Bを溶接する。   The spot diameter of the laser beam (a part of the laser beam) that the first optical waveguide 55 irradiates to one side (the material to be welded B1) of the workpiece B and the second optical waveguide 56 is the other side (the workpiece to be welded). The spot diameter of the laser beam (of the remaining portion) irradiated to the material B2) is separated by substantially the same distance as the gap of the material B to be welded. The welding apparatus 1B melts the joint portion of the material to be welded B1 with the laser light irradiated from the first optical waveguide 55 to the material to be welded B1, and is welded with the laser light irradiated to the material to be welded B2 from the second optical waveguide 56. The joint part of the material B2 is melted, the gap B is filled, and the workpiece B is welded.

第一光導波路55が被溶接材Bに結ぶレーザー光のスポット径の大きさと、第二光導波路56が被溶接材Bに結ぶレーザー光のスポット径の大きさと、溶接を効率的に行うことが可能な溶接条件との関係は、溶接に先立ち予め実験的に収集するデータを整理して得る。具体的には、2つのスポット径を約0.6mm、2つのスポット径の離間距離を約0.6mm、溶接速度を約0.75m/min、レーザー出力を約3kW、入熱を約2400J/cmに設定することで、溶接装置1Bは約0.6mmの隙間Gを有する板厚が8mmのSUS316L(オーステナイト系ステンレス)の被溶接材Bを溶接する。   The size of the spot diameter of the laser beam that the first optical waveguide 55 connects to the workpiece B, the size of the spot diameter of the laser beam that the second optical waveguide 56 connects to the workpiece B, and the welding can be performed efficiently. The relationship with possible welding conditions is obtained by organizing data collected experimentally in advance prior to welding. Specifically, the two spot diameters are about 0.6 mm, the distance between the two spot diameters is about 0.6 mm, the welding speed is about 0.75 m / min, the laser output is about 3 kW, and the heat input is about 2400 J / By setting it to cm, the welding apparatus 1B welds the material B to be welded of SUS316L (austenitic stainless steel) having a gap G of about 0.6 mm and a thickness of 8 mm.

そして、本実施形態に係る溶接方法は、レーザーヘッド3Bでレーザー光を分岐して被溶接材Bの一方側(被溶接材B1)へレーザー光の一部を照射するとともに被溶接材Bの他方側(被溶接材B2)へレーザー光の他部を照射するようレーザーヘッド3Bの制御量を決定する。   In the welding method according to the present embodiment, the laser beam is branched by the laser head 3B to irradiate a part of the laser beam to one side (the material to be welded B1) of the material to be welded B and the other of the materials to be welded B. The control amount of the laser head 3B is determined so that the other side of the laser beam is irradiated to the side (the material to be welded B2).

本実施形態に係る溶接装置1Bおよび溶接方法は、レーザー変位計5で被溶接材Bを測定し、レーザー光の照射方向に対する突合せ接合面の傾きを明らかにして、レーザー光の照射方向が突合せ接合面に沿うようレーザーヘッド3Bを揺動しレーザー光の照射方向を調整する。これによって、溶接装置1Bおよび溶接方法は突合せ接合面にレーザー光を確実に照射して溶接部に凹みや落ち込みを生じさせることなく、被溶接材Bを良好に溶接できる。また、このことは、突合せ接合面に隙間がある場合、隙間を隔てる被溶接材Bの一方側(被溶接材B1)と他方側(被溶接材B2)とを均等に溶融させることを可能にし、被溶接材Bを良好に溶接できる。溶接装置1Bおよび溶接方法によるこのようなギャップ裕度の向上は、特に製缶のように被溶接材B1、B2間の寸法精度を十分に高めがたい構造物の溶接において、溶接部にへこみや落ち込みを生じさせず、必要な溶込み量を確保して溶接の品質を顕著に向上させる。さらに、このことは、被溶接材Bが大型の構造物である場合に特に有益である。すなわち、溶接装置1Bおよび溶接方法は、被溶接材Bを移動させることなく、溶接装置1Bの使用場所なり溶接方法の適用場所なりを順次移動させることによって被溶接材B全体の溶接を容易化する。しかも、大型の構造物では、中、小型の構造物に比べて溶接部に大きな溶込み深さが要求される。仮に、突合せ接合面に対してレーザー光を非平行に照射してしまうと、溶込み深さは不十分になり、継手部は溶け残る。一方、溶接装置1Bおよび溶接方法は、レーザーヘッド3Bを揺動しレーザー光の照射方向を調整することによって、レーザー光を突合せ接合面内に照射して溶け残りのない良好な溶接を得る。   In the welding apparatus 1B and the welding method according to the present embodiment, the workpiece B is measured by the laser displacement meter 5, the inclination of the butt joint surface with respect to the laser light irradiation direction is clarified, and the laser light irradiation direction is the butt joint. The laser head 3B is swung along the surface to adjust the irradiation direction of the laser light. Thereby, the welding apparatus 1B and the welding method can weld the welding material B satisfactorily without irradiating the butt joint surface with laser light without causing a dent or depression in the welded portion. In addition, when there is a gap in the butt joint surface, it is possible to evenly melt one side (the material to be welded B1) and the other side (the material to be welded B2) of the material to be welded B that separate the gap. The material to be welded B can be welded well. Such improvement of the gap tolerance by the welding apparatus 1B and the welding method is particularly effective in the welding of structures where it is difficult to sufficiently improve the dimensional accuracy between the workpieces B1 and B2, such as cans. It does not cause sagging and secures the necessary amount of penetration to significantly improve the quality of welding. Furthermore, this is particularly beneficial when the workpiece B is a large structure. That is, the welding apparatus 1B and the welding method facilitate welding of the entire welded material B by sequentially moving the place where the welding apparatus 1B is used or the place where the welding method is applied without moving the welded material B. . Moreover, a large structure requires a greater penetration depth in the welded portion than a medium or small structure. If the laser light is irradiated non-parallel to the butt joint surface, the penetration depth becomes insufficient and the joint portion remains undissolved. On the other hand, in the welding apparatus 1B and the welding method, the laser head 3B is swung and the irradiation direction of the laser beam is adjusted to irradiate the laser beam into the butt joint surface, thereby obtaining a good weld with no unmelted portion.

[第4の実施形態]
本発明に係る溶接装置および溶接方法の第4実施形態について、図18および図19を参照して説明する。
[Fourth Embodiment]
A fourth embodiment of a welding apparatus and a welding method according to the present invention will be described with reference to FIGS. 18 and 19.

図18は、本発明の第4実施形態に係る溶接装置を示す概略的なシステム構成図である。   FIG. 18 is a schematic system configuration diagram showing a welding apparatus according to the fourth embodiment of the present invention.

なお、本実施形態に係る溶接装置1Cにおいて第1実施形態の溶接装置1と同じ構成には同一の符号を付し、重複する説明は省略する。   In addition, in 1C of welding apparatuses which concern on this embodiment, the same code | symbol is attached | subjected to the same structure as the welding apparatus 1 of 1st Embodiment, and the overlapping description is abbreviate | omitted.

図18に示すように、本実施形態に係る溶接装置1Cは、溶接装置1のレーザーヘッド3に代えて、複数の光導波路を有するレーザーヘッド3Cを備える。   As shown in FIG. 18, a welding apparatus 1 </ b> C according to this embodiment includes a laser head 3 </ b> C having a plurality of optical waveguides instead of the laser head 3 of the welding apparatus 1.

なお、本実施形態に係る溶接装置1Cの演算装置11Cも、溶接装置1Bの演算装置11Bと同様に溶接装置1のレーザー光調整部19や溶接装置1Aの往復動量調整部45を必ずしも必要としない。   Note that the calculation device 11C of the welding apparatus 1C according to the present embodiment does not necessarily require the laser light adjustment unit 19 of the welding apparatus 1 or the reciprocation adjustment unit 45 of the welding apparatus 1A, similarly to the calculation device 11B of the welding apparatus 1B. .

図19は、本発明の第4実施形態に係る溶接装置のレーザーヘッドを示す概略図である。   FIG. 19 is a schematic view showing a laser head of a welding apparatus according to the fourth embodiment of the present invention.

図19に示すように、本実施形態に係る溶接装置1Cのレーザーヘッド3Cは、被溶接材Bに結ぶレーザー光のスポット径が突合せ接合面の隙間よりも大きくなる光導波路58を備える。レーザーヘッド3Cは、光ファイバ16が照射するレーザー光を平行状態になるよう光学調整するコリメートレンズ59と、コリメートレンズ59が照射するレーザー光を集光する集光レンズ61と、を備える。光ファイバ16からコリメートレンズ59を通過して集光レンズ61へ入射するレーザー光の経路が光導波路58である。   As shown in FIG. 19, the laser head 3 </ b> C of the welding apparatus 1 </ b> C according to the present embodiment includes an optical waveguide 58 in which the spot diameter of the laser beam to be welded B is larger than the gap between the butt joint surfaces. The laser head 3 </ b> C includes a collimating lens 59 that optically adjusts the laser light emitted from the optical fiber 16 to be in a parallel state, and a condensing lens 61 that collects the laser light emitted from the collimating lens 59. An optical waveguide 58 is a path of laser light that passes from the optical fiber 16 through the collimator lens 59 and enters the condenser lens 61.

すなわち、溶接装置1Cは、溶接装置1のようにレーザーヘッド3と被溶接材Bとの離間距離、あるいは集光レンズ42と被溶接材Bとの離間距離Lbを焦点fよりも集光レンズ42側へ近づけるのではなく、光導波路58を調整することでキーホール形状を大きく、ひいては被溶接材Bに結ぶレーザー光のスポット径を拡大する。   That is, the welding apparatus 1 </ b> C, like the welding apparatus 1, sets the separation distance between the laser head 3 and the material to be welded B or the separation distance Lb between the condenser lens 42 and the material to be welded B rather than the focal point f. The keyhole shape is increased by adjusting the optical waveguide 58 instead of moving closer to the side, and the spot diameter of the laser beam connected to the workpiece B is expanded.

レーザーヘッド3Cは、コリメートレンズ59と集光レンズ61とを調整して、被溶接材Bに結ぶレーザー光のスポット径を変化させる。   The laser head 3 </ b> C adjusts the collimating lens 59 and the condensing lens 61 to change the spot diameter of the laser beam to be connected to the workpiece B.

なお、スポット径W0は、光ファイバ16の開口数NAと、集光レンズ61の焦点距離f1と、コリメートレンズ59の焦点距離f2と、レーザー光の波長λとから次式で求める。   The spot diameter W0 is obtained by the following equation from the numerical aperture NA of the optical fiber 16, the focal length f1 of the condenser lens 61, the focal length f2 of the collimating lens 59, and the wavelength λ of the laser light.

W0=(λ÷(2π×NA))×(f1÷f2)
そして、本実施形態に係る溶接方法は、被溶接材Bに結ぶレーザー光のスポット径が突合せ接合面の隙間よりも大きくなるよう光導波路を調整する。
W0 = (λ ÷ (2π × NA)) × (f1 ÷ f2)
And the welding method which concerns on this embodiment adjusts an optical waveguide so that the spot diameter of the laser beam tied to the to-be-welded material B may become larger than the clearance gap between butt | joining joint surfaces.

本実施形態に係る溶接装置1Cおよび溶接方法は、レーザー変位計5で被溶接材Bを測定し、レーザー光の照射方向に対する突合せ接合面の傾きを明らかにして、レーザー光の照射方向が突合せ接合面に沿うようレーザーヘッド3Cを揺動しレーザー光の照射方向を調整する。これによって、溶接装置1Cおよび溶接方法は突合せ接合面にレーザー光を確実に照射して溶接部に凹みや落ち込みを生じさせることなく、被溶接材Bを良好に溶接できる。また、このことは、突合せ接合面に隙間がある場合、隙間を隔てる被溶接材Bの一方側(被溶接材B1)と他方側(被溶接材B2)とを均等に溶融させることを可能にし、被溶接材Bを良好に溶接できる。溶接装置1Cおよび溶接方法によるこのようなギャップ裕度の向上は、特に製缶のように被溶接材B1、B2間の寸法精度を十分に高めがたい構造物の溶接において、溶接部にへこみや落ち込みを生じさせず、必要な溶込み量を確保して溶接の品質を顕著に向上させる。さらに、このことは、被溶接材Bが大型の構造物である場合に特に有益である。すなわち、溶接装置1Cおよび溶接方法は、被溶接材Bを移動させることなく、溶接装置1Cの使用場所なり溶接方法の適用場所なりを順次移動させることによって被溶接材B全体の溶接を容易化する。しかも、大型の構造物では、中、小型の構造物に比べて溶接部に大きな溶込み深さが要求される。仮に、突合せ接合面に対してレーザー光を非平行に照射してしまうと、溶込み深さは不十分になり、継手部は溶け残る。一方、溶接装置1Cおよび溶接方法は、レーザーヘッド3Cを揺動しレーザー光の照射方向を調整することによって、レーザー光を突合せ接合面内に照射して溶け残りのない良好な溶接を得る。   The welding apparatus 1C and the welding method according to the present embodiment measure the workpiece B with the laser displacement meter 5, clarify the inclination of the butt joint surface with respect to the laser light irradiation direction, and the laser light irradiation direction is the butt joint. The laser head 3C is swung along the surface to adjust the irradiation direction of the laser beam. As a result, the welding apparatus 1C and the welding method can weld the workpiece B well without irradiating the butt joint surface with laser light without causing dents or depressions in the welded portion. In addition, when there is a gap in the butt joint surface, it is possible to evenly melt one side (the material to be welded B1) and the other side (the material to be welded B2) of the material to be welded B that separate the gap. The material to be welded B can be welded well. Such improvement of the gap tolerance by the welding apparatus 1C and the welding method is particularly effective in the welding of structures where it is difficult to sufficiently improve the dimensional accuracy between the workpieces B1 and B2, such as cans. It does not cause sagging and secures the necessary amount of penetration to significantly improve the quality of welding. Furthermore, this is particularly beneficial when the workpiece B is a large structure. That is, the welding apparatus 1C and the welding method facilitate welding of the entire welded material B by sequentially moving the place where the welding apparatus 1C is used or the place where the welding method is applied without moving the welded material B. . Moreover, a large structure requires a greater penetration depth in the welded portion than a medium or small structure. If the laser light is irradiated non-parallel to the butt joint surface, the penetration depth becomes insufficient and the joint portion remains undissolved. On the other hand, in the welding apparatus 1C and the welding method, the laser head 3C is swung and the irradiation direction of the laser beam is adjusted to irradiate the laser beam into the butt joint surface, thereby obtaining a good weld with no melt.

したがって、本実施形態に係る溶接装置1、1A、1B、1Cおよび溶接方法によれば、突合せ継手に隙間があり、かつ適宜の移動が困難な被溶接材Bを効率的かつ簡便に溶接できる。   Therefore, according to the welding apparatuses 1, 1 </ b> A, 1 </ b> B, 1 </ b> C and the welding method according to the present embodiment, it is possible to efficiently and easily weld the workpiece B having a gap in the butt joint and difficult to move appropriately.

なお、本実施形態に係る溶接装置1、1A、1B、1Cおよび溶接方法は突合せ継手が密着し、または一般的な溶接条件で溶接可能な小さい隙間があり、移動が容易な被溶接材に適用することも当然可能である。   Note that the welding apparatuses 1, 1A, 1B, 1C and the welding method according to the present embodiment are applied to materials to be welded that have butt joints in close contact with each other or have small gaps that can be welded under general welding conditions and are easy to move. Of course it is also possible to do.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1、1A、1B、1C 溶接装置
2 発振器
3、3A、3B、3C レーザーヘッド
5 レーザー変位計
6 レーザーヘッド支持装置
7 カメラ
11、11A、11B、11C 演算装置
12 レーザー制御装置
13 レーザー変位計制御装置
14 画像取得装置
15 ロボット制御装置
16 光ファイバ
17 センサ群
18 駆動装置
19 レーザー光調整部
21 倣い処理部
22 揺動処理部
23 必要スポット径算出部
25 制御量決定部
26 レーザー出力調整部
27 教示データ記憶部
28 ロボット制御部
31 隙間量演算機能
32 必要スポット径演算機能
33 遠近位置演算機能
35、35A レーザー出力演算機能
36、36A レーザーヘッド−被溶接材間距離演算機能
37、37A レーザーヘッド移動量演算機能
38 接合面傾斜量演算機能
39 レーザーヘッド揺動量演算機能
41 レーザーヘッド支持装置制御量演算機能
42 集光レンズ
45 往復動量調整部
46 必要往復動量演算機能
47 往復動範囲演算機能
48 制御量決定部
51 折返しミラー
52 ミラー
53 電動機
55 第一光導波路
56 第二光導波路
57 プリズム
58 光導波路
59 コリメートレンズ
61 集光レンズ
1, 1A, 1B, 1C Welding device 2 Oscillator 3, 3A, 3B, 3C Laser head 5 Laser displacement meter 6 Laser head support device 7 Camera 11, 11A, 11B, 11C Arithmetic device 12 Laser control device 13 Laser displacement meter control device DESCRIPTION OF SYMBOLS 14 Image acquisition apparatus 15 Robot control apparatus 16 Optical fiber 17 Sensor group 18 Drive apparatus 19 Laser light adjustment part 21 Copying process part 22 Swing process part 23 Necessary spot diameter calculation part 25 Control amount determination part 26 Laser output adjustment part 27 Teaching data Storage unit 28 Robot control unit 31 Clearance amount calculation function 32 Required spot diameter calculation function 33 Perspective position calculation function 35, 35A Laser output calculation function 36, 36A Laser head-to-be-welded material distance calculation function 37, 37A Laser head movement amount calculation Function 38 Joint surface tilt amount calculation function 39 Laser Oscillation amount calculation function 41 Laser head support device control amount calculation function 42 Condensing lens 45 Reciprocation amount adjustment unit 46 Required reciprocation amount calculation function 47 Reciprocation range calculation function 48 Control amount determination unit 51 Folding mirror 52 Mirror 53 Electric motor 55 First Optical waveguide 56 Second optical waveguide 57 Prism 58 Optical waveguide 59 Collimating lens 61 Condensing lens

Claims (14)

レーザー光を発生させる発振器と、
前記レーザー光を導く光導波路を有して複数の被溶接材の突合せ接合面へ前記レーザー光を照射可能なレーザーヘッドと、
前記被溶接材の表面形状を測定するレーザー変位計と、
前記レーザーヘッドを支持するとともに前記レーザー変位計の測定結果に基づいて前記レーザー光が前記接合面に沿う方向へ照射するよう前記被溶接材と前記レーザーヘッドとの相対的な向きを変更可能なレーザーヘッド支持装置と、
前記接合面の隙間を撮影するカメラと、
前記カメラが撮影する画像から前記隙間の大きさを求め、前記レーザーヘッドの制御量を決定して前記被溶接材の一方側および他方側の両方にレーザー光を照射させる演算装置と、を備えることを特徴とする溶接装置。
An oscillator that generates laser light;
A laser head having an optical waveguide for guiding the laser beam and capable of irradiating the laser beam to a butt joint surface of a plurality of workpieces;
A laser displacement meter for measuring the surface shape of the material to be welded;
A laser capable of supporting the laser head and changing the relative orientation of the welded material and the laser head so that the laser beam is irradiated in a direction along the joining surface based on the measurement result of the laser displacement meter. A head support device;
A camera for photographing the gap between the joint surfaces;
An arithmetic unit that obtains the size of the gap from an image photographed by the camera, determines a control amount of the laser head, and irradiates both one side and the other side of the welded material with laser light; Welding device characterized by.
レーザーヘッド支持装置は、前記レーザーヘッドの向きを変える駆動装置を備えることを特徴とする請求項1に記載の溶接装置。 The welding apparatus according to claim 1, wherein the laser head support device includes a drive device that changes a direction of the laser head. 前記演算装置は、前記被溶接材に結ぶ前記レーザー光のスポット径が前記隙間よりも大きくなる前記制御量を決定することを特徴とする請求項1または2に記載の溶接装置。 3. The welding apparatus according to claim 1, wherein the arithmetic device determines the control amount at which a spot diameter of the laser beam connected to the workpiece is larger than the gap. 前記演算装置は、前記スポット径の拡大とともに前記発振器の出力を上げることを特徴とする請求項3に記載の溶接装置。 The welding apparatus according to claim 3, wherein the arithmetic unit increases the output of the oscillator as the spot diameter increases. 前記演算装置は、前記被溶接材に結ぶ前記レーザー光のスポット径が前記隙間を跨いで往復動するよう前記レーザーヘッドの前記制御量を決定することを特徴とする請求項1または2に記載の溶接装置。 The said arithmetic unit determines the said control amount of the said laser head so that the spot diameter of the said laser beam tied to the said to-be-welded material may reciprocate across the said clearance gap. Welding equipment. 前記レーザーヘッドは、前記レーザー光を分岐して照射する第一光導波路および第二光導波路を備えることを特徴とする請求項1または2に記載の溶接装置。 The welding apparatus according to claim 1, wherein the laser head includes a first optical waveguide and a second optical waveguide that diverge and irradiate the laser light. 前記演算装置は、前記第一光導波路から前記被溶接材の一方側へ第一レーザー光を照射するとともに前記第二光導波路から前記被溶接材の他方側へ第二レーザー光を照射する前記制御量を決定することを特徴とする請求項6に記載の溶接装置。 The control device irradiates a first laser beam from the first optical waveguide to one side of the welding material and irradiates a second laser beam from the second optical waveguide to the other side of the welding material. The welding apparatus according to claim 6, wherein the quantity is determined. 前記レーザーヘッドは、前記被溶接材に結ぶ前記レーザー光のスポット径が前記隙間よりも大きくなる光導波路を備えることを特徴とする請求項1または2に記載の溶接装置。 3. The welding apparatus according to claim 1, wherein the laser head includes an optical waveguide in which a spot diameter of the laser beam connected to the workpiece is larger than the gap. レーザー光を発生させる発振器と、
前記レーザー光を導く光導波路を有して被溶接材の突合せ接合面へ前記レーザー光を照射可能なレーザーヘッドと、
前記被溶接材の表面形状を測定するレーザー変位計と、
前記レーザーヘッドを支持するとともに前記レーザー変位計の測定結果に基づいて前記レーザー光が前記接合面に沿う方向へ照射するよう前記被溶接材と前記レーザーヘッドとの相対的な向きを変更可能なレーザーヘッド支持装置と、を備えることを特徴とする溶接装置。
An oscillator that generates laser light;
A laser head having an optical waveguide for guiding the laser beam and capable of irradiating the laser beam to the butt joint surface of the welded material;
A laser displacement meter for measuring the surface shape of the workpiece,
A laser capable of supporting the laser head and changing the relative orientation of the welded material and the laser head so that the laser beam is irradiated in a direction along the joining surface based on the measurement result of the laser displacement meter. A welding apparatus comprising: a head support device.
被溶接材の表面形状を測定し、
前記測定の結果に基づいてレーザー光が前記被溶接材の突合せ接合面に沿う方向へ照射するよう前記被溶接材とレーザーヘッドとの相対的な向きを変更し、
前記接合面の隙間の大きさを求め、
前記被溶接材の一方側および他方側の両方に前記レーザー光が照射するように前記レーザーヘッドの制御量を決定し、
前記被溶接材を溶接することを特徴とする溶接方法。
Measure the surface shape of the material to be welded,
Based on the result of the measurement, the laser beam is irradiated in a direction along the butt joint surface of the workpiece, and the relative orientation of the workpiece and the laser head is changed,
Obtain the size of the gap between the joint surfaces,
Determine the control amount of the laser head so that the laser beam is applied to both the one side and the other side of the workpiece,
A welding method comprising welding the workpiece.
前記被溶接材に結ぶ前記レーザー光のスポット径が前記隙間よりも大きくなるよう前記制御量を決定することを特徴とする請求項10に記載の溶接方法。 The welding method according to claim 10, wherein the control amount is determined so that a spot diameter of the laser beam connected to the workpiece is larger than the gap. 前記スポット径の拡大とともに前記レーザー光を発生させる発振器の出力を上げることを特徴とする請求項11に記載の溶接方法。 The welding method according to claim 11, wherein an output of an oscillator that generates the laser light is increased as the spot diameter increases. 前記被溶接材に結ぶ前記レーザー光のスポット径が前記隙間を跨いで往復動するよう前記制御量を決定することを特徴とする請求項10に記載の溶接方法。 The welding method according to claim 10, wherein the control amount is determined so that a spot diameter of the laser beam connected to the workpiece to be reciprocated across the gap. 前記レーザーヘッドで前記レーザー光を分岐して前記被溶接材の一方側へレーザー光の一部を照射するとともに前記被溶接材の他方側へレーザー光の他部を照射する前記制御量を決定することを特徴とする請求項10に記載の溶接方法。 The laser head is branched by the laser head to irradiate a part of the laser beam to one side of the welding material and determine the control amount to irradiate the other part of the laser beam to the other side of the welding material. The welding method according to claim 10.
JP2012015708A 2012-01-27 2012-01-27 Welding apparatus and welding method Pending JP2013154365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015708A JP2013154365A (en) 2012-01-27 2012-01-27 Welding apparatus and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015708A JP2013154365A (en) 2012-01-27 2012-01-27 Welding apparatus and welding method

Publications (1)

Publication Number Publication Date
JP2013154365A true JP2013154365A (en) 2013-08-15

Family

ID=49050089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015708A Pending JP2013154365A (en) 2012-01-27 2012-01-27 Welding apparatus and welding method

Country Status (1)

Country Link
JP (1) JP2013154365A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019051521A (en) * 2017-09-12 2019-04-04 日新製鋼株式会社 Butt laser welding method of plate material and laser welding member
TWI696512B (en) * 2019-03-06 2020-06-21 日商日鐵日新製鋼股份有限公司 Butt joint laser welding method of plate and laser welding parts
WO2020179029A1 (en) * 2019-03-06 2020-09-10 日鉄日新製鋼株式会社 Butt laser welding method for plate and laser welding member
JPWO2019176632A1 (en) * 2018-03-12 2021-03-11 株式会社アマダ Cutting machine and cutting method
JP2022550386A (en) * 2019-12-10 2022-12-01 沈陽富創精密設備股▲フン▼有限公司 Plasma Arc-Laser Hybrid Welding Method for Highly Sealable Aluminum Alloy Rectangular Chamber
JP7479213B2 (en) 2020-06-18 2024-05-08 日鉄テックスエンジ株式会社 Surface preparation method and surface preparation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337669A (en) * 1992-06-10 1993-12-21 Toshiba Corp Laser beam machine
JPH10111471A (en) * 1996-08-09 1998-04-28 Toyota Motor Corp Laser optical system and laser welding device
JPH11156579A (en) * 1996-11-15 1999-06-15 Amada Co Ltd Methods for laser cutting, laser piercing, laser welding and laser decoration, and laser processing heads therefor
JP2003251479A (en) * 2002-03-01 2003-09-09 Daihen Corp Laser welding method
JP2008119708A (en) * 2006-11-09 2008-05-29 Sumitomo Metal Ind Ltd Laser beam welding method for metal plate
JP2010120023A (en) * 2008-11-17 2010-06-03 Sumitomo Metal Ind Ltd Laser welding method and laser welding device used for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337669A (en) * 1992-06-10 1993-12-21 Toshiba Corp Laser beam machine
JPH10111471A (en) * 1996-08-09 1998-04-28 Toyota Motor Corp Laser optical system and laser welding device
JPH11156579A (en) * 1996-11-15 1999-06-15 Amada Co Ltd Methods for laser cutting, laser piercing, laser welding and laser decoration, and laser processing heads therefor
JP2003251479A (en) * 2002-03-01 2003-09-09 Daihen Corp Laser welding method
JP2008119708A (en) * 2006-11-09 2008-05-29 Sumitomo Metal Ind Ltd Laser beam welding method for metal plate
JP2010120023A (en) * 2008-11-17 2010-06-03 Sumitomo Metal Ind Ltd Laser welding method and laser welding device used for the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019051521A (en) * 2017-09-12 2019-04-04 日新製鋼株式会社 Butt laser welding method of plate material and laser welding member
JPWO2019176632A1 (en) * 2018-03-12 2021-03-11 株式会社アマダ Cutting machine and cutting method
JP7012820B2 (en) 2018-03-12 2022-01-28 株式会社アマダ Cutting machine and cutting method
US11953875B2 (en) 2018-03-12 2024-04-09 Amada Co., Ltd. Cutting processing machine and cutting processing method
TWI696512B (en) * 2019-03-06 2020-06-21 日商日鐵日新製鋼股份有限公司 Butt joint laser welding method of plate and laser welding parts
WO2020179029A1 (en) * 2019-03-06 2020-09-10 日鉄日新製鋼株式会社 Butt laser welding method for plate and laser welding member
JP2022550386A (en) * 2019-12-10 2022-12-01 沈陽富創精密設備股▲フン▼有限公司 Plasma Arc-Laser Hybrid Welding Method for Highly Sealable Aluminum Alloy Rectangular Chamber
JP7344629B2 (en) 2019-12-10 2023-09-14 沈陽富創精密設備股▲フン▼有限公司 Plasma arc/laser hybrid welding method for high sealing aluminum alloy rectangular chamber
JP7479213B2 (en) 2020-06-18 2024-05-08 日鉄テックスエンジ株式会社 Surface preparation method and surface preparation device

Similar Documents

Publication Publication Date Title
US11219967B2 (en) Machining head for a laser machining device
JP6645960B2 (en) Method of measuring depth of penetration of laser beam into workpiece and laser processing device
JP2013154365A (en) Welding apparatus and welding method
JP5136521B2 (en) Laser narrow groove welding apparatus and welding method
JP2017535435A (en) Method and apparatus for joining workpieces at an overlap abutment
JP5622636B2 (en) Repair device and repair method
JP2017535435A5 (en)
JP6205064B2 (en) Laser welding apparatus and laser welding method
KR20120022787A (en) Method of hybrid welding and hybrid welding apparatus
JP2013086180A (en) Welding laser device
US20150144606A1 (en) Method and System for the Remote Laser Welding of Two Coated Sheets
US11623301B2 (en) Laser machining apparatus and laser machining method
JP2010000534A (en) Laser build-up welding equipment and method
JP2007229773A (en) Laser beam welding method and laser beam welding device
JP2009178768A (en) Laser welding method and laser welding device
JP2005329436A (en) Laser machining method
JP5446334B2 (en) Laser welding apparatus and laser welding method
JP2018528079A (en) How to guide the machining head along the track to be machined
JP2012206145A (en) Hot wire laser welding method and apparatus
JP6780544B2 (en) Laser welding equipment
JP6333670B2 (en) Laser welding apparatus and welding method thereof
JP6261406B2 (en) Welding apparatus and welding method
JP6485293B2 (en) Laser welding machine
JP6255314B2 (en) Butt laser welding method of welded plate material
WO2014203489A1 (en) Outer can sealing method and outer can sealing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150224