JPH0379206A - Single crystal silicon carbide cutting tool - Google Patents

Single crystal silicon carbide cutting tool

Info

Publication number
JPH0379206A
JPH0379206A JP21458789A JP21458789A JPH0379206A JP H0379206 A JPH0379206 A JP H0379206A JP 21458789 A JP21458789 A JP 21458789A JP 21458789 A JP21458789 A JP 21458789A JP H0379206 A JPH0379206 A JP H0379206A
Authority
JP
Japan
Prior art keywords
sic
single crystal
cutting
cutting tool
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21458789A
Other languages
Japanese (ja)
Other versions
JP2783428B2 (en
Inventor
Shingo Morimoto
信吾 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1214587A priority Critical patent/JP2783428B2/en
Publication of JPH0379206A publication Critical patent/JPH0379206A/en
Application granted granted Critical
Publication of JP2783428B2 publication Critical patent/JP2783428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable long life without dispersion and give performance which can substitute for diamond by using a single crystal silicon carbide manufactured by a chemical vapor growth method for a cutting edge to be used for cutting of a soft metal. CONSTITUTION:A single crystal SiC used for a single crystal silicon carbide cutting tool which is suitable for precision cutting of a relatively soft material such as an aluminum alloy is a single crystal of an alpha type or a beta type of SiC manufactured by a chemical vapor growth method (CVD), and the size is usually in the range of 5 to 15mm though adjusted according to the dimension of the cutting tool. This CVD SiC is machined to have a SiC cutting edge 1 with the thickness of about 1mm and brazed to a notch part of a table 2 obtained through machining of a cemented carbide (K-10). This is fixed to a cutting tool backing material 3 through a screw 4. This single crystal SiC has a sufficient life for use in cutting and polishing of a soft metal, little dispersion and performance which can substitute for diamond.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルミニウム、アルミニウムの合金、銅、銅
合金等、比較的軟質な材料を精密切削加工するのに適し
た単結晶炭化珪素バイトに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a single crystal silicon carbide cutting tool suitable for precision cutting relatively soft materials such as aluminum, aluminum alloys, copper, and copper alloys. .

〔従来の技術〕[Conventional technology]

従来、精密加工用のバイトは、自然界で最も硬度の高い
、天然或いは人工の単結晶ダイヤモンドが使用されてい
る。
Conventionally, natural or artificial single-crystal diamond, which has the highest hardness in nature, has been used for precision machining tools.

ダイヤモンドは炭素であるため、切削中の高温下で反応
する鉄系材料の加工には適さない等の問題はあるが、他
に比較する物がない高い硬度を有するため、上記欠点が
あるにもかかわらず使用されている。
Since diamond is made of carbon, it has some problems such as being unsuitable for machining ferrous materials that react under high temperatures during cutting, but it has a high hardness that cannot be compared with anything else, so it can be used despite the above drawbacks. used regardless.

また最近ハードディスク、ポリゴンミラー、反射鏡など
の比較的軟質な材料を高精度に切削研摩することが急速
に増加している。これらの切削に使用されているバイト
材としても、充分な硬度を有し、かつ使用に適したサイ
ズの単結晶が得られることからダイヤモンドが用いられ
ており、切削用ダイヤモンド単結晶の使用量は年々増加
している。
Furthermore, recently, the use of highly accurate cutting and polishing of relatively soft materials such as hard disks, polygon mirrors, and reflectors has been rapidly increasing. Diamond is also used as the cutting tool material for these cutting operations because it has sufficient hardness and can produce single crystals of a size suitable for use.The amount of diamond single crystals used for cutting is It is increasing every year.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、ダイヤモンドの使用量が増加すると、天
然ダイヤモンド単結晶は不足し、また人工ダイヤモンド
単結晶は大きなものを造ることがむずかしい等の問題を
生ずる。
However, as the amount of diamond used increases, there will be a shortage of natural diamond single crystals, and artificial diamond single crystals will cause problems such as the difficulty of producing large ones.

また、ダイヤモンドバイトの寿命をハードディスクの加
工枚数で示すと、その平均値は、500〜1000枚/
本であるが、個々の数値は数枚〜2000枚/本の間に
分布している。
In addition, when the lifespan of a diamond tool is expressed in terms of the number of hard disks processed, the average value is 500 to 1000 pieces/
Regarding books, the individual numbers range from a few pages to 2,000 pages/book.

この理由は定かでないが、寿命は単に硬さのみで決まる
ものでなく、結晶内の欠陥の有無、切り出し方位の不備
等、他の要因も関与しているものと思われる。
Although the reason for this is not clear, it is thought that the lifespan is not simply determined by hardness, but that other factors are also involved, such as the presence or absence of defects in the crystal, imperfections in the cutting direction, etc.

本発明者らは、上記被加工物はアルミニウム系、銅系等
、比較的軟質な材料の場合、必要以上に硬い材料でなく
てもよいと考え、ダイヤモンドに代替出来る材料につい
て鋭意検討を行なった結果、最近CVD法でコーティン
グ等の研究が行なわれているSiCがダイヤモンドに代
り得るものと考えた。
The present inventors believed that if the workpiece is made of a relatively soft material such as aluminum or copper, it does not need to be an unnecessarily hard material, and therefore conducted extensive research on materials that could be substituted for diamond. As a result, it was thought that SiC, which has recently been studied as a coating using the CVD method, could be used as a substitute for diamond.

従来、アチソン法でつ(られている爪状のSiC単結晶
は襞間性があるため、バイトの刃として使用出来ない。
Conventionally, the claw-shaped SiC single crystals produced by the Acheson method cannot be used as cutting tools because they have interfold properties.

本発明は上記の考えに基づいてなされたもので、比較的
軟質な金属を長寿命でしかも少ないバラツキの寿命で切
削することが出来る単結晶SiCバイトを提供すること
を目的とする。
The present invention has been made based on the above idea, and an object of the present invention is to provide a single crystal SiC cutting tool that can cut relatively soft metal with a long life and a life with little variation.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明に係る単結晶SiC
バイトにおいては、刃先に気相成長法によって製造され
た単結晶SiCが使用されている。
In order to achieve the above object, the single crystal SiC according to the present invention
In the cutting tool, single crystal SiC manufactured by a vapor phase growth method is used for the cutting edge.

本発明に用いられる単結晶SiCは、化学的気相成長法
(CV D)によってっ(られたSiCのα型、或いは
β型の単結晶で、バイトの寸法によって大きさが調整さ
れるが、通常は直径5〜15m1+の範囲である。CV
D法によってSiC単結晶をつ(る際の温度が1800
〜2000℃ではα型、1600〜1800°Cではβ
型のSiCとなるが、特にα型において大きなものが得
られる。
The single-crystal SiC used in the present invention is an α-type or β-type single crystal of SiC grown by chemical vapor deposition (CVD), and the size is adjusted depending on the size of the bite. Usually ranges from 5 to 15 m1+ in diameter.CV
The temperature at which SiC single crystals are grown by method D is 1800℃.
α type at ~2000°C, β type at 1600~1800°C
type of SiC, but especially large ones can be obtained in the α type.

上記SiC単結晶を用いて種々な大きさのバイトがつく
られるが、その−例を示せば、第1図(a )(b )
に示すように、上記CvD−8iCを加工して厚さ約1
mmのSiC刃lをつくり、これを超硬合金(K−10
)を加工した台座2の切欠き部にロウ付けする。これを
バイト基材3にねじ4によって固定する。
Bits of various sizes are made using the SiC single crystal described above, and examples of them are shown in Fig. 1 (a) and (b).
As shown in the figure, the above CvD-8iC is processed to have a thickness of about 1
A SiC blade l of mm is made, and this is made of cemented carbide (K-10
) is brazed to the cutout part of the processed base 2. This is fixed to the bite base material 3 with screws 4.

この場合すくい面5はQ O1逃げ角6は5゜コーナ7
はR;0.4mm、コーナ7.7の間隔は1 、5 v
*m、基材3の幅は3.51である。
In this case, rake face 5 is Q O1 clearance angle 6 is 5° corner 7
is R; 0.4mm, corner 7.7 interval is 1,5v
*m, the width of the base material 3 is 3.51.

上記CvD−8iCは、従来のアチソン法によるSiC
単結晶が、強い襞間性を示し、バイトの刃として使用す
ることは到底考えられないのに対し、殆んど襞間性がな
く、充分バイトとして使用出来る。
The above CvD-8iC is a SiC produced by the conventional Acheson method.
Single crystal exhibits strong interfolding properties and is completely unthinkable for use as a cutting tool blade, whereas it has almost no interfolding properties and can be used as a cutting tool.

また、上記SiCは、CVD法でつくるため、不純物は
l ppm以下、SiCの密度は3.51以上(理論値
は3.52)であり、ダイヤモンド工具で任意方向に切
り出せる、刃出しのための研摩が簡単に出来る。
In addition, since the SiC mentioned above is made by the CVD method, the impurities are less than 1 ppm, the density of SiC is more than 3.51 (theoretical value is 3.52), and the edge can be cut in any direction with a diamond tool. can be easily polished.

また、SiCは耐酸化性で1500℃程度までは事実上
酸化しないので、単結晶SiCバイトが得られることに
よって必要に応じては加熱下での切削加工を行なうこと
も可能となる。
Furthermore, since SiC is oxidation resistant and virtually does not oxidize up to about 1500° C., by obtaining a single crystal SiC tool, it becomes possible to perform cutting under heating if necessary.

上記CVD法によりSiCをつくる一例を示せば次のよ
うになる。
An example of producing SiC using the above CVD method is as follows.

すなわち、第2図に示すように、反応容器11の底部に
Sin、に黒鉛を混合した原料12を収納した黒鉛容器
12′を配置し、これより上方に所定の間隔をおいて、
黒鉛または焼結SiCよりなる基材13を支持台または
支持棒13bによって支持して配置する。
That is, as shown in FIG. 2, a graphite container 12' containing a raw material 12 containing graphite mixed with Sin is placed at the bottom of the reaction container 11, and a predetermined interval is placed above this.
A base material 13 made of graphite or sintered SiC is supported and disposed by a support stand or a support rod 13b.

次いで上記反応容器ll内を0.1〜2.0Torrに
減圧し、原料12が収納されている原料室12aを17
00〜2000°Cに、基材13の収納サレテイル析出
室13aを1600−1900’cの範囲内の所定温度
に設定する。
Next, the pressure inside the reaction vessel 11 is reduced to 0.1 to 2.0 Torr, and the raw material chamber 12a containing the raw material 12 is heated to 17
00 to 2000°C, and the temperature of the storage deposition chamber 13a of the base material 13 is set to a predetermined temperature within the range of 1600 to 1900'c.

この場合α形結晶を得るには基材13を下部に位置せし
めて、析出が高温で行なわれるようにし、β形では、基
材13を2点鎖線で示す上方に位置させて析出温度がや
や低くなるようにする。
In this case, to obtain α-type crystals, the base material 13 is positioned at the bottom so that precipitation is carried out at a high temperature, and for β-type crystals, the base material 13 is positioned above as indicated by the two-dot chain line so that the precipitation temperature is slightly lower. Make it lower.

これにより、原料室12a内の原料12から、S tO
,+C+S io+cO の反応によって、Si源が気化する。
As a result, from the raw material 12 in the raw material chamber 12a, S tO
, +C+S io+cO , the Si source is vaporized.

析出室13aにおける析出反応は基材が炭素の場合 sio+2c→SiC十CO の反応が主として起るが、基材が炭素でない場合もSi
Cが生成することから、原料室12aで生成したCOガ
スが析出室で 2CO、−>C+GO。
In the precipitation reaction in the precipitation chamber 13a, when the base material is carbon, the reaction of sio+2c→SiC+CO mainly occurs, but even when the base material is not carbon, Si
Since C is generated, the CO gas generated in the raw material chamber 12a is converted into 2CO, ->C+GO, in the precipitation chamber.

により、Cが析出っし、これにより 2SiO+2C→2 S i C+ Otの反応も起っ
ていると推定される。
As a result, C is precipitated, and it is presumed that a reaction of 2SiO+2C→2 Si C+ Ot is also occurring.

CVD法によりSiC単結晶を得る一つの方法は、基材
上にアチソン法によりつくられた単結晶のSiC粒、例
えば0.5〜1a++++程度のSiCをシードにして
、約10mmの間隔で撒布しておき、このシード上に成
長させるものである。
One method for obtaining SiC single crystals by the CVD method is to use single crystal SiC particles produced by the Acheson method as seeds, for example SiC of about 0.5 to 1a++++, on a substrate and scatter them at intervals of about 10 mm. Then, grow on this seed.

このようにして、反応を所定時間待なえば、襞間性のほ
とんどない所定サイズの単結晶が得られる。
In this manner, by waiting for the reaction for a predetermined period of time, a single crystal of a predetermined size with almost no interfolds can be obtained.

上記方法でα型SiCは原料室温度1900〜2100
°C1析出室温度1800〜2000°C1β型は原料
室温度1800〜2000°C1析出室温度1600〜
1800℃で得られる。
In the above method, α-type SiC is produced at a raw material chamber temperature of 1900 to 2100.
°C1 precipitation chamber temperature 1800-2000°C1β type: raw material chamber temperature 1800-2000°C1 precipitation chamber temperature 1600-2000°C
Obtained at 1800°C.

原料の5iotとCの割合は5iO−1モルに対し、C
約1モルとする。
The ratio of 5iot and C in the raw materials is 5iO-1 mole, C
Approximately 1 mole.

この場合、原料12のSin、および黒鉛として高純度
のものを使用すれば、不純物全体の量がlppm以下の
単結晶SiCが得られ、各種運転条件を、シビャな自動
制御によって一定に保持することにより、欠陥の少ない
単結晶が安定して生産される。
In this case, if high-purity Sin and graphite are used as the raw material 12, single-crystal SiC with a total impurity content of 1 ppm or less can be obtained, and various operating conditions can be kept constant through severe automatic control. As a result, single crystals with few defects can be stably produced.

〔実施例〕〔Example〕

上記CVD法によってつくられた、5mm径のα型、β
型のSiC単結晶から指定方位(すくい面の方位)が得
られるようにバイト刃を切り出し、刃のすくい面方位を
変えて、第1図(a )(b ’)に示す平刃型のバイ
トを作製した。
α type and β type with a diameter of 5 mm made by the above CVD method.
A cutting tool blade was cut out from the SiC single crystal of the mold so that the specified orientation (orientation of the rake face) could be obtained, and by changing the orientation of the rake face of the blade, the flat blade type cutting tool shown in Figure 1 (a) and (b') was created. was created.

このバイトを用いて、4wt%のマグネシウムを含有す
るアルミニウム(5インチ、ハードディスク)基板を高
精度旋盤で加工し、切削面の粗さがRnax  0.0
7μmになるまでに加工出来た枚数を、バイトの寿命と
してカウントした。
Using this cutting tool, an aluminum (5-inch, hard disk) substrate containing 4 wt% magnesium was machined on a high-precision lathe, and the roughness of the cut surface was Rnax 0.0.
The number of pieces that could be processed to 7 μm was counted as the life of the cutting tool.

切削条件は、 ■ workの回転速度4 、000 rprn■ 刃
の切込み  15μm ■ 刃の送り   30μm/Rev とした。
The cutting conditions were: ■ Work rotational speed 4,000 rprn ■ Blade depth of cut 15 μm ■ Blade feed 30 μm/Rev.

寿命試験はそれぞれ10本のバイトを用いて行ない、分
布および平均を求めた。結果を第1表に示す。
The life test was conducted using 10 bites each, and the distribution and average were determined. The results are shown in Table 1.

第  1  表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a )(b )は本発明に係る単結晶SiCバ
イトの一例を示すもので、第1図(a)は平面図、第1
図(b)は第1図(a)の1−1線矢視図、第2図は、
CvD−8iC単結晶を製造する装置の概略説明図であ
る。 〔発明の効果〕 以上述べたように、本発明に係る単結晶SiCバイトは
、軟質金属の切削研摩に使用して、充分な寿命を有し、
しかもバラつきが少なく、ダイヤモンドに代り得る性能
を有し、また合成によって安価につくることが出来るの
で、今後ますます増大するハードディスク等の切削分野
に寄与することは極めて大きい。 1・・・・・・SiC刃、2・・・・・・台座、3・・
・・・・バイト基材、4・・・・・・ねじ、5・・・・
・・す(い面、6・・・・・・逃げ角、7・・・・・・
コーナ、11・・・・・・反応容器、12・・・・・・
原料(S iOz+黒鉛) 、12 a−−−−−−原
料室、12°・・・・・・黒鉛容器、13・・・・・・
基材、13a・・・・・・析出室、13b・・・・・・
支持台または支持棒。
FIGS. 1(a) and 1(b) show an example of a single-crystal SiC tool according to the present invention, and FIG. 1(a) is a plan view,
Figure (b) is a 1-1 line arrow view of Figure 1 (a), Figure 2 is a
FIG. 1 is a schematic explanatory diagram of an apparatus for manufacturing CvD-8iC single crystals. [Effects of the Invention] As described above, the single crystal SiC bit according to the present invention has a sufficient lifespan when used for cutting and polishing soft metals, and
In addition, it has little variation, has performance that can replace diamond, and can be made inexpensively by synthesis, so it will make an extremely large contribution to the field of cutting hard disks, which will continue to grow. 1...SiC blade, 2...pedestal, 3...
...Bite base material, 4...Screw, 5...
...su(face, 6... relief angle, 7...
Corner, 11... Reaction vessel, 12...
Raw material (S iOz + graphite), 12 a---- Raw material room, 12°...Graphite container, 13...
Base material, 13a...Precipitation chamber, 13b...
Support platform or support rod.

Claims (1)

【特許請求の範囲】[Claims] 刃先に化学的気相成長法によって製造された単結晶炭化
珪素が使用されていることを特徴とする単結晶炭化珪素
バイト。
A single-crystal silicon carbide cutting tool characterized in that the cutting edge uses single-crystal silicon carbide produced by a chemical vapor deposition method.
JP1214587A 1989-08-21 1989-08-21 Single crystal silicon carbide tool Expired - Lifetime JP2783428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1214587A JP2783428B2 (en) 1989-08-21 1989-08-21 Single crystal silicon carbide tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1214587A JP2783428B2 (en) 1989-08-21 1989-08-21 Single crystal silicon carbide tool

Publications (2)

Publication Number Publication Date
JPH0379206A true JPH0379206A (en) 1991-04-04
JP2783428B2 JP2783428B2 (en) 1998-08-06

Family

ID=16658189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1214587A Expired - Lifetime JP2783428B2 (en) 1989-08-21 1989-08-21 Single crystal silicon carbide tool

Country Status (1)

Country Link
JP (1) JP2783428B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018241A1 (en) * 2001-08-28 2003-03-06 Kennametal Inc. Cutting insert and use thereof
WO2008102696A1 (en) * 2007-02-19 2008-08-28 Ittechno Kabushikikaisha Cutting tool made of single crystal of silicon carbide
JP2008229836A (en) * 2007-02-19 2008-10-02 It Techno Kk Cutting tool made of single crystal silicon carbide
US20110265616A1 (en) * 2010-04-30 2011-11-03 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Ultra-pure, single-crystal sic cutting tool for ultra-precision machining
CN102534796A (en) * 2011-12-21 2012-07-04 西安交通大学 Method for preparing pure alpha silicon carbide whiskers
JP2014193514A (en) * 2013-03-29 2014-10-09 Nishijima Corp Light guide plate processing apparatus
JP2017202557A (en) * 2016-05-13 2017-11-16 株式会社デンソー Cutting tool
JP2019206057A (en) * 2018-05-29 2019-12-05 株式会社デンソー Silicon carbide-made cutting tool

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018241A1 (en) * 2001-08-28 2003-03-06 Kennametal Inc. Cutting insert and use thereof
US7313991B2 (en) 2001-08-28 2008-01-01 Kennametal Inc. Cutting insert and use thereof
WO2008102696A1 (en) * 2007-02-19 2008-08-28 Ittechno Kabushikikaisha Cutting tool made of single crystal of silicon carbide
JP2008229836A (en) * 2007-02-19 2008-10-02 It Techno Kk Cutting tool made of single crystal silicon carbide
US20110265616A1 (en) * 2010-04-30 2011-11-03 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Ultra-pure, single-crystal sic cutting tool for ultra-precision machining
CN102534796A (en) * 2011-12-21 2012-07-04 西安交通大学 Method for preparing pure alpha silicon carbide whiskers
JP2014193514A (en) * 2013-03-29 2014-10-09 Nishijima Corp Light guide plate processing apparatus
JP2017202557A (en) * 2016-05-13 2017-11-16 株式会社デンソー Cutting tool
JP2019206057A (en) * 2018-05-29 2019-12-05 株式会社デンソー Silicon carbide-made cutting tool

Also Published As

Publication number Publication date
JP2783428B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
RU2131330C1 (en) Cutting tool with oxide coating
RU2130823C1 (en) Cutting tool and method for applying coat onto it
EP3257829B1 (en) Cubic boron nitride polycrystal, cutting tool, wear resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal
JP3325987B2 (en) Coated object
JPH0379206A (en) Single crystal silicon carbide cutting tool
JPH03197677A (en) Diamond-coated tool and its production
US5858480A (en) Ceramic-based substrate for coating diamond and method for preparing substrate for coating
JPH0791651B2 (en) Diamond coated tungsten carbide based cemented carbide cutting tool chip
Lux et al. Nucleation and growth of low-pressure diamond
JPH08118105A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion
JPH0713298B2 (en) Diamond coated cutting tools
JPH08187605A (en) Cutting tool of surface coated tungsten carbide based cemented carbide with its hard coating layer having excellent inter-layer adhesion
JP3397849B2 (en) Diamond coated cemented carbide tool
JPS59159981A (en) Surface-coated wear-resistant member for cutting tool and wear resistant tool
JPH1158106A (en) Diamond-coated cutting tool and its manufacture
JPH03111108A (en) Polycrystal silicon carbide bite
JP3220315B2 (en) Covering member
JPH02192483A (en) Diamond silicon carbide composite
JP4047940B2 (en) Ceramic substrate for diamond coating
Hickey et al. Polishing of filament-assisted CVD diamond films
JPH08243804A (en) Diamond coated cemented-carbide-made cutting tool excellent in resistance against cutting damage
JPH07100858B2 (en) Diamond coated tungsten carbide based cemented carbide cutting tool chip
JPH0791650B2 (en) Diamond coated tungsten carbide based cemented carbide cutting tool chip
JP2970016B2 (en) Hard layer coated cemented carbide cutting tool
JP2022134543A (en) Surface covering cutting tool