JPH0379559B2 - - Google Patents

Info

Publication number
JPH0379559B2
JPH0379559B2 JP19429184A JP19429184A JPH0379559B2 JP H0379559 B2 JPH0379559 B2 JP H0379559B2 JP 19429184 A JP19429184 A JP 19429184A JP 19429184 A JP19429184 A JP 19429184A JP H0379559 B2 JPH0379559 B2 JP H0379559B2
Authority
JP
Japan
Prior art keywords
pump
rotor
vacuum
rotating
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19429184A
Other languages
Japanese (ja)
Other versions
JPS6172896A (en
Inventor
Yoshio Murakami
Tetsuya Abe
Tatsuji Ikegami
Shigeru Kaneto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GENSHIRYOKU KENKYUSHO
OOSAKA SHINKU KIKI SEISAKUSHO KK
Original Assignee
NIPPON GENSHIRYOKU KENKYUSHO
OOSAKA SHINKU KIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GENSHIRYOKU KENKYUSHO, OOSAKA SHINKU KIKI SEISAKUSHO KK filed Critical NIPPON GENSHIRYOKU KENKYUSHO
Priority to JP19429184A priority Critical patent/JPS6172896A/en
Priority to DE19853531942 priority patent/DE3531942A1/en
Publication of JPS6172896A publication Critical patent/JPS6172896A/en
Publication of JPH0379559B2 publication Critical patent/JPH0379559B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 (1) 産業上の利用分野 本発明は、強力な磁場発生装置を有する真空装
置、例えば磁場閉じ込め型核融合装置などに使用
する高速回転ポンプに関し、特に回転部分の渦電
流損失を低減したことを特徴とする高速回転ポン
プに関する。
Detailed Description of the Invention (1) Industrial Application Field The present invention relates to a high-speed rotary pump used in a vacuum device having a strong magnetic field generating device, such as a magnetic field confinement type nuclear fusion device. The present invention relates to a high-speed rotation pump characterized by reduced current loss.

(2) 従来の技術 磁場閉じ込め型核融合炉では、炉心プラズマで
D−T反応の結果多量のヘリウムが生成される。
例えば、熱出力60万キロワツトの炉の場合には毎
秒およそ2x1020個のヘリウムが生成される。プラ
ズマ中のヘリウムが増加すると、プラズマの放射
損失が増大するほか、相対的に燃料密度が低下す
るので、炉心プラズマから連続的に外部へヘリウ
ムを排出することが必要である。トカマク型核融
合炉の場合、炉心プラズマからのヘリウムの排出
は磁気ダイバータやポンプリミタと呼ばれる装置
により高温のプラズマ粒子を冷却すると共に中性
化し、これらに接続した真空排気装置によつて行
われる。磁気ダイバータやポンプリミタと真空排
気装置の接続部における燃料ガス(重水素、トリ
チウム)、ヘリウム等の混合ガスの圧力は、最近
の理論的検討や実験により10-3〜10-2トルまで高
められることが判明している。必要の排気速度は
この圧力で104〜105/secである。一方、トリ
チウムは半減期12、3年でβ崩壊する放射性物質
であるため大気への漏洩を極めて低い値に抑えな
ければならない。又、トリチウムの有機物への影
響が大きいので、真空排気装置には原則として潤
滑油等の有機高分子材料は使用できない。真空排
気装置におけるトリチウムの滞留量をできるだけ
少なくすることも要請される。更に真空排気装置
を炉心に近接させて配設する場合には、プラズマ
から高温気体を吸入し、又その上に放射光がその
排気装置に入射するから、使用する真空ポンプは
これらによりもたらされる熱負荷に十分耐えるも
のであることが望まれる。
(2) Prior art In a magnetically confined fusion reactor, a large amount of helium is produced as a result of the DT reaction in the core plasma.
For example, a furnace with a thermal output of 600,000 kilowatts will produce approximately 2x1020 helium per second. As helium in the plasma increases, the radiation loss of the plasma increases and the fuel density relatively decreases, so it is necessary to continuously discharge helium from the core plasma to the outside. In the case of a tokamak-type fusion reactor, helium is discharged from the core plasma by cooling and neutralizing high-temperature plasma particles using devices called magnetic diverters and pump limiters, and by a vacuum pump connected to these devices. Recent theoretical studies and experiments have shown that the pressure of a mixture of fuel gas (deuterium, tritium), helium, etc. at the connection between a magnetic diverter or pump limiter and a vacuum pump can be increased to 10 -3 to 10 -2 Torr. It is clear that The required pumping speed is 10 4 to 10 5 /sec at this pressure. On the other hand, since tritium is a radioactive substance that undergoes beta decay with a half-life of 12 to 3 years, its leakage into the atmosphere must be kept to an extremely low value. Furthermore, since tritium has a large effect on organic matter, organic polymeric materials such as lubricating oil cannot be used in vacuum pumping equipment in principle. It is also required to reduce the amount of tritium retained in the vacuum pump as much as possible. Furthermore, when a vacuum exhaust system is installed close to the reactor core, high-temperature gas is sucked in from the plasma, and synchrotron radiation is also incident on the exhaust system, so the vacuum pump used can absorb the heat generated by these. It is desirable that it can withstand the load sufficiently.

このような要求を完全に満たす真空排気装置は
現在のところ実現していないが、可能性のあるも
のとして、クライオポンプを主体としたもの、水
銀拡散ポンプを主体としたもの、及び分子ポンプ
を主体としたものが検討されている。
At present, a vacuum evacuation system that completely satisfies these requirements has not been realized, but there are possibilities such as one mainly based on a cryopump, one mainly based on a mercury diffusion pump, and one mainly based on a molecular pump. The following are being considered.

(3) 発明が解決しようとする問題点 クライオポンプ方式は、系が洗浄であることや
大排気速度のものが製作できることなどの利点が
ある反面、ヘリウム排気に関して難点があり、又
頻繁に再生処理を行わなければならない欠点を有
している。水銀拡散ポンプ方式では、かなり厳密
なトラツプを設置しても水銀蒸気が炉心プラズマ
や後段のトリチウム処理系に混入するという問題
がある。分子ポンプ方式は、10-3〜10-2トルで作
動すれば装置が小型になりトリチウムの滞留量も
僅少なためこの目的にもつとも適しているが、従
来の分子ポンプは数百ないし数千ガウスの高磁場
中では渦電流損失が大きくなり使用できないとい
う問題があつた。炉心から十分離れた位置にポン
プを設置する場合には磁場は比較的弱くなるが、
前記の磁気ダイバータやポンプリミタからポンプ
までの配管が長くなるためコンダクタンスが制限
され望ましくない。また従来の多くの分子ポンプ
は、回転軸に潤滑油を用いているため、トリチウ
ムの排気には使用できなかつた。
(3) Problems to be solved by the invention Although the cryopump method has advantages such as the ability to clean the system and the ability to manufacture one with a high pumping speed, it also has drawbacks regarding helium pumping and requires frequent regeneration treatment. It has the disadvantage that it has to be done. The problem with the mercury diffusion pump system is that mercury vapor gets mixed into the core plasma and the subsequent tritium treatment system, even if very strict traps are installed. Molecular pumps are suitable for this purpose because they operate at 10 -3 to 10 -2 Torr, making the device compact and the amount of tritium retained is small, but conventional molecular pumps operate at a pressure of several hundred to several thousand Gauss. There was a problem that eddy current loss became large in high magnetic fields, making it unusable. If the pump is installed far enough from the core, the magnetic field will be relatively weak, but
The piping from the magnetic diverter or pump limiter to the pump becomes long, which limits conductance, which is undesirable. Additionally, many conventional molecular pumps use lubricating oil for their rotating shafts, so they cannot be used to pump out tritium.

このような状況に鑑み、本発明は数百ガウス以
上の高磁場中で使用できる、気体の排気移送を目
的とした高速回転ポンプを提供することを目的と
する。
In view of this situation, an object of the present invention is to provide a high-speed rotation pump for the purpose of exhausting and transporting gas, which can be used in a high magnetic field of several hundred Gauss or more.

(4) 問題点を解決するための手段 この目的を達成すべく本発明による高速回転ポ
ンプは回転部分すなわちロータ、動翼、回転軸、
軸受、軸シール、駆動モータ等を電気絶縁性の良
い正しくは固有抵抗10-4Ωm以上の材料により構
成したことに特徴がある。
(4) Means for solving the problem In order to achieve this object, the high-speed rotary pump according to the present invention has rotating parts, namely a rotor, a rotor blade, a rotating shaft,
It is characterized by the fact that the bearing, shaft seal, drive motor, etc. are made of materials with good electrical insulation properties, more precisely, a specific resistance of 10 -4 Ωm or more.

(5) 作用 高速ポンプの回転部分を固有抵抗10-4Ωm以上
の材料で構成されているので、配管のコンダクタ
ンスによる損失を小さくするために強力な磁場を
発生する核融合実験炉及び実用炉の近くに前記高
速ポンプを設置しても前記回転部分に渦電流を生
ずることがなく長時間の円滑な高速回転を確保で
きる。
(5) Effect Since the rotating part of the high-speed pump is made of a material with a resistivity of 10 -4 Ωm or more, it is suitable for experimental fusion reactors and commercial reactors that generate a strong magnetic field to reduce loss due to conductance of piping. Even if the high-speed pump is installed nearby, no eddy current is generated in the rotating part, and smooth high-speed rotation can be ensured for a long time.

(6) 実施例 本発明の高速回転ポンプの一実施例として複合
分子ポンプの例を第1図に従つて説明する。
(6) Embodiment As an embodiment of the high-speed rotation pump of the present invention, an example of a composite molecular pump will be described with reference to FIG.

1はポンプ筐体を示し、該ポンプ筐体1内には
その上部にターボ分子ポンプ部2と下部にねじ溝
ポンプ部3を形成した。そして該ターボ分子ポン
プ部2は多段に積層結合した回転円板4……4の
周囲に付設した動翼2a……2aと前記ポンプ筐
体1の内周面に設けた静翼2b……2bとから成
り、又前記ねじ溝ポンプ部3はロータ3aと前記
ポンプ筐体1の内周面に嵌着したシリンダー5の
内周面に形成したねじ溝3bとから成る。尚、こ
れとは逆にねじ溝3bをロータ3aの周囲に形成
してもよい。ここで前記静翼2b……2bとシリ
ンダー5と後述する内部筒体1aがポンプ筐体1
と一体の静止体となる。
Reference numeral 1 indicates a pump housing, and inside the pump housing 1, a turbo molecular pump part 2 and a threaded groove pump part 3 were formed in the upper part and the lower part, respectively. The turbomolecular pump section 2 includes rotor blades 2a...2a attached around rotary disks 4...4 stacked and connected in multiple stages, and stationary blades 2b...2b provided on the inner circumferential surface of the pump housing 1. The threaded groove pump section 3 includes a rotor 3a and a threaded groove 3b formed on the inner circumferential surface of a cylinder 5 fitted to the inner circumferential surface of the pump housing 1. Note that, on the contrary, the thread groove 3b may be formed around the rotor 3a. Here, the stationary blades 2b...2b, the cylinder 5, and the internal cylinder 1a to be described later are connected to the pump housing 1.
It becomes a stationary body.

6は回転軸を示し、該回転軸6は前記ポンプ筐
体1の内部筒体1aに軸受7a,7bにより支持
されており、前記多数の回転円板4……4と一体
接合した前記ロータ3aに上端部において固定さ
れている。
Reference numeral 6 indicates a rotating shaft, and the rotating shaft 6 is supported by bearings 7a and 7b in the inner cylinder 1a of the pump housing 1, and the rotor 3a is integrally connected to the plurality of rotating disks 4...4. is fixed at the upper end.

8は該回転軸6の下端部に設けた駆動モータ
で、第1図では一例として流体タービンモータを
示してあり、圧縮空気あるいは窒素ガスその他の
流体で駆動され回転軸6を介して前記回転円板4
……4及びロータ3aを一体的に回転させる。
Reference numeral 8 designates a drive motor provided at the lower end of the rotating shaft 6. FIG. Board 4
... 4 and the rotor 3a are rotated integrally.

9は軸封部を示し、該軸封部9はガスシール型
軸封、ねじ溝型軸封、ラビリンスシール等の非接
触型軸封から成り、該軸封部9を軸受7a,7b
の中間に設けているが、軸受7bの外側の大気圧
側に設けてもよい。なお、図中10は吸気口、1
1は配管により補助真空ポンプに接続される排気
口を示す。
Reference numeral 9 indicates a shaft seal portion, and the shaft seal portion 9 is composed of a non-contact type shaft seal such as a gas seal type shaft seal, a thread groove type shaft seal, or a labyrinth seal.
Although it is provided in the middle of the bearing 7b, it may be provided on the atmospheric pressure side outside the bearing 7b. In addition, 10 in the figure is an intake port, 1
1 shows an exhaust port connected to an auxiliary vacuum pump by piping.

かくて、タービンモータ8の駆動により動翼2
a……2a及びロータ3aが共に回転し、吸気口
10から流入した気体はターボ分子ポンプ部2に
おいて回転する動翼2a……2aと静止する静翼
2b……2bとにより圧縮され、更にねじ溝ポン
プ部3において回転するロータ3aと静止するね
じ溝3bとにより圧縮されて排気口11から補助
真空ポンプにより排出される。
Thus, the rotor blade 2 is driven by the turbine motor 8.
a...2a and the rotor 3a rotate together, and the gas flowing in from the intake port 10 is compressed by the rotating rotor blades 2a...2a and the stationary stator blades 2b...2b in the turbomolecular pump section 2, and is further compressed by the screw. It is compressed by the rotating rotor 3a and the stationary screw groove 3b in the groove pump section 3, and is discharged from the exhaust port 11 by the auxiliary vacuum pump.

ここで、前記複合分子ポンプの回転部分即ちタ
ーボ分子ポンプ部2の回転円板4……4及び動翼
2a、ねじ溝ポンプ部3のロータ3a、回転軸
6、軸受7a,7b、軸封部9及び駆動モータ8
を固有抵抗が10-4Ωm以上の材料である窒化硅素
により構成し軸受に無機潤滑剤を使用した。
Here, the rotating parts of the composite molecular pump, that is, the rotating disks 4 and rotor blades 2a of the turbo molecular pump section 2, the rotor 3a of the thread groove pump section 3, the rotating shaft 6, the bearings 7a and 7b, and the shaft seal section. 9 and drive motor 8
The bearing is made of silicon nitride, a material with a specific resistance of 10 -4 Ωm or more, and an inorganic lubricant is used for the bearing.

次に第2図に本実施例の複合分子ポンプの高磁
場中例えば1KGの磁場中での吸入圧・排気速度
曲線を示す。ここで横軸は該ポンプの吸入圧
(Pa)を、縦軸は排気速度(/s)を示す。
Next, FIG. 2 shows the suction pressure/exhaust speed curve of the composite molecular pump of this example in a high magnetic field, for example, a 1 KG magnetic field. Here, the horizontal axis shows the suction pressure (Pa) of the pump, and the vertical axis shows the pumping speed (/s).

即ち、窒素ガスについての排気速度は曲線Aの
如く超高真空から7.5x10-3トル(1Pa)まで低下
せずに最大値を示し、1.5x10-2トル(2Pa)で最
大値の73%、0.1トル(13Pa)でも最大値の22%
であり、又水素ガスについての排気速度は曲線B
の如く超高真空から2.2x10-3トル(0.3Pa)まで
略最大値を示し、7.5x10-3トル(1Pa)で最大値
の60%、0.03トル(4Pa)でも最大値の22%であ
る。なお、上記曲線はロータ外径が190mmの複合
分子ポンプの実測結果であり、これは磁場がない
場合と同じ特性を示している。窒素ガスの最大排
気速度は550/s、水素ガスの最大排気速度は
370/sであるが、ロータ外径が400mmの大型の
複合分子ポンプになると、最大排気速度が窒素ガ
スに対して2500/s、水素ガスに対して1700
/sであり、10-3〜10-2トルにおいて104〜105
/sの排気速度の真空ポンプが必要な実験炉で
は約20台の複合分子ポンプで十分であり、高磁場
中での長時間の運転が可能である。
That is, the pumping speed for nitrogen gas shows the maximum value without decreasing from ultra-high vacuum to 7.5x10 -3 Torr (1Pa) as shown in curve A, and reaches 73% of the maximum value at 1.5x10 -2 Torr (2Pa). 22% of maximum value even at 0.1 Torr (13Pa)
, and the pumping speed for hydrogen gas is curve B
It shows almost the maximum value from ultra-high vacuum to 2.2x10 -3 Torr (0.3Pa), and is 60% of the maximum value at 7.5x10 -3 Torr (1Pa) and 22% of the maximum value even at 0.03 Torr (4Pa). . The above curve is an actual measurement result of a composite molecular pump with a rotor outer diameter of 190 mm, and shows the same characteristics as when there is no magnetic field. The maximum pumping speed for nitrogen gas is 550/s, and the maximum pumping speed for hydrogen gas is 550/s.
370/s, but in the case of a large composite molecular pump with a rotor outer diameter of 400 mm, the maximum pumping speed is 2500/s for nitrogen gas and 1700/s for hydrogen gas.
/s, and 10 4 to 10 5 at 10 -3 to 10 -2 Torr.
For experimental reactors that require vacuum pumps with a pumping speed of /s, approximately 20 composite molecular pumps are sufficient, and long-term operation in high magnetic fields is possible.

以上の実施例における複合分子ポンプではター
ボ分子ポンプ部とねじ溝分子ポンプ部とを一体化
しているが、ターボ分子ポンプ部とらせん溝分子
ポンプ部とを一体化した複合分子ポンプでもよ
く、更に高磁場発生装置には複合分子ポンプのみ
ならず単なるターボ分子ポンプ、ねじ溝分子ポン
プまたはらせん溝分子ポンプが適合する場合もあ
り、かかる場合にはこれらのターボ分子ポンプ、
ねじ溝分子ポンプ及びらせん溝分子ポンプを本発
明により回転部分を固有抵抗10-4Ωm以上の材料
で構成し得る。また、回転部分材料として窒化硅
素の他に炭化硅素、酸化アルミニウム、ジルコニ
アなどのセラミツクス、引つ張り強度の高い材料
を含む複合材料例えばFRP、または多層材料で
あつて総合して固有抵抗が10-4Ωm以上である材
料を用いてもよい。なお、駆動モータとしては例
えば固有抵抗が10-4Ωmの材料で回転部分を構成
したベーン型流体モータを用いてもよい。
Although the composite molecular pump in the above embodiment integrates the turbo molecular pump section and the thread groove molecular pump section, a composite molecular pump that integrates the turbo molecular pump section and the spiral groove molecular pump section may also be used. Not only a composite molecular pump but also a simple turbo molecular pump, a screw groove molecular pump, or a spiral groove molecular pump may be suitable for the magnetic field generator, and in such cases, these turbo molecular pumps,
According to the present invention, the threaded groove molecular pump and the spiral groove molecular pump can have their rotating parts made of a material having a resistivity of 10 -4 Ωm or more. In addition to silicon nitride, the rotating parts may also be made of ceramics such as silicon carbide, aluminum oxide, or zirconia, composite materials containing materials with high tensile strength such as FRP, or multilayer materials with a total specific resistance of 10 - A material having a resistance of 4 Ωm or more may be used. Note that, as the drive motor, a vane-type fluid motor whose rotating portion is made of a material having a specific resistance of 10 -4 Ωm, for example, may be used.

(7) 効果 このように本発明による高速回転ポンプは回転
部分を固有抵抗10-4Ωm以上の材料で構成したの
で、強力な磁場を発生する核融合実験炉及び実用
炉の真空排気用に適用して配管のコンダクタンス
による損失を小さくするために真空容器の近くに
設置しても、渦電流を生ずることがなく長時間の
円滑な高速回転を確保できて、適宜の台数を並列
接続することによつて要望される排気機能を実現
し、大きな配管やマニホールドによつてかさばつ
た容積を占有せず、真空排気ポンプ系としての制
御系も簡単化でき、さらに一般的にトリチウム等
の放射性気体の排気にも適用できるなどの著しい
効果を有する。
(7) Effect As described above, the high-speed rotary pump according to the present invention has the rotating part made of a material with a resistivity of 10 -4 Ωm or more, so it can be applied to vacuum pumping of experimental fusion reactors and commercial reactors that generate strong magnetic fields. Even when installed near a vacuum vessel to reduce loss due to conductance of piping, it does not generate eddy current and can ensure smooth high-speed rotation for a long time, making it possible to connect an appropriate number of units in parallel. Therefore, it realizes the desired evacuation function, does not occupy bulky volume due to large piping or manifolds, and simplifies the control system as a vacuum evacuation pump system. It has remarkable effects and can also be applied to exhaust gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の複合分子ポンプの一実施例の
断面図、第2図は複合分子ポンプの吸入圧・排気
速度特性のグラフである。 1……ポンプ筐体、2……ターボ分子ポンプ
部、2a……動翼、3……ねじ溝ポンプ部、3a
……ロータ、3b……ねじ溝、4……回転円板、
5……シリンダー、6……回転軸、7a,7b…
…軸受、8……タービンモータ、9……軸封部、
10……吸入口、11……排気口。
FIG. 1 is a sectional view of an embodiment of the composite molecular pump of the present invention, and FIG. 2 is a graph of suction pressure and pumping speed characteristics of the composite molecular pump. DESCRIPTION OF SYMBOLS 1... Pump housing, 2... Turbomolecular pump part, 2a... Moving blade, 3... Thread groove pump part, 3a
...Rotor, 3b...Thread groove, 4...Rotating disk,
5... Cylinder, 6... Rotating shaft, 7a, 7b...
... Bearing, 8 ... Turbine motor, 9 ... Shaft seal,
10...Intake port, 11...Exhaust port.

Claims (1)

【特許請求の範囲】 1 ポンプ筐体と一体になつた静止体と、固有抵
抗10-4Ωm以上の材料で構成された回転体と、該
回転体と軸を介して接続され固有抵抗10-4Ωm以
上の材料で構成された駆動モータとから構成した
ことを特徴とする高速回転ポンプ。 2 該駆動モータが流体タービンモータであるこ
とを特徴とする特許請求範囲第1項の高速回転ポ
ンプ。
[Scope of Claims] 1. A stationary body integrated with the pump housing, a rotating body made of a material having a specific resistance of 10 -4 Ωm or more, and a rotating body connected to the rotating body through a shaft and having a specific resistance of 10 -4 Ωm or more. A high-speed rotation pump characterized by comprising a drive motor made of a material with a resistance of 4 Ωm or more. 2. The high-speed rotary pump according to claim 1, wherein the drive motor is a fluid turbine motor.
JP19429184A 1984-09-17 1984-09-17 High speed rotary pump Granted JPS6172896A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19429184A JPS6172896A (en) 1984-09-17 1984-09-17 High speed rotary pump
DE19853531942 DE3531942A1 (en) 1984-09-17 1985-09-07 Rotary pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19429184A JPS6172896A (en) 1984-09-17 1984-09-17 High speed rotary pump

Publications (2)

Publication Number Publication Date
JPS6172896A JPS6172896A (en) 1986-04-14
JPH0379559B2 true JPH0379559B2 (en) 1991-12-19

Family

ID=16322150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19429184A Granted JPS6172896A (en) 1984-09-17 1984-09-17 High speed rotary pump

Country Status (2)

Country Link
JP (1) JPS6172896A (en)
DE (1) DE3531942A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184192U (en) * 1986-05-16 1987-11-21
JPS62184190U (en) * 1986-05-16 1987-11-21
JPS6375387A (en) * 1986-09-18 1988-04-05 Mitsubishi Heavy Ind Ltd Ceramics oil-free hybrid vacuum pump
JP2556320B2 (en) * 1987-03-18 1996-11-20 セイコ−精機株式会社 Vacuum pump
JPS63200697U (en) * 1987-06-16 1988-12-23
DE3919529C2 (en) * 1988-07-13 1994-09-29 Osaka Vacuum Ltd Vacuum pump
JPH0214496U (en) * 1988-07-13 1990-01-30
DE3926577A1 (en) * 1989-08-11 1991-02-14 Leybold Ag VACUUM PUMP WITH A ROTOR AND ROTOR BEARINGS OPERATED WITH VACUUM
GB9125850D0 (en) * 1991-12-04 1992-02-05 Boc Group Plc Improvements in vacuum pumps
DE4314419A1 (en) * 1993-05-03 1994-11-10 Leybold Ag Friction vacuum pump with bearing support
DE19632874A1 (en) * 1996-08-16 1998-02-19 Leybold Vakuum Gmbh Friction vacuum pump
GB0409139D0 (en) 2003-09-30 2004-05-26 Boc Group Plc Vacuum pump
JP2006144783A (en) 2004-11-24 2006-06-08 Pfeiffer Vacuum Gmbh Damage preventing device connectable to flange of vacuum pump having high-speed rotor
DE102005052792B4 (en) * 2004-11-24 2017-12-14 Pfeiffer Vacuum Gmbh Splinter guard for vacuum pump with fast rotating rotor
DE202011002809U1 (en) * 2011-02-17 2012-06-12 Oerlikon Leybold Vacuum Gmbh Stator element and high vacuum pump
JP6079052B2 (en) * 2012-08-24 2017-02-15 株式会社島津製作所 Vacuum pump
EP3345189B1 (en) * 2015-09-04 2021-08-11 Terrestrial Energy Inc. Pneumatic motor assembly, flow induction system using same and method of operating a pneumatic motor assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2224009A5 (en) * 1973-03-30 1974-10-25 Cit Alcatel
DE2512828C3 (en) * 1975-03-22 1978-11-16 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Turbo molecular pump

Also Published As

Publication number Publication date
DE3531942A1 (en) 1986-04-30
JPS6172896A (en) 1986-04-14
DE3531942C2 (en) 1989-04-06

Similar Documents

Publication Publication Date Title
JPH0379559B2 (en)
US3536418A (en) Cryogenic turbo-molecular vacuum pump
JP3868530B2 (en) Method of operating a molecular vacuum pump with a cooling gas mechanism
US7021888B2 (en) Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump
US3399827A (en) Vacuum pump system
JPH02102385A (en) Gas exhaust system
JPS60116895A (en) Vacuum pump
JPWO2013065440A1 (en) Fixing member and vacuum pump
EP3847372A1 (en) Lubrication-free centrifugal compressor
JPH10141277A (en) Double discharge-type gas friction pump
JPS5946394A (en) Turbo molecular pump
JPS60247075A (en) Vacuum pump
Goetz Large turbomolecular pumps for fusion research and high-energy physics
RU2168070C2 (en) Molecular vacuum pump
JP3856576B2 (en) Fusion reactor exhaust system
Budgen A mechanical booster for pumping radioactive and other dangerous gases
JP2020026794A (en) Method of producing vacuum pump
JP2018084231A (en) Vacuum pump
Hucknall et al. Turbomolecular pumps
JPS6045792A (en) Turbo molecular pump
JPS59162396A (en) Molecular turbopump
Leiter Molecular and Turbomolecular Pumps
JP2525848Y2 (en) Vacuum pump
JPH01216097A (en) Magnetic shield type turbo molecular pump
JPH01393A (en) vacuum pump equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term