JPH0375985B2 - - Google Patents

Info

Publication number
JPH0375985B2
JPH0375985B2 JP60262493A JP26249385A JPH0375985B2 JP H0375985 B2 JPH0375985 B2 JP H0375985B2 JP 60262493 A JP60262493 A JP 60262493A JP 26249385 A JP26249385 A JP 26249385A JP H0375985 B2 JPH0375985 B2 JP H0375985B2
Authority
JP
Japan
Prior art keywords
weight
zinc
aluminum
lead
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60262493A
Other languages
English (en)
Other versions
JPS62123656A (ja
Inventor
Nobuyori Kasahara
Toyohide Uemura
Keiichi Kagawa
Ryoji Okazaki
Kanji Takada
Akira Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60262493A priority Critical patent/JPS62123656A/ja
Publication of JPS62123656A publication Critical patent/JPS62123656A/ja
Publication of JPH0375985B2 publication Critical patent/JPH0375985B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】
[発明の分野] 本発明は亜鉛アルカリ電池に関し、詳しくは鉛
とインジウムとアルミニウムと、更にタリウム、
スズ、ガリウムより選ばれる1種以上と、更にマ
グネシウム、カルシウム、ストロンチウム、ニツ
ケル、コバルト、タンタル、テルルより選ばれる
1種以上を特定範囲で含有し、かつ特定の不可避
不純物を所定量以下に抑制した亜鉛合金をそのま
ま、もしくは汞化して電池用負極活物質として用
いた亜鉛アルカリ電池に関する。 [発明の背景] 亜鉛を負極活物質として用いたアルカリ電池に
おいては、水酸化カリウム水溶液等の強アルカリ
性電解液を用いるため、電池を密閉しなければな
らない。この電池の密閉は電池の小型化を図る際
には特に重要であるが、同時に電池保存中の亜鉛
の腐食により発生する水素ガスを閉じ込めること
になる。従つて長期保存中に電池内部のガス圧が
高まり、密閉が完全なほど爆発等の危険が伴な
う。 その対策として、負極活物質である亜鉛の腐食
を防止して、電池内部の水素ガス発生を少なくす
ることが研究され、水銀の水素過電圧を利用した
汞化亜鉛を負極活物質として用いることが専ら行
なわれている。このため、今日市販されているア
ルカリ電池の負極活物質は3〜10重量%程度の多
量の水銀を含有しており、社会的ニーズとして、
より低水銀のもの、あるいは無水銀の電池の開発
が強く期待されるようになつてきた。 そこで、電池内の水銀含有量を低減させるべ
く、亜鉛に各種金属を添加した亜鉛合金粉末に関
する提案が種々なされている。例えば、亜鉛に鉛
を添加した亜鉛合金粉末、あるいは亜鉛に鉛とイ
ンジウムを添加した亜鉛合金粉末(特開昭58−
181266号公報)等がある。しかし、これらの亜鉛
合金粉末はある程度のガス発生抑制効果を奏する
が、水銀含有量を3重量%以下とした場合には、
まだ十分とは言えない。 このように、負極活物質である亜鉛合金粉末を
低汞化としつつ、水素ガス発生量を低減し、しか
も電池性能である放電性能を高い水準に維持する
電池は未だ得られていない。 [発明の目的] 本発明はかかる現状に鑑み、水銀の含有率を著
しく減少させつつ、水素ガス発生を抑制し、しか
も放電性能を高い水準に維持する負極活物質を用
いた亜鉛アルカリ電池を提供することを目的とす
る。 [発明の経緯] 本発明者らはこの目的に沿つて鋭意研究の結
果、亜鉛を主成分とする負極活物質において、鉛
とインジウムとアルミニウムと、更にタリウム、
スズ、ガリウムより選ばれる1種以上と、更にマ
グネシウム、カルシウム、ストロンチウム、ニツ
ケル、コバルト、タンタル、テルルより選ばれる
1種以上を特定範囲の量添加することにより、こ
れら添加元素の相乗的な効果によつて、更には不
可避不純物として含有される鉄、クロム、モリブ
デン、ヒ素、アンチモン、バナジウム、ゼルマニ
ウムを特定量以下に抑制することによつて、従来
の低汞化した亜鉛合金粉末よりも更に水素ガス発
生量を低下させ、しかも放電性能に優れた亜鉛ア
ルカリ電池が得られることを見出し本発明に到達
した。 [発明の構成] すなわち本発明は、鉛を0.005〜0.5重量%、イ
ンジウムを0.001〜0.5重量%、アルミニウムを
0.005〜0.5重量%、タリウム、スズ、ガリウムよ
り選ばれる1種以上の合計量を0.01〜0.5重量%、
マグネシウム、カルシウム、ストロンチウム、ニ
ツケル、コバルト、タンタル、テルルより選ばれ
る1種以上の合計量を0.0001〜0.5重量%、不可
避不純物として鉄0〜20重量ppm、クロム0〜5
重量ppm、モリブデン、ヒ素、アンチモン、バナ
ジウム、ゲルマニウムのいずれも0〜1重量ppm
含有する亜鉛合金を負極活物質として用いたこと
を特徴とする亜鉛アルカリ電池にある。 本発明において、鉛とインジウムとアルミニウ
ムとタリウム、スズ、ガリウムより選ばれる1種
以上と、マグネシウム、カルシウム、ストロンチ
ウム、ニツケル、コバルト、タンタル、テルルよ
り選ばれる1種以上を特定量添加した亜鉛合金
は、そのまま負極活物質として用いるか、亜鉛合
金を汞化した後に負極活物質として用いる。この
いずれの場合にも亜鉛合金に不純物として含有さ
れる、鉄、クロム、モリブデン、ヒ素、アンチモ
ン、バナジウム、ゲルマニウムの含有量を特定量
以下に抑制することが必要である。上記亜鉛合金
の水銀含有率は、従来の負極活物質の水銀含有率
よりも少ない量、すなわち3.0重量%未満でも耐
食性が大である。更に水銀含有率を低くし、低公
害性を考慮した1.5重量%以下であつても耐食性
が確保できる。更に、1.0重量%前後またはそれ
以下の少量であつてもガス発生を抑制することが
可能である。特に、排気機構を備えた空気電池や
水素吸収機構を備えた亜鉛アルカリ電池等におい
ては、水素ガスの発生許容量は比較的大きいの
で、このような電池に本発明を適用する場合は、
1.0重量%以下の低汞化率または無汞化の亜鉛合
金が負極活物質として使用することも可能であ
る。 この負極活物質に用いられる亜鉛合金の鉛の含
有率は0.005〜0.5重量%、インジウムの含有率は
0.001〜0.5重量%、アルミニウムの含有率は0.005
〜0.5重量%、タリウム、スズ、ガリウムより選
ばれる1種以上の含有率は0.01〜0.5重量%、マ
グネシウム、カルシウム、ストロンチウム、ニツ
ケル、コバルト、タンタル、テルルより選ばれる
1種以上の含有率は0.0001〜0.5重量%と少量で
添加効果が発揮される。また亜鉛合金中に不可避
不純物として含有される鉄は0〜20重量ppm、ク
ロムは0〜5重量ppm、モリブデン、ヒ素、アン
チモン、バナジウム、ゲルマニウムはいずれも0
〜1重量ppmの範囲に抑制することによつて、特
に不純物の悪影響は見られない。鉛とインジウム
とアルミニウムと、更にタリウム、スズ、ガリウ
ムより選ばれる1種以上と、更にマグネシウム、
カルシウム、ストロンチウム、ニツケル、タンタ
ル、テルルより選ばれる1種以上の含有率がそれ
ぞれ下限未満では本発明の効果が得られず、上限
を越えると、元素添加の逆効果から、自己放電が
進み、ガス発生抑制および放電性能にとつて良好
な結果が得られない。 また亜鉛合金中に不純物として含有される、
鉄、クロム、モリブデン、ヒ素、アンチモン、バ
ナジウム、ゲルマニウムは上限以上になると、特
にガス発生特性に対する悪影響が顕著になる。 なお、アルミニウム、マグネシウム、カルシウ
ム、ストロンチウムの含有率は0.005〜0.2重量%
の範囲が好ましく、0.2重量%を越えた場合には
それほどの含有効果は見られない。 これら各元素の作用効果は充分に解明されてい
ないが、推定するに、亜鉛合金中に含まれている
鉛、インジウム、タリウム、スズは水素過電圧を
高める作用を有し、ガリウム、ニツケル、コバル
ト、タンタル、テルルはアルカリ電解液中での腐
食を抑制する作用を有すると考えられる。一方、
アルミニウム、マグネシウム、カルシウム、スト
ロンチウムは亜鉛合金表面を平滑化させる効果が
あり、これによつて反応表面積を減少させ、耐食
性の向上に役立つと考えられる。 本発明は、これら各作用の相乗効果と、加える
に不純物である、鉄、クロム、モリブデン、ヒ
素、アンチモン、バナジウム、ゲルマニウムの含
有量を特定値以下に抑制することにより、耐食性
を劣化させることなく、放電性能のよい亜鉛合金
が得られたものである。 なお、本発明においては、上記必須元素に加え
て、銀またはビスマスを0.1重量%以下含有させ
た場合にも、含有させない場合とほぼ同等の性能
値が得られた。 このように本発明の亜鉛アルカリ電池は、電解
液に苛性カリ、苛性ソーダ等を主成分とするアル
カリ水溶液を用い、負極活物質に上記にた亜鉛合
金または汞化した亜鉛合金、正極活物質に二酸化
マンガン、酸化銀、酸素等を用いることにより得
られる。 [実施例の説明] 以下、実施例および比較例に基づいて本発明を
具体的に説明する。 実施例1〜20および比較例1〜11 純度99.997%以上の亜鉛地金を約500℃で溶融
し、これに第1表に示すごとく鉛、インジウム、
アルミニウム、タリウム、ニツケルの含有率がそ
れぞれ0.05重量%となるように添加して亜鉛合金
を作成し、これを高圧アルゴンガス(噴出圧5
Kg/cm2)を使つて粉体化した。次に水酸化カリウ
ム10%のアルカリ性溶液中にて上記粉末に1.0重
量%になるように水銀を添加して、汞化処理を行
ない亜鉛合金粉末(実施例1)を得た。 また、第1表に示すごとく、下記の組成でそれ
ぞれ、 (1):鉛0.05重量%、インジウム0.05重量%、アル
ミニウム0.05重量%、スズ0.05重量%、ニツケ
ル0.05重量%、コバルト0.05重量%(実施例
2) (2):鉛0.05重量%、インジウム0.05重量%、アル
ミニウム0.05重量%、ガリウム0.05重量%、コ
バルト0.05重量%(実施例3) (3):鉛0.05重量%、インジウム0.05重量%、アル
ミニウム0.05重量%、ガリウム0.05重量%、マ
グネシウム0.05重量%(実施例4) (4):鉛0.05重量%、インジウム0.05重量%、アル
ミニウム0.05重量%、ガリウム0.05重量%、カ
ルシウム0.05重量%(実施例5) (5):鉛0.05重量%、インジウム0.05重量%、アル
ミニウム0.05重量%、ガリウム0.05重量%、コ
バルト0.05重量%、ストロンチウム0.05重量%
(実施例6) (6):鉛0.05重量%、インジウム0.05重量%、アル
ミニウム0.05重量%、ガリウム0.05重量%、タ
ンタル0.05重量%(実施例7) (7):鉛0.05重量%、インジウム0.05重量%、アル
ミニウム0.05重量%、タリウム0.05重量%、ガ
リウム0.05重量%、テルル0.05重量%(実施例
8) (8):鉛0.05重量%、インジウム0.05重量%、アル
ミニウム0.05重量%、ガリウム0.05重量%、ニ
ツケル0.05重量%、マグネシウム0.05重量%
(実施例9) (9):鉛0.05重量%、インジウム0.05重量%、アル
ミニウム0.05重量%、タリウム0.05重量%、ニ
ツケル0.05重量%、コバルト0.05重量%、スト
ロンチウム0.05重量%(実施例10) (10):鉛0.05重量%、インジウム0.05重量%、アル
ミニウム0.05重量%、ガリウム0.05重量%、コ
バルト0.05重量%、スチロンチウム0.05重量
%、タンタル0.05重量%、テルル0.05重量%
(実施例11) (11):鉛0.05重量%、インジウム0.05重量%、ア
ルミニウム0.05重量%、タリウム0.05重量%、
スズ0.05重量%、ガリウム0.05重量%、ニツケ
ル0.05重量%(実施例12) (12):鉛0.005重量%、インジウム0.05重量%、ア
ルミニウム0.05重量%、ガリウム0.05重量%、
ニツケル0.05重量%(実施例13) (13):鉛0.05重量%、インジウム0.001重量%、ア
ルミニウム0.05重量%、ガリウム0.05重量%、
ニツケル0.05重量%(実施例14) (14):鉛0.05重量%、インジウム0.05重量%、ア
ルミニウム0.005重量%、ガリウム0.05重量%、
ニツケル0.05重量%(実施例15) (15):鉛0.5重量%、インジウム0.05重量%、アル
ミニウム0.05重量%、ガリウム0.05重量%、ニ
ツケル0.05重量%(実施例16) (16):鉛0.05重量%、インジウム0.5重量%、アル
ミニウム0.05重量%、ガリウム0.05重量%、ニ
ツケル0.05重量%(実施例17) (17):鉛0.05重量%、インジウム0.05重量%、ア
ルミニウム0.5重量%、ガリウム0.05重量%、
ニツケル0.05重量%(実施例18) (18):鉛0.05重量%、インジウム0.05重量%、ア
ルミニウム0.05重量%、タリウム0.01重量%、
ニツケル0.0001重量%(実施例19) (19):鉛0.05重量%、インジウム0.05重量%、ア
ルミニウム0.05重量%、タリウム0.5重量%、
ニツケル0.5重量%(実施例20) (20):鉛0.05重量%(比較例1) (21):鉛0.05重量%、インジウム0.05重量%(比
較例2) (22):鉛0.05重量%、インジウム0.05重量%、ア
ルミニウム0.05重量%(比較例3) (23):鉛0.05重量%、インジウム0.05重量%、ア
ルミニウム0.05重量%、タリウム0.05重量%
(比較例4) (24):鉛0.001重量%、インジウム0.0005重量%、
アルミニウム0.001重量%、タリウム0.01重量
%、ガリウム0.05重量%、マグネシウム0.05重
量%(比較例5) (25):鉛1.0重量%、インジウム0.05重量%、アル
ミニウム0.05重量%、タリウム0.05重量%、ガ
リウム0.05重量%、マグネシウム0.05重量%
(比較例6) (26):鉛0.05重量%、インジウム1.0重量%、アル
ミニウム0.05重量%、タリウム0.05重量%、ガ
リウム0.05重量%、マグネシウム0.05重量%
(比較例7) (27):鉛0.05重量%、インジウム0.05重量%、ア
ルミニウム1.0重量%、タリウム0.05重量%、
ガリウム0.05重量%、マグネシウム0.05重量%
(比較例8) (28):鉛0.05重量%、インジウム0.05重量%、ア
ルミニウム0.05重量%、タリウム0.05重量%、
スズ1.0重量%、コバルト0.05重量%(比較例
9) (29):鉛0.05重量%、インジウム0.05重量%、ア
ルミニウム0.05重量%、タリウム0.005重量%、
コバルト0.05重量%(比較例10) (30):鉛0.05重量%、インジウム0.05重量%、ア
ルミニウム0.05重量%、タリウム0.05重量%、
カルシウム1.0重量%(比較例11) からなる亜鉛合金をそれぞれ作成し、これを前記
と同様な方法で粉体化し、汞化処理を行なつて水
銀含有率が1.0重量%の亜鉛合金粉末(実施例2
〜20および比較例1〜11)を得た。 このようにして得られた亜鉛合金粉末を使つて
水素ガス発生試験を行ない、その結果を第1表に
示す。なお、ガス発生試験は、電解液として濃度
40重量%の水酸化カリウム水溶液に酸化亜鉛を飽
和させたものを5ml用い、亜鉛合金粉末を10g用
いて45℃で50日間のガス発生量(ml/g)を測定
した。 また、これらの亜鉛合金粉末を負極活物質とし
て第1図に示すアルカリマンガン電池を用いて電
池性能を評価した。第1図のアルカリマンガン電
池は、正極缶1、正極2、負極3、セパレーター
4、封口体5、負極底板6、負極集電体7、キヤ
ツプ8、熱収縮性樹脂チユーブ9、絶縁リング1
0,11、外装缶12で構成されている。このア
ルカリマンガン電池を用いて放電負荷4Ω、20℃
の放電条件により終止電圧0.9Vまでの放電持続
時間を測定し、従来の負極活物質を用いた後述す
る比較例12の測定値を100とした指数で示した。
結果を第1表に示す。 比較例 12 実施例1と同様の方法で亜鉛に水銀を5.0重量
%添加した従来より用いられている汞化亜鉛合金
粉末(比較例12)を得た。これを実施例1と同様
の方法で水素ガス発生試験と電池性能試験を行な
い、その結果を第1表に示した。 実施例21および比較例13〜20 第2表に示す組成からなる亜鉛合金をそれぞれ
作成し、これを実施例1と同様な方法で粉体化
し、汞化処理を行なつて水銀含有率が1.0重量%
の亜鉛合金粉末(実施例21および比較例13〜20)
を得た。 なお、粉体化−汞化工程における設備等はその
都度変更し、汞化亜鉛合金粉末中に含まれる不可
避不純物元素の混入量を第2表に示すように適宜
調整した。 このようにして得られた亜鉛合金粉末を実施例
1と同様の方法で水素ガス発生試験と電池性能試
験を行ない、その結果を第2表に示した。
【表】
【表】
【表】
【表】 第1表および第2表に示されるごとく、亜鉛に
鉛とインジウムとアルミニウムと、更にタリウ
ム、スズ、ガリウムより選ばれる1種以上と、更
にマグネシウム、カルシウム、ストロンチウム、
ニツケル、コバルト、タンタル、テルルより選ば
れる1種以上を特定量添加し、かつ不可避不純物
として含有される鉄、クロム、モリブデン、ヒ
素、アンチモン、バナジウム、ゲルマニウムを特
定量以下に抑制した汞化亜鉛合金粉末を負極活物
質に用いた実施例1〜21は、比較例1〜11や不可
避不純物を特定量以上含有する比較例13〜19、さ
らには亜鉛に水銀のみを添加した従来より用いら
れている汞化亜鉛合金粉末を負極活物質に用いた
比較例12に比べて、水素ガス発生抑制効果が大き
く、放電性能も優れていることがわかる。 [発明の効果] 以上説明のごとく、鉛とインジウムとアルミニ
ウムと、更にタリウム、スズ、ガリウムより選ば
れる1種以上と、更にマグネシウム、カルシウ
ム、ストロンチウム、ニツケル、コバルト、タン
タル、テルルより選ばれる1種以上を特定範囲で
含有し、しかも不可避不純物である鉄、クロム、
モリブデン、ヒ素、アンチモン、バナジウム、ゲ
ルマニウムを特定量以下に抑制した亜鉛合金をそ
のまま、もしくは汞化して電池亜鉛用負極活物質
として用いた本発明の亜鉛アルカリ電池は、水素
ガス発生率を抑制しつつ、電池性能を向上させる
ことが可能であり、また水銀が低含有率もしくは
含有しないことから、社会的ニーズにも沿つたも
のである。従つて、本発明の亜鉛アルカリ電池は
広範な用途に使用可能である。
【図面の簡単な説明】
第1図は本発明に係わるアルカリマンガン電池
の側断面図を示す。 1:正極缶、2:正極、3:負極、4:セパレ
ーター、5:封口体、6:負極底板、7:負極集
電体、8:キヤツプ、9:熱収縮性樹脂チユー
ブ、10,11:絶縁リング、12:外装缶。

Claims (1)

  1. 【特許請求の範囲】 1 鉛を0.005〜0.5重量%、インジウムを0.001〜
    0.5重量%、アルミニウムを0.005〜0.5重量%、タ
    リウム、スズ、ガリウムより選ばれる1種以上の
    合計量を0.01〜0.5重量%、マグネシウム、カル
    シウム、ストロンチウム、ニツケル、コバルト、
    タンタル、テルルより選ばれる1種以上の合計量
    を0.0001〜0.5重量%、不可避不純物として鉄0
    〜20重量ppm、クロム0〜5重量ppm、モリブデ
    ン、ヒ素、アンチモン、バナジウム、ゲルマニウ
    ムのいずれも0〜1重量ppm含有する亜鉛合金を
    負極活物質として用いたことを特徴とする亜鉛ア
    ルカリ電池。 2 前記亜鉛合金が汞化されている前記特許請求
    の範囲第1項記載の亜鉛アルカリ電池。
JP60262493A 1985-11-25 1985-11-25 亜鉛アルカリ電池 Granted JPS62123656A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262493A JPS62123656A (ja) 1985-11-25 1985-11-25 亜鉛アルカリ電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262493A JPS62123656A (ja) 1985-11-25 1985-11-25 亜鉛アルカリ電池

Publications (2)

Publication Number Publication Date
JPS62123656A JPS62123656A (ja) 1987-06-04
JPH0375985B2 true JPH0375985B2 (ja) 1991-12-04

Family

ID=17376559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262493A Granted JPS62123656A (ja) 1985-11-25 1985-11-25 亜鉛アルカリ電池

Country Status (1)

Country Link
JP (1) JPS62123656A (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754704B2 (ja) * 1991-02-19 1995-06-07 三井金属鉱業株式会社 アルカリ電池用亜鉛合金粉末およびその製造方法
US5108494A (en) * 1991-02-19 1992-04-28 Mitsui Mining & Smelting Co., Ltd. Zinc alloy powder for alkaline cell and method for production of the same
JPH0754705B2 (ja) * 1991-10-16 1995-06-07 三井金属鉱業株式会社 アルカリ電池用亜鉛合金粉末およびその製造方法
JP3553104B2 (ja) * 1992-08-04 2004-08-11 株式会社エスアイアイ・マイクロパーツ アルカリ電池
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
WO2010118442A1 (en) * 2009-04-15 2010-10-21 Guillonnet, Didier Electrically rechargeable battery with zn electrode, and method for manufacturing said battery
CN103035896A (zh) * 2012-11-27 2013-04-10 常州大学 一种环保绿色锌材料电池

Also Published As

Publication number Publication date
JPS62123656A (ja) 1987-06-04

Similar Documents

Publication Publication Date Title
JPH0371737B2 (ja)
JPH0375985B2 (ja)
JPH0421310B2 (ja)
JPH0371738B2 (ja)
JPS6177257A (ja) 亜鉛アルカリ電池
JPS6240161A (ja) 亜鉛アルカリ電池
JPH0628160B2 (ja) 亜鉛アルカリ電池
JPH0371739B2 (ja)
JPH0375983B2 (ja)
JPS6240159A (ja) 亜鉛アルカリ電池
JPH0418674B2 (ja)
JPS62123657A (ja) 亜鉛アルカリ電池
JPS6240160A (ja) 亜鉛アルカリ電池
JPS62123655A (ja) 亜鉛アルカリ電池
JPH0375982B2 (ja)
JPS61290655A (ja) 亜鉛アルカリ電池
JPS6240158A (ja) 亜鉛アルカリ電池
JPS61290652A (ja) 亜鉛アルカリ電池
JPS61153952A (ja) 亜鉛アルカリ電池
JPS61153951A (ja) 亜鉛アルカリ電池
JPH0418673B2 (ja)
JPS62176052A (ja) 亜鉛アルカリ電池
JPS62176051A (ja) 亜鉛アルカリ電池
JPS62176050A (ja) 亜鉛アルカリ電池
JPS61290651A (ja) 亜鉛アルカリ電池