JPH0379414B2 - - Google Patents

Info

Publication number
JPH0379414B2
JPH0379414B2 JP59224095A JP22409584A JPH0379414B2 JP H0379414 B2 JPH0379414 B2 JP H0379414B2 JP 59224095 A JP59224095 A JP 59224095A JP 22409584 A JP22409584 A JP 22409584A JP H0379414 B2 JPH0379414 B2 JP H0379414B2
Authority
JP
Japan
Prior art keywords
resistant alloy
superplastic
super heat
powder
isostatic pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59224095A
Other languages
Japanese (ja)
Other versions
JPS61104035A (en
Inventor
Yoshihiko Doi
Atsushi Kuroishi
Shigeki Ochi
Noboru Uenishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP22409584A priority Critical patent/JPS61104035A/en
Priority to US06/852,966 priority patent/US4710345A/en
Priority to PCT/JP1985/000595 priority patent/WO1986002669A1/en
Priority to EP85905424A priority patent/EP0203197B1/en
Priority to DE8585905424T priority patent/DE3582066D1/en
Publication of JPS61104035A publication Critical patent/JPS61104035A/en
Publication of JPH0379414B2 publication Critical patent/JPH0379414B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、粉末冶金法によつて超塑性を有する
素材を予備成形した後、超塑性加工を行うことに
よつて、タービンデイスク、ブレード及びそれら
の一体物を製造する方法を提供するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is a method of manufacturing turbine disks, blades and The present invention provides a method for manufacturing such an integrated product.

[従来の技術とその問題点] 高温で用いられる超耐熱合金に対するその耐用
温度の向上は省エネルギー面での必要性上、急務
とされているが、この要求を満たすために必要な
合金添加元素量の増大は加工性の低下を招くとい
う難点を有している。これを克服する方法として
超塑性加工法がある。超塑性加工は、素材が超塑
性を有する条件下で塑性加工し、極めて変形率の
大きな、しかも複雑な形状を得る方法である。即
ち超塑性加工は、小さい力で加工できる。その
ため真空成形やガス圧成形が可能である。変形
能が大きいので複雑な形状ができ、加工費が節約
できる。冷間加工のように残留応力を内蔵して
いないので耐食性や寸法精度が安定している。
加工の表面状態がよい。などの特徴を有してい
る。このため超塑性加工法は、通常の加工法では
加工困難な合金の成形に適しているという利点を
有している。
[Conventional technology and its problems] Improving the withstand temperature of super heat-resistant alloys used at high temperatures is an urgent need for energy conservation, but the amount of alloying elements necessary to meet this requirement is The problem is that an increase in . A method to overcome this problem is the superplastic working method. Superplastic working is a method in which a material is plastically worked under conditions in which it has superplasticity to obtain a complex shape with an extremely large deformation rate. In other words, superplastic working can be performed with small force. Therefore, vacuum forming or gas pressure forming is possible. Due to its large deformability, complex shapes can be created and processing costs can be saved. Unlike cold working, there is no built-in residual stress, so corrosion resistance and dimensional accuracy are stable.
The processed surface is in good condition. It has the following characteristics. Therefore, the superplastic processing method has the advantage of being suitable for forming alloys that are difficult to process using normal processing methods.

これらの特性を有する超塑性加工法には微細結
晶粒超塑性を利用するものと、変態超塑性を利用
するものとに分けられるが、本発明で利用する超
塑性加工法は微細結晶粒超塑性を利用するもので
あり、その加工上の必要条件として数μm以下の
結晶粒を有する超塑性鍛造用素材の作製が必要と
される。近年のアトマイズ技術を応用した粉末冶
金法は、この超塑性鍛造用素材の作製を可能にし
たものであり、本発明はこの超塑性鍛造用素材の
作製及びその超塑性鍛造加工法に係るものであ
る。
Superplastic processing methods that have these characteristics can be divided into those that utilize fine grain superplasticity and those that utilize transformation superplasticity, but the superplastic processing method used in the present invention uses fine grain superplasticity. As a necessary condition for its processing, it is necessary to produce a superplastic forging material having crystal grains of several μm or less. Powder metallurgy methods that apply recent atomization technology have made it possible to produce this superplastic forging material, and the present invention relates to the production of this superplastic forging material and its superplastic forging processing method. be.

従来超塑性鍛造用素材の作製には合金粉末の再
結晶温度直下近傍の温度において熱間押出加工を
することにより、その加工熱を利用して粉末に再
結晶を起こさせ、10μm以下の微細結晶粒組織を
有する素材を作製するか、又はカプセル中に合金
粉末を封入し高温高圧のガスで静水圧的に全体を
均一に加圧しながら焼結を行う熱間静水圧成形法
(HIP)により素材を作製する方法によつていた。
しかしながら上記2法のうち粉末押出による方法
では大きな製品を作るには、大きな押出し機が必
要となり、設備費が莫大となるという欠点があ
る。又HIPによる方法では、合金粉末はカプセル
中に密封されるため粉末の吸着ガスが素材中に閉
じ込められ、これが後の超塑性鍛造時の変形特性
に悪影響を及ぼし変形性能を劣化させるという欠
点やカプセル中への粉末充填時の密封工程の困難
さを伴うという欠点がある。すべての密封箇所、
とくに溶接部分にはわずかの漏れもあつてはなら
ない。たとえ小さな漏れでも高圧のガスが入つた
後、完全に焼結して緻密化し、目に見えない空隙
の中にガスを閉じ込めてしまい、これらのガスは
高温熱処理時に広がつて製品の機械的特性に弊害
を与えるからである。
Conventionally, superplastic forging materials are produced by hot extrusion processing at a temperature just below the recrystallization temperature of alloy powder, and the processing heat is used to cause recrystallization of the powder, resulting in fine crystals of 10 μm or less. The material can be manufactured using hot isostatic pressing (HIP), which involves producing a material with a grain structure, or enclosing alloy powder in a capsule and sintering it while uniformly pressurizing the entire body with high-temperature, high-pressure gas. It depends on the method of making it.
However, among the above two methods, the powder extrusion method requires a large extruder to produce large products, and has the disadvantage that the equipment cost is enormous. In addition, in the HIP method, since the alloy powder is sealed in a capsule, the adsorbed gas of the powder is trapped in the material, which has a negative effect on the deformation characteristics during subsequent superplastic forging and deteriorates the deformation performance. There is a drawback that the sealing process when filling the powder inside is difficult. all sealed areas,
In particular, there should be no leakage in the welded areas. Even a small leak will allow gases under high pressure to enter and become completely sintered and densified, trapping the gases in invisible voids, and these gases will spread during high-temperature heat treatment and affect the mechanical properties of the product. This is because it causes harm to

[問題点を解決するための手段] 本発明は微細結晶粒組織を有する素材の作製方
法として上記2法以外の方法を示したものであ
り、さらに上記2法の欠点を克服したもである。
即ち適当形状に仕上げた内部に空間を持つゴムモ
ールド中に合金粉末を充填し密封した後、これを
冷間における静水圧力下で加圧成形し、これによ
りできた成形体を1000℃以上の温度で焼結を行う
ことにより成形体の緻密化を計り、再結晶を起こ
させることにより微細な結晶粒構造を有する素材
の作製を行うものである。この方法の利点とし
て、冷間静水圧成形(CIP)を行う時のモールド
は、ゴム製であるので、繰り返し使用が可能であ
り、比較的安価であること、大型の素材作製が押
出法に較べ比較的容易に行えることがあげられ
る。又本発明の方法によれば、後工程である超塑
性鍛造に適した複雑形状を有する素材の作成が容
易にでき、超塑性鍛造条件の簡単化、効率化が行
えるという効果がある。CIPにより得られた成形
体は真空中、又は雰囲気ガス中において1000℃以
上の温度において結晶を行い成形体の緻密化を計
ることにより、真密度比で95%以上の素材を得、
かつ再結晶を起こさせることにより平均結晶粒径
が5μm以下の素材の作製を行う。又さらに成形
体の緻密化を行うため以上の処理に加えて、成形
体をカプセル中に封入することなしに熱間静水圧
成形(HIP)を行う。この様にして得られた素材
は、焼結及びHIPの工程で雰囲気を真空又は雰囲
気ガスに保つことにより、粉末吸着ガスの除去が
行なえるため、後の超塑性鍛造時に悪影響を及ぼ
す含有酸素量を50ppm以下に低下させることが可
能となる。
[Means for Solving the Problems] The present invention provides a method other than the above two methods as a method for producing a material having a fine grain structure, and also overcomes the drawbacks of the above two methods.
That is, after filling and sealing the alloy powder into a rubber mold with an internal space finished in an appropriate shape, this is press-molded under cold hydrostatic pressure, and the resulting molded body is heated to a temperature of 1000°C or higher. By performing sintering, the molded body is densified, and by causing recrystallization, a material having a fine crystal grain structure is produced. The advantages of this method are that the mold used for cold isostatic pressing (CIP) is made of rubber, so it can be used repeatedly, it is relatively inexpensive, and it is easier to produce large materials than the extrusion method. This can be done relatively easily. Further, according to the method of the present invention, it is possible to easily create a material having a complicated shape suitable for superplastic forging, which is a subsequent process, and the superplastic forging conditions can be simplified and made more efficient. The molded product obtained by CIP is crystallized at a temperature of 1000℃ or higher in a vacuum or atmospheric gas to make the molded product denser, thereby obtaining a material with a true density ratio of 95% or more.
By causing recrystallization, a material having an average crystal grain size of 5 μm or less is produced. Furthermore, in order to further densify the molded product, in addition to the above-mentioned treatments, hot isostatic pressing (HIP) is performed without encapsulating the molded product in a capsule. By maintaining the atmosphere in vacuum or atmospheric gas during the sintering and HIP processes, the powder adsorbed gas can be removed from the material obtained in this way. This makes it possible to reduce the amount of carbon dioxide to 50ppm or less.

この様にして得られた平均結晶粒径が5μm以
下で、かつ低酸素量を有するほぼ真密度に達した
素材を用い、超塑性発現条件において、
10-1sec-1以下の低速度で超塑性鍛造を行うこと
により所要の形状を有する成形体を得る。勿論得
られた成形体は溶体化熱処理や安定化熱処理や析
出熱処理を含む従来の熱処理により高強度及び高
硬度の特性を持つ最終製品に仕上げられる。
Using the material obtained in this way, which has an average grain size of 5 μm or less and has a low oxygen content and has reached almost true density, under superplasticity development conditions,
A molded body having a desired shape is obtained by performing superplastic forging at a low speed of 10 -1 sec -1 or less. Of course, the resulting compact can be finished into a final product with high strength and hardness properties by conventional heat treatments including solution heat treatment, stabilization heat treatment, and precipitation heat treatment.

冷間静水圧成形の圧力は特に4000Kg・f/cm2
上の高圧が望ましい。4000Kg・f/cm2未満の圧力
では、本願の如き超耐熱合金の成形は不可能であ
り、さらには4000Kg・f/cm2以上の圧力を用いる
ことによつて、粉末への加工歪の付加を効果的に
行い、これにより、焼結過程において、再結晶に
より結晶粒の微細化を促進し、緻密で微細な結晶
構造をもつ超塑性鍛造用素材を得ることができ
る。
The pressure for cold isostatic pressing is particularly preferably a high pressure of 4000 Kg·f/cm 2 or higher. It is impossible to form a super heat-resistant alloy like the one in this application at a pressure of less than 4000 Kg/cm 2 , and furthermore, by using a pressure of 4000 Kg/f/cm 2 or higher, processing strain may be added to the powder. As a result, in the sintering process, crystal grain refinement is promoted through recrystallization, and a superplastic forging material having a dense and fine crystal structure can be obtained.

本願で得られた焼結体の密度は95%以上が必要
である。95%以下では、焼結体中の空孔が連続し
た気孔を構成し、熱間静水圧成形時に大量の気孔
が焼結体中に残つたり、また、カプセルを用いな
いで、熱間静水圧成形する時に、圧力がかからな
い等の問題点がある。
The density of the sintered body obtained in the present application must be 95% or more. If it is less than 95%, the pores in the sintered body will form continuous pores, and a large number of pores will remain in the sintered body during hot isostatic pressing, or when hot isostatic pressing is performed without using a capsule. There are problems such as no pressure being applied during hydroforming.

また焼結は、真空中または不活性または還元性
雰囲気等の非酸化性の雰囲気が望ましく、温度は
95%以上の密度を有する焼結体を得るには1000℃
以上である必要がある。このようにして得られた
焼結体は、95%以上の密度を有するために、カプ
セルに入れることなく、熱間静水圧成形が可能で
あり、容易に処理することができるのである。こ
のようにして、含有酸素濃度が50ppm以下でかつ
平均結晶粒径が5μm以下の焼結体を得ることが
できる。用いる粉末はアトマイズ法による超急冷
凝固法によつて得たものが望ましい。
In addition, sintering is preferably performed in a non-oxidizing atmosphere such as a vacuum or an inert or reducing atmosphere, and the temperature is
1000℃ to obtain a sintered body with a density of 95% or more
It needs to be more than that. Since the sintered body thus obtained has a density of 95% or more, it can be subjected to hot isostatic pressing without being placed in a capsule, and can be easily processed. In this way, a sintered body having an oxygen content of 50 ppm or less and an average crystal grain size of 5 μm or less can be obtained. The powder used is preferably one obtained by an ultra-rapid solidification method using an atomization method.

また粉末に冷間で加工を与えることにより、粉
末形状を球状以外の異形に変化させることにより
CPI時の粉末同士のからみ合いを増し、その成形
性を改善することにより、4000Kg・f/cm2以下の
低圧のおいても成形を可能とすることにより本願
発明の方法を可能としたものである。又冷間で加
工することは予歪を粉末に与えることになり、こ
れによつて焼結時における再結晶の核発生場所を
多くし、得られる素材の結晶粒の微細化を計るこ
とにより、より顕著な超塑性挙動を示す素材の作
製を可能としたものである。
In addition, by cold processing the powder, the powder shape can be changed to an irregular shape other than spherical.
By increasing the entanglement between powders during CPI and improving their moldability, the method of the present invention is made possible by making molding possible even at low pressures of 4000 kg・f/cm 2 or less. be. In addition, cold processing imparts pre-strain to the powder, which increases the number of places where recrystallization nuclei occur during sintering, and refines the crystal grains of the resulting material. This made it possible to create a material that exhibits more pronounced superplastic behavior.

ここでいうNi基超耐熱合金としては、
AstroloyやIN100等のNi、Cr、Co、Mo、Ti等
を主成分とする合金を意味する。
The Ni-based super heat-resistant alloy mentioned here is
Refers to alloys whose main components are Ni, Cr, Co, Mo, Ti, etc., such as Astroloy and IN100.

また冷間加工の方法としては、アトライター、
ホールミル、振動ミル等の一般に使用されている
装置を用いて行うことができる。
In addition, cold working methods include attritor,
This can be carried out using commonly used equipment such as a whole mill or a vibration mill.

これらの中でも特にアトライターは、その効果
を短時間で得ることができるので有利である。
Among these, attritor is particularly advantageous because its effect can be obtained in a short time.

さらには、乾式を用い、雰囲気を不活性ガスと
することによつて、表面酸化の少い良好な粉末を
得ることができる。
Furthermore, by using a dry method and using an inert gas atmosphere, a good powder with less surface oxidation can be obtained.

なお一般に超塑性加工は950〜1100℃程度で、
大気中や不活性雰囲気中で行われる。
Generally, superplastic processing is performed at a temperature of about 950 to 1100℃.
It is carried out in air or in an inert atmosphere.

実施例 1 超急冷凝固法によつて得られた、粉末粒径が
145μm以下のIN100(0.1C−10Cr−3.5Mo−1Fe−
14Co−4.5Al−5.5Ti−0.01B−1V−0.05Zr−残部
Niの組成)を、内径25mmのゴムチユーブ中に充
填し、真空脱気後、圧力6000Kg・f/cm2で冷間静
水圧成形し、成形体を作製した。さらにこの成形
体を103torrの真空中において1150℃の温度で焼
結を行い、さらに1160℃、1900Kg・f/cm21hrの
条件で熱間静水圧成形を行つた。得られた超塑性
加工用素材の平均結晶粒径は約10μm又密度は96
%であつた。得られた素材からゲージ長さ10mm直
径6mmの試験片を切り出し、1040℃において歪速
度が103sec1以下の条件で超塑性引張試験を行つ
た。伸びは約300%を示し、超塑性鍛造が可能で
あることを確めた。
Example 1 Powder particle size obtained by ultra-rapid solidification method
IN100 (0.1C−10Cr−3.5Mo−1Fe−
14Co−4.5Al−5.5Ti−0.01B−1V−0.05Zr−Remainder
Ni composition) was filled into a rubber tube with an inner diameter of 25 mm, and after vacuum degassing, cold isostatic pressing was performed at a pressure of 6000 Kg·f/cm 2 to produce a molded body. Further, this compact was sintered at a temperature of 1150° C. in a vacuum of 10 3 torr, and further subjected to hot isostatic pressing at 1160° C. and 1900 Kg·f/cm 2 for 1 hr. The obtained material for superplastic processing has an average grain size of approximately 10 μm and a density of 96
It was %. A test piece with a gauge length of 10 mm and a diameter of 6 mm was cut from the obtained material and subjected to a superplastic tensile test at 1040°C and a strain rate of 10 3 sec 1 or less. The elongation was approximately 300%, confirming that superplastic forging is possible.

実施例 2 超急冷凝固法によつて得られた、粉末粒径が
145μm以下のRene95(0.1C−14Cr−3.5Mo−8Co
−3.5Al−2.5Ti−0.01B−3.5Nb−3.6W−0.05Zr
−残部Niの組成)に、25分間200rpmで乾式アト
ライターにより冷間加工を加え、得られた粉末を
用い、実施例1と同様の条件で焼結及びHIP処理
を行つた。得られた超塑性加工用素材の平均結晶
粒径は約5μm又密度は95%であつた。得られた
素材からゲージ長さ10μm直径6mmの試験片を切
り出し1040℃において歪速度が10-3sec-1以下の
条件で超塑性引張試験を行つた。伸びは約340%
を示し、超塑性鍛造が可能であることを確めた。
Example 2 Powder particle size obtained by ultra-rapid solidification method
Rene95 (0.1C−14Cr−3.5Mo−8Co
−3.5Al−2.5Ti−0.01B−3.5Nb−3.6W−0.05Zr
- Residual Ni composition) was subjected to cold working using a dry attritor at 200 rpm for 25 minutes, and the resulting powder was subjected to sintering and HIP treatment under the same conditions as in Example 1. The obtained material for superplastic processing had an average grain size of about 5 μm and a density of 95%. A test piece with a gauge length of 10 μm and a diameter of 6 mm was cut from the obtained material and subjected to a superplastic tensile test at 1040° C. and a strain rate of 10 -3 sec -1 or less. Growth is approximately 340%
It was confirmed that superplastic forging is possible.

このようにして得られた素材からφ80×100mm
の大きさの円柱ブロツクを切り出し、1050℃にて
歪速度が10-2sec-1の条件で超塑性鍛造を行つた。
鍛造により成形された材料は直径140mmを有する
タービンデイスク形状である。次にこのタービン
デイスクに1235℃×3hrの条件で熱処理(溶体化
処理)をした後、空冷し、さらにその後1070℃で
4時間、840℃で16時間、760℃で24時間の条件で
順次熱処理を加えた。得られたタービンデイスク
は直径約80μmの結晶粒径を有しており、引張強
度は760℃において124Kg/mm2高強度と9%の延性
を示した。
From the material obtained in this way, φ80×100mm
A cylindrical block with a size of
The material formed by forging is in the shape of a turbine disc with a diameter of 140 mm. Next, this turbine disk was heat treated (solution treatment) at 1235℃ x 3 hours, air cooled, and then sequentially heat treated at 1070℃ for 4 hours, 840℃ for 16 hours, and 760℃ for 24 hours. added. The obtained turbine disk had a crystal grain size of approximately 80 μm in diameter, and exhibited a high tensile strength of 124 Kg/mm 2 at 760° C. and a ductility of 9%.

実施例 3 実施例1と同様に超急冷凝固法によつて得られ
た粉末粒径が105μm以下のNi基超合金粉末に1
時間150rpmで、Alガス雰囲気中にて乾式アトラ
イターにより冷間加工を加え、得られた粉末を用
いCIP焼結及びHIP処理を行つた。得られた超塑
性加工用素材の平均結晶粒形は約3μm、密度99
%であつた。得られた素材からφ80×100mmの大
きさの円柱ブロツクを切り出し、1050℃にて歪速
度が10-2sec-1の条件で超塑性鍛造を行つた。鍛
造により成形された材料は直径140mmを有するタ
ービンデイスク形状である。次にこのタービンデ
イスクに1220℃×1hrの条件で熱処理(溶体化処
理)をした後、空冷し、さらにその後1070℃で4
時間、850℃で15時間、800℃で15時間の条件で順
次熱処理を加えた。得られたタービンデイスクは
引張強度は760℃において129Kg/mm2の高強度と7
%の延性を示した。
Example 3 Ni-based superalloy powder with a powder particle size of 105 μm or less obtained by the ultra-rapid solidification method in the same manner as in Example 1 was
Cold working was performed using a dry attritor in an Al gas atmosphere at 150 rpm, and the resulting powder was subjected to CIP sintering and HIP treatment. The average grain size of the obtained material for superplastic processing was approximately 3 μm, and the density was 99
It was %. A cylindrical block with a size of φ80 x 100 mm was cut from the obtained material, and superplastic forging was performed at 1050°C and a strain rate of 10 -2 sec -1 . The material formed by forging is in the shape of a turbine disc with a diameter of 140 mm. Next, this turbine disk was heat treated (solution treatment) at 1220℃ x 1hr, air cooled, and then heated to 1070℃ for 4 hours.
Heat treatment was sequentially performed at 850°C for 15 hours and at 800°C for 15 hours. The obtained turbine disk has a high tensile strength of 129 Kg/mm 2 at 760℃ and 7
% ductility.

Claims (1)

【特許請求の範囲】 1 Ni基超耐熱合金の製造方法において (イ) 冷却速度が105℃/sec以上のアトマイズ法を
用いた超急冷凝固法によつて得たNi基超耐熱
合金粉末をゴムモールドに充填密封した後、
4000Kg・f/cm2以上の圧力で冷間静水圧成形を
行う工程 (ロ) 得られた成形体を1000℃以上の温度におい
て、真空中または雰囲気ガス中において真密度
の95%以上の密度に焼結する工程 (ハ) 得られた焼結体をカプセルを用いることなく
熱間静水圧成形する工程 (ニ) 熱間静水圧成形した材料を超塑生変形させる
工程 (ホ) 超塑生変形させた材料を熱処理する工程 から成り、各工程の材料中の酸素濃度を50ppm以
下に制御したことを特徴とする超耐熱合金素材の
製造方法。 2 冷却速度が105℃/sec以上のアトマイズ法を
用いた超急冷凝固法によつて得たNi基超耐熱合
金粉末を冷間加工し、しかる後冷間静水圧成形す
ることを特徴とする特許請求の範囲第1項記載の
超耐熱合金素材の製造方法。
[Claims] 1. In a method for producing a Ni-based super heat-resistant alloy, (a) a Ni-based super heat-resistant alloy powder obtained by an ultra-rapid solidification method using an atomization method with a cooling rate of 10 5 °C/sec or more; After filling and sealing the rubber mold,
A process of performing cold isostatic pressing at a pressure of 4000Kg・f/cm2 or more (b) The obtained molded product is heated to a density of 95% or more of the true density in vacuum or atmospheric gas at a temperature of 1000℃ or more. Sintering process (c) Hot isostatic pressing of the obtained sintered body without using a capsule (d) Superplastic deformation of the hot isostatically pressed material (e) Superplastic deformation 1. A method for producing a super heat-resistant alloy material, comprising the steps of heat-treating the material, and controlling the oxygen concentration in the material in each step to 50 ppm or less. 2. A Ni-based super heat-resistant alloy powder obtained by an ultra-rapid solidification method using an atomization method with a cooling rate of 10 5 °C/sec or more is cold worked, and then cold isostatically formed. A method for producing a super heat-resistant alloy material according to claim 1.
JP22409584A 1984-10-26 1984-10-26 Manufacture of superheat resistant alloy blank Granted JPS61104035A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22409584A JPS61104035A (en) 1984-10-26 1984-10-26 Manufacture of superheat resistant alloy blank
US06/852,966 US4710345A (en) 1984-10-26 1985-10-26 Manufacturing method of super-heat-resisting alloy material
PCT/JP1985/000595 WO1986002669A1 (en) 1984-10-26 1985-10-26 Process for producing super-heat-resistant alloy material
EP85905424A EP0203197B1 (en) 1984-10-26 1985-10-26 Process for producing super-heat-resistant alloy material
DE8585905424T DE3582066D1 (en) 1984-10-26 1985-10-26 METHOD FOR PRODUCING SUPER HEAT-STABLE ALLOY MATERIAL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22409584A JPS61104035A (en) 1984-10-26 1984-10-26 Manufacture of superheat resistant alloy blank

Publications (2)

Publication Number Publication Date
JPS61104035A JPS61104035A (en) 1986-05-22
JPH0379414B2 true JPH0379414B2 (en) 1991-12-18

Family

ID=16808462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22409584A Granted JPS61104035A (en) 1984-10-26 1984-10-26 Manufacture of superheat resistant alloy blank

Country Status (1)

Country Link
JP (1) JPS61104035A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9931695B2 (en) * 2014-09-25 2018-04-03 General Electric Company Article and method for making an article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837102A (en) * 1981-08-29 1983-03-04 Sumitomo Electric Ind Ltd Production of powder parts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837102A (en) * 1981-08-29 1983-03-04 Sumitomo Electric Ind Ltd Production of powder parts

Also Published As

Publication number Publication date
JPS61104035A (en) 1986-05-22

Similar Documents

Publication Publication Date Title
US4851055A (en) Method of making titanium alloy articles having distinct microstructural regions corresponding to high creep and fatigue resistance
US4808249A (en) Method for making an integral titanium alloy article having at least two distinct microstructural regions
US3671230A (en) Method of making superalloys
JPS61246303A (en) Production of composiite powder metallurgical billet
US3639179A (en) Method of making large grain-sized superalloys
JP2006118038A (en) Method of forming component by powder metallurgy
JP2007031836A (en) Powder metal rotating components for turbine engines and process therefor
US4710345A (en) Manufacturing method of super-heat-resisting alloy material
JPH0130898B2 (en)
CN110394450B (en) Method for promoting densification of metal blank by utilizing hydrogen absorption and expansion of metal
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
JPH0832934B2 (en) Manufacturing method of intermetallic compounds
US4655855A (en) Method for refining microstructures of prealloyed titanium powder compacted articles
US3700434A (en) Titanium-nickel alloy manufacturing methods
US4536234A (en) Method for refining microstructures of blended elemental powder metallurgy titanium articles
US4808250A (en) Method for refining microstructures of blended elemental titanium powder compacts
JPH0379414B2 (en)
US4832760A (en) Method for refining microstructures of prealloyed titanium powder compacts
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
JP4326110B2 (en) Method for producing Ti-Al intermetallic compound member
US4828793A (en) Method to produce titanium alloy articles with high fatigue and fracture resistance
JPS5884901A (en) Production of heat resistant superalloy by powder metallurgical method
JP2588890B2 (en) Forming method of Ti-Al based intermetallic compound member
CN111283203A (en) Method for promoting blank densification by utilizing hydrogen absorption expansion of titanium-containing material
JPH0257121B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term