JPH0378254A - P-type mos transistor - Google Patents

P-type mos transistor

Info

Publication number
JPH0378254A
JPH0378254A JP1215271A JP21527189A JPH0378254A JP H0378254 A JPH0378254 A JP H0378254A JP 1215271 A JP1215271 A JP 1215271A JP 21527189 A JP21527189 A JP 21527189A JP H0378254 A JPH0378254 A JP H0378254A
Authority
JP
Japan
Prior art keywords
type
drain
diode
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1215271A
Other languages
Japanese (ja)
Inventor
Yasufumi Okuhara
奥原 保史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1215271A priority Critical patent/JPH0378254A/en
Publication of JPH0378254A publication Critical patent/JPH0378254A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1087Substrate region of field-effect devices of field-effect transistors with insulated gate characterised by the contact structure of the substrate region, e.g. for controlling or preventing bipolar effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To increase latch-up resistance and stabilize operation in a CMOS IC for driving an inductive load such as a motor by providing a Schottky barrier diode between a substrate and a drain. CONSTITUTION:A P-type MOS transistor comprises an N-type Si substrate 1, a P<+>-type drain region 2 and source area 3, an N<+>-type region 4 for ohmic contact with the substrate 1, and a gate electrode 9, a drain electrode 7, an SiO2 film 8, a parasitic diode N, and a contact hole 11 common to the region 2 and the substrate 1. With such arrangement, even though there is produced noise higher than the potential of the electrode 6 on the electrode 7 connected to a load L when the load L such as a motor is driven by the transistor, the noise is absorbed by switching on the diode 10. Further, a parasitic thyristor level can also be made lower than a trigger level by properly setting the size of the diode 10 and lowering series resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はMO5型半導体集積回路に用いるP型MOS
トランジスタの構造に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a P-type MOS used in an MO5-type semiconductor integrated circuit.
This relates to the structure of transistors.

〔従来の技術〕[Conventional technology]

第3図は従来のP型MO3)ランジスタの断面図を示す
。図において、(1)はN型シリコン基板、(2)・(
3)はP+拡散層、(4)はN+拡散層、(5)はゲー
ト電極、(6)はソース電極、(7)はドレイン電極、
(8)はSiO!膜である。
FIG. 3 shows a cross-sectional view of a conventional P-type MO3) transistor. In the figure, (1) is an N-type silicon substrate, (2)
3) is a P+ diffusion layer, (4) is an N+ diffusion layer, (5) is a gate electrode, (6) is a source electrode, (7) is a drain electrode,
(8) is SiO! It is a membrane.

第4図は第3図のP型MOSトランジスタの等何回路を
示したもので、図中、(5)はゲート電極、(6)はソ
ース電極、(7)はドレイン電極、(9)は寄生ダイオ
ードである。
Figure 4 shows the circuit of the P-type MOS transistor in Figure 3, where (5) is the gate electrode, (6) is the source electrode, (7) is the drain electrode, and (9) is the It is a parasitic diode.

次に動作について説明する。Next, the operation will be explained.

MO3型集積回路において、出力に接続されたL負荷(
モータ等)をスイッチングする時、又は負荷から回シ込
むノイズにより、出力のP型MOSトランジスタのドレ
イン(7)の電位が、ソース(6)の電位(通常は電源
電圧VDD )より一定期間だけ高くなる場合がある。
In MO3 type integrated circuit, L load (
When switching a motor, etc.) or due to noise injected from the load, the potential of the drain (7) of the output P-type MOS transistor is higher than the potential of the source (6) (usually the power supply voltage VDD) for a certain period of time. It may happen.

寄生ダイオード(9)のインピーダンスが十分低ければ
、このようなノイズは寄生ダイオード(9)のvF(約
0.6V)程度に抑えることができるが、実際には寄生
ダイオード(9)の直列抵抗により、完全には吸収でき
ずにVy を上回るレベルでクランプされる。
If the impedance of the parasitic diode (9) is sufficiently low, such noise can be suppressed to about vF (approximately 0.6 V) of the parasitic diode (9), but in reality, it is caused by the series resistance of the parasitic diode (9). , it cannot be completely absorbed and is clamped at a level above Vy.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のP型MO5l−ランジスタは以上のように構成さ
れていたので、特に集積回路が0MO5構成の時には、
このようなノイズがトリガとなって、ラッチアップが発
生するという問題点があった。
Since the conventional P-type MO5l-transistor was configured as described above, especially when the integrated circuit has a 0MO5 configuration,
There is a problem in that such noise becomes a trigger and latch-up occurs.

この発明は上記のような問題点を解決するためKなされ
たもので、CMO8型O8回路のラッチアップ耐量の向
上を図ることを目的とする。
This invention was made to solve the above-mentioned problems, and its object is to improve the latch-up resistance of a CMO8 type O8 circuit.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るP型MOSトランジスタは、ドレインを
構成するP+拡散層とこれに接するN型シリコン基板に
共通コンタクトを設けた後、アルミ配線を形成すること
によシ、ドレイン−N型シリコン基板間にシッットキー
バリアダイオードを形成したものである。
In the P-type MOS transistor according to the present invention, a common contact is provided between the P+ diffusion layer constituting the drain and the N-type silicon substrate in contact with the same, and then an aluminum wiring is formed between the drain and the N-type silicon substrate. A Schittky barrier diode is formed in this structure.

〔作用〕[Effect]

この発明におけるP型MO3)ランリスクは、ドレイン
電位がソース電位よ)高くなると、シッットキーパイア
ダイオードがオンし、これによシトレイン−ソース間の
電位差はシッットキーバリアダイオードのVF程度(約
0.2〜0.3V)にクランプされる。
The P-type MO3) run risk in this invention is that when the drain potential becomes higher than the source potential, the Schittkeeper diode turns on, and the potential difference between the Schittkie barrier diode and the source becomes approximately VF (approximately 0.2-0.3V).

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する0 81図はこの発明の一実施例に係るP型MOSトランジ
スタの断面図、第2図は第1図の等価回路図である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 81 is a sectional view of a P-type MOS transistor according to an embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram of FIG. 1.

歯巾、(1)はN型シリコン基板、(2)はドレインを
形成するP+拡散層、(31はソースを形成するP+拡
散層、(4)はN型シリコン基板Filのオーミックコ
ンタクトを取るためのN+拡散層、(5)はゲート電極
、(6)はソース電極、(7)はドレイン電極、(8)
はSin!膜、(3)は寄生ダイオード、叫はショット
キバリアダイオード、(1すはドレイン拡散層(2)と
N型シリコン基板+に+の共通コンタクトホールである
Tooth width, (1) is the N-type silicon substrate, (2) is the P+ diffusion layer that forms the drain, (31 is the P+ diffusion layer that forms the source, (4) is for making ohmic contact with the N-type silicon substrate Fil. N+ diffusion layer, (5) is the gate electrode, (6) is the source electrode, (7) is the drain electrode, (8)
Is Sin! 1 is a common contact hole between the drain diffusion layer (2) and the N-type silicon substrate.

次に動作について説明する。Next, the operation will be explained.

MO5型集積回路のP型MO3)ランリスクによりモー
タ等のし負荷を駆動すると、L負荷につながるドレイン
電極(7)にソース電極(6)(通常は電源電圧VDD
 K接続される)の電位以上のノイズが発生するが、シ
ぢットキーパリアダイオード1lolがオンすることに
よシ、ショットキーパリアダイオード叫のVF (約0
.2V程度)程度にまで吸収できる。このノイズレベル
はショットキバリアダイオード(圃のサイズを適切に設
定し、直列抵抗を下げることにより、CMO5回路の寄
生サイリスクのトリガレベル以下に抑えることができる
When a load such as a motor is driven by the P-type MO3) run risk of an MO5 type integrated circuit, the drain electrode (7) connected to the L load is connected to the source electrode (6) (usually the power supply voltage VDD).
However, by turning on the Schottky parrier diode 1lol, the VF of the Schottky parrier diode (approximately 0
.. It can absorb up to about 2V). This noise level can be suppressed to below the trigger level of the parasitic noise risk of the CMO5 circuit by appropriately setting the size of the Schottky barrier diode (field) and lowering the series resistance.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、P型MOSトランジス
タのN型シリコン基板とドレイン間にショットキバリア
ダイオードを構成したので、モータ等のし負荷の駆動を
目的とするCMO5型O5回路において、ラッチアップ
耐量の向上、動作安定化を図ることができる。
As described above, according to the present invention, since a Schottky barrier diode is configured between the N-type silicon substrate and the drain of a P-type MOS transistor, latch-up can be avoided in a CMO5-type O5 circuit intended for driving a load such as a motor. It is possible to improve durability and stabilize operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例によるP型MOSトラン
ジスタの断面図、第2図は第1図の等価回路図、第3図
は従来のP型MO3)ランリスクの断面図、第4図は第
3図の等価回路図である。 (1)はN型シリコン基板、(2)はドレインを形成す
るP+拡散層、(11)は共通コンタクトホールを示す
。 なお、図中、同一符号は同一 又は相当部分を示す。
FIG. 1 is a sectional view of a P-type MOS transistor according to an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram of FIG. 1, FIG. 3 is a sectional view of a conventional P-type MO3) run risk, and FIG. The figure is an equivalent circuit diagram of FIG. 3. (1) shows an N-type silicon substrate, (2) shows a P+ diffusion layer forming a drain, and (11) shows a common contact hole. In addition, the same symbols in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)基板−ドレイン間にシヨットキーバリアダイオー
ドを設けたことを特徴とするP型MOSトランジスタ。
(1) A P-type MOS transistor characterized in that a Schottky barrier diode is provided between the substrate and the drain.
(2)上記シヨットキーバリアダイオードを形成するた
めに、ドレインP^+拡散層とこれに接するN型シリコ
ン基板に共通コンタクトを設けたことを特徴とする請求
項1記載のP型MOSトランジスタ。
(2) The P-type MOS transistor according to claim 1, wherein a common contact is provided between the drain P^+ diffusion layer and the N-type silicon substrate in contact with the drain P^+ diffusion layer to form the Schottky barrier diode.
JP1215271A 1989-08-21 1989-08-21 P-type mos transistor Pending JPH0378254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1215271A JPH0378254A (en) 1989-08-21 1989-08-21 P-type mos transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1215271A JPH0378254A (en) 1989-08-21 1989-08-21 P-type mos transistor

Publications (1)

Publication Number Publication Date
JPH0378254A true JPH0378254A (en) 1991-04-03

Family

ID=16669547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1215271A Pending JPH0378254A (en) 1989-08-21 1989-08-21 P-type mos transistor

Country Status (1)

Country Link
JP (1) JPH0378254A (en)

Similar Documents

Publication Publication Date Title
US4994886A (en) Composite MOS transistor and application to a free-wheel diode
WO1981002949A1 (en) Complementary field-effect transistor integrated circuit device
JPH0793383B2 (en) Semiconductor device
JP3444263B2 (en) Insulated gate semiconductor device with built-in control circuit
JP3559075B2 (en) Polarity reversal protection device for integrated electronic circuits in CMOS technology
JPS6211017Y2 (en)
JPH04280670A (en) Gate voltage clamp type semiconductor device
JPH0378254A (en) P-type mos transistor
JPS58197870A (en) Semiconductor device
JP2871352B2 (en) Semiconductor device
JPH04139758A (en) Semiconductor device and its manufacture
JPS5944782B2 (en) semiconductor integrated circuit
JPH0532908B2 (en)
JPH10107168A (en) Semiconductor integrated circuit
JPH05206387A (en) Semiconductor integrated circuit
JPS62160750A (en) Substrate-voltage generating circuit
JPS6050062B2 (en) Semiconductor integrated circuit device
JP2979716B2 (en) CMOS integrated circuit
JPS60254651A (en) Input protection circuit for cmos circuit
JPH04330773A (en) Semiconductor device
JPH11307786A (en) Semiconductor diode
JP3034531B2 (en) Semiconductor integrated circuit
JP2671304B2 (en) Logic circuit
JPH06188376A (en) Semiconductor device
JPS61208863A (en) Cmos semiconductor device