JPH0371619A - Method of formation of semiconductor thin film - Google Patents

Method of formation of semiconductor thin film

Info

Publication number
JPH0371619A
JPH0371619A JP20808489A JP20808489A JPH0371619A JP H0371619 A JPH0371619 A JP H0371619A JP 20808489 A JP20808489 A JP 20808489A JP 20808489 A JP20808489 A JP 20808489A JP H0371619 A JPH0371619 A JP H0371619A
Authority
JP
Japan
Prior art keywords
substrate
nozzle
thin film
film
fine grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20808489A
Other languages
Japanese (ja)
Inventor
Masayuki Iwamoto
岩本 正幸
Koji Minami
浩二 南
Kaneo Watanabe
渡邉 金雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20808489A priority Critical patent/JPH0371619A/en
Publication of JPH0371619A publication Critical patent/JPH0371619A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations

Abstract

PURPOSE:To make it possible to uniformly form a thin film having a few mixture of impurities by a method wherein a liquid solution of semiconductor material is dripped on a substrate having a small hole provided on one end, the nozzle is vibrated, and the falling direction of the fine grain liquid drop is changed. CONSTITUTION:A semiconductor material 8 is melted by heating, it passes through a nozzle 7 and circulated to the tip of the nozzle, it is formed into a fine grain liquid drop 17, and falls down on a substrate 1. At this time, when the tip of the nozzle 7 is vibrated by a sound wave vibrator 9, the fine grain liquid drop 17 is dripped on all over a substrate 12. Until the time when the fine grain liquid drop is solidified, the drop is made harmonious with the film which is already formed on the substrate, and it is formed into a thin film. As a result, a thin film having a few mixture of impurities can be formed uniformly in a short period.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体薄膜の形成方法に関し、特に異種基板上
への薄膜形成に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method for forming a semiconductor thin film, and particularly to forming a thin film on a different type of substrate.

(ロ)従来の技術 従来、単結晶あるいは多結晶薄膜を異種基板上に形成す
る方法として、CVD法やPVD法、又はこれらの方法
に対してプラズマやイオンを併せて用いる方法がある。
(b) Prior Art Conventionally, methods for forming single crystal or polycrystalline thin films on different substrates include CVD, PVD, or a combination of these methods using plasma or ions.

しかし乍ら、これらの方法ではいずれも装置に高真空を
必要とするため、装置の構造が複雑となったり、また高
真空に減圧するための時間を必要とするため、製造コス
トが高くなるといった問題がある。また、プラズマやイ
オンを併せて用いる方法ではプラズマやイオンを発生さ
せる装置を必要とするため、さらに製造コストが高くな
る。
However, all of these methods require high vacuum in the equipment, making the structure of the equipment complex, and requiring time to reduce the pressure to high vacuum, increasing manufacturing costs. There's a problem. Furthermore, a method that uses both plasma and ions requires a device that generates plasma and ions, which further increases manufacturing costs.

そこで、多結晶の半導体薄膜を容易に形成する方法とし
て、例えば、森北出版「太陽光発電JP、208〜20
9(1980)に記載されているディッピング(dip
ping)法がある。斯るディッピング法は、半導体材
料融液中に、基板を浸し、十分に基板表面を半導体材料
が濡らした状態で徐々に基板を引き上げることにより半
導体薄膜を基板上に形成するものである。
Therefore, as a method for easily forming a polycrystalline semiconductor thin film, for example, Morikita Publishing, "Solar Power Generation JP, 208-20
9 (1980).
There is a ping method. In such a dipping method, a semiconductor thin film is formed on the substrate by immersing the substrate in a melt of semiconductor material and gradually lifting the substrate while the surface of the substrate is sufficiently wetted with the semiconductor material.

しかし乍ら、斯るデイツプ法においては、融液中に直接
基板を浸すため、基板に含まれる成分が溶融し、不所望
な不純物として半導体薄膜中に混入するといった問題が
あり、これが形成される半導体薄膜の膜質の低下を招く
原因になっていた。
However, in such a dip method, since the substrate is directly immersed in the melt, there is a problem that components contained in the substrate melt and mix into the semiconductor thin film as undesirable impurities. This was a cause of deterioration in the film quality of semiconductor thin films.

つ安価に形成でき、しかも不所望な不純物の混入が低減
する半導体薄膜の形成方法を提供することを技術的課題
とする。
It is an object of the present invention to provide a method for forming a semiconductor thin film that can be formed at low cost and that reduces the amount of undesirable impurities.

(ニ)課題を解決するための手段 本発明は、基板上に半導体薄膜を形成する方法であって
、上記課題を解決するため、半導体材料を加熱して融液
とし、該融液を一端に細孔が穿たれたノズルから微粒子
液滴として基板上に落下させるとともに、上記ノズルを
該ノズルに当接配置された振動子によって振動せしめ、
上記微粒子液滴の落下方向を変化させることを特徴とす
る。
(D) Means for Solving the Problems The present invention is a method for forming a semiconductor thin film on a substrate, and in order to solve the above problems, a semiconductor material is heated to form a melt, and the melt is poured into one end. Dropping microparticle droplets onto the substrate from a nozzle with pores, and vibrating the nozzle with a vibrator disposed in contact with the nozzle,
The present invention is characterized in that the falling direction of the fine particle droplets is changed.

(ホ)作用 本発明方法によれば、一端に細孔が穿たれたノズルに当
接配置した振動子を振動させることによって、ノズルか
ら滴下する半導体材料の微粒子液滴が基板上にくまなく
広がって均一な半導体薄膜が形成される。
(e) Effect According to the method of the present invention, by vibrating a vibrator placed in contact with a nozzle having a hole at one end, fine droplets of semiconductor material dripping from the nozzle are spread all over the substrate. A uniform semiconductor thin film is formed.

(へ) 実施例 第1図に本発明装置の一実施例を示す。図において、(
1)は膜形成室、(2)は膜形成室(1)に連通し、雰
囲気ガスを導入するガス導入管、(4)は膜形成室(1
)に連通した排気管、(5)は排気管(4)の他端に接
続され膜形成室(1)内の雰囲気ガスを排気するロータ
リーポンプである。またロータリーポンプ(5ンは成膜
時に膜形成室(1)内を数百Torr程度に減圧する減
圧手段として用いても良い。
(F) Embodiment FIG. 1 shows an embodiment of the apparatus of the present invention. In the figure, (
1) is a film forming chamber, (2) is a gas introduction pipe that communicates with the film forming chamber (1) and introduces atmospheric gas, and (4) is a film forming chamber (1).
), and (5) is a rotary pump connected to the other end of the exhaust pipe (4) to exhaust the atmospheric gas in the film forming chamber (1). Further, a rotary pump (5 mm) may be used as a pressure reducing means for reducing the pressure inside the film forming chamber (1) to about several hundred Torr during film formation.

(6)は膜形成室(1)内に配された溶融炉、(7)は
溶融炉(6)に連通ずるノズル、(8)は溶融炉(1)
内に充填された、例えばSiからなる粉末状あるいは粒
状の半導体材料、(9)はノズル(7)に当接し、これ
を振動させる音波振動子、(10)は音波振動子(9)
に接続された振動用電源、(11)は溶融炉(1)及び
ノズル(7)の周囲に配され、半導体材料(8)を加熱
溶解する加熱コイルである。(12)は膜形成が行われ
る基板、(13)は基板(12)を載置するホルダ、(
14)は基板(12)を加熱するヒータである。
(6) is a melting furnace arranged in the film forming chamber (1), (7) is a nozzle communicating with the melting furnace (6), and (8) is the melting furnace (1).
A powder or granular semiconductor material made of, for example, Si is filled in the inside, (9) is a sonic vibrator that comes into contact with the nozzle (7) and vibrates it, and (10) is a sonic vibrator (9).
A vibration power source (11) connected to the heating coil is arranged around the melting furnace (1) and the nozzle (7) and heats and melts the semiconductor material (8). (12) is a substrate on which film formation is performed, (13) is a holder on which the substrate (12) is placed, (
14) is a heater that heats the substrate (12).

第2図(a)及び(b)に本実施例装置のノズル(7)
先端部分の拡大断面図を示す。図において(15)はノ
ズル(7)先端に1個または複数個室たれた細孔で、こ
こから溶融された半導体材料(8)が微粒子液滴として
基板(12)上に落下する。斯る細孔(15)は任意の
直径、個数を選択できるが、膜厚をより均一に形成する
には微粒子液滴を小さく、即ち細孔(15)の直径を小
さくし、個数を多くすれば良い。本実施1列装置では直
径を10μm、個数を25個とした。また図において(
16)はノズル(7)の管内部に突出した突起で、溶融
された半導体材料(8)の流れを緩和する。
Figure 2 (a) and (b) show the nozzle (7) of the device of this embodiment.
An enlarged sectional view of the tip portion is shown. In the figure, (15) indicates one or more small holes formed at the tip of the nozzle (7), through which the molten semiconductor material (8) falls as fine droplets onto the substrate (12). Although the diameter and number of such pores (15) can be selected arbitrarily, in order to form a more uniform film thickness, the fine particle droplets should be made smaller, that is, the diameter of the pores (15) should be made smaller and the number of pores should be increased. Good. In this single-row device, the diameter was 10 μm and the number was 25. Also, in the figure (
16) is a protrusion that protrudes inside the tube of the nozzle (7) and moderates the flow of the molten semiconductor material (8).

而して斯る薄膜形成装置を用いて、例えば10(1)四
方のムライト基板(M g O−A l t Os )
上に多結晶のSi薄膜を形成するには、先ず基板(12
)を膜形成室(1)内に導入した後、a−タリーポンプ
(5)による排気及びマスフローコントローラ(3)か
らのHlの導入により膜形成室(1)内を還元雰囲気に
置換する。次いで加熱コイル(11)により溶融炉(6
)に充填された粒径1則以下の粉末Siからなる半導体
材料(8)を1500℃まで加熱し、これを溶融する。
Using such a thin film forming apparatus, for example, a 10(1) square mullite substrate (MgO-AltOs) is formed.
To form a polycrystalline Si thin film on the substrate, first the substrate (12
) is introduced into the film forming chamber (1), and then the inside of the film forming chamber (1) is replaced with a reducing atmosphere by evacuation by the a-tally pump (5) and introduction of H1 from the mass flow controller (3). The heating coil (11) then heats the melting furnace (6).
) is heated to 1500° C. and is melted.

また、同時に基板(12)をヒータ(14)により80
0℃程度に加熱する。
At the same time, the substrate (12) is heated to 80°C by the heater (14).
Heat to around 0℃.

半導体材料(8)が加熱溶融されるとその融液はノズル
(7)を通ってその先端まで流動し、斯る先端部に穿た
れた細孔(15)を通って微粒子液滴(17)となり、
基板(1)上に落下する。この時音波振動子(9)によ
ってノズル(7)先端を振動させると、上記微粒子液滴
(17)は細孔(15)がら、典身基板(1)上の種々
の位置に向がって射出される。これによって、微粒子液
滴(17)は基板(12)上にくまなく滴下されること
となる。そして基板(12)上に滴下された微粒子液滴
(17)は基板(]2)表面において、固化するまでの
間、基板(12)又は基板(12)上にすでに形成され
ている膜と融和し薄膜化する。
When the semiconductor material (8) is heated and melted, the melt flows through the nozzle (7) to its tip, passes through the pore (15) drilled in the tip, and forms particulate droplets (17). Then,
It falls onto the board (1). At this time, when the tip of the nozzle (7) is vibrated by the sonic vibrator (9), the fine particle droplets (17) are directed to various positions on the solid substrate (1) through the pores (15). be ejected. As a result, the fine particle droplets (17) are dropped all over the substrate (12). The microparticle droplets (17) dropped onto the substrate (12) blend with the substrate (12) or the film already formed on the substrate (12) until they solidify on the surface of the substrate (2). to make it a thin film.

上述の方法において成膜を3分間行い、膜質150μm
のSi薄膜を形成した。また、ディッピング法において
、溶融温度を1450”C1基板の引き上げ速度を1(
7)/min、成膜時間を1o分として、膜厚120μ
mのSi薄膜を形成した。これらの各Si薄膜について
、膜中に含まれるAl及びOの不純物濃度を夫々測定し
た。その結果を下表に示す。
Film formation was performed for 3 minutes using the method described above, and the film quality was 150 μm.
A Si thin film was formed. In addition, in the dipping method, the melting temperature was set to 1450" and the pulling rate of the C1 substrate was set to 1 (
7)/min, film forming time is 10 minutes, film thickness is 120μ
A Si thin film of m thickness was formed. For each of these Si thin films, the impurity concentrations of Al and O contained in the film were measured. The results are shown in the table below.

表 表より、本実施例方法においては従来のディヅプ法に比
して、形成されるSi薄膜中に混入されるAN、0の量
が大幅に低減されていることがわかる。さらに、本実施
例方法ではディッピング法よりも膜厚に対する成膜時間
が短く、高速で成膜できるといった利点を有する。
From the table, it can be seen that in the method of this example, the amount of AN and 0 mixed into the formed Si thin film is significantly reduced compared to the conventional dip method. Furthermore, the method of this embodiment has the advantage that the film formation time for the film thickness is shorter than the dipping method, and the film can be formed at high speed.

以上、本実施例では基板全面に成膜を行ったが、本発明
においては、成膜時に基板表面を例えばメタル其マスク
で覆うことによって任意形状の成膜を行うことができる
。また、本実施例においてはムライト基板上にSi薄膜
を形成したが、薄膜材料としては単体、あるいは混晶形
の溶融可能な材料であれば良く、基板もムライト基板に
限ることなく、セラミック基板、金属基板等、種々の基
板が使用できる。
As described above, in this embodiment, the film was formed over the entire surface of the substrate, but in the present invention, a film having an arbitrary shape can be formed by covering the surface of the substrate with, for example, a metal mask during film formation. Further, in this example, a Si thin film was formed on a mullite substrate, but the thin film material may be any single or mixed crystal type meltable material, and the substrate is not limited to a mullite substrate, but can also be a ceramic substrate, a metal substrate, etc. Various substrates can be used, such as a substrate.

(ト)発明の効果 本発明方法によれば、基板からの不純物混入の少ない薄
膜が均一に、且つ短時間で成膜できるので、膜質の良い
薄膜が量産性良く得られる。
(G) Effects of the Invention According to the method of the present invention, a thin film with little impurity contamination from the substrate can be formed uniformly and in a short time, so that a thin film of good quality can be obtained with good mass productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に用いる膜形戊装躍の一例を示す模
式図、第2図はその要部拡大断面図である。 (1)・・・膜形成室、(6)・・・溶融炉、(7)・
・・ノズル、(9)・・・音波震度子、(12)・・・
基板。
FIG. 1 is a schematic diagram showing an example of a membrane-shaped device used in the method of the present invention, and FIG. 2 is an enlarged cross-sectional view of the main part thereof. (1) Film forming chamber, (6) Melting furnace, (7)
...Nozzle, (9)...Sonic seismic intensifier, (12)...
substrate.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体材料を加熱して融液とし、該融液を一端に
細孔が穿たれたノズルから微粒子液滴として基板上に落
下させると共に、上記ノズルを該ノズルに当接配置され
た振動子によって振動せしめ、上記微粒子液滴の落下方
向を変化させることを特徴とする半導体薄膜の形成方法
(1) A semiconductor material is heated to form a melt, and the melt is caused to drop onto a substrate as fine droplets from a nozzle with a hole at one end, and the nozzle is placed in contact with the nozzle and vibrated. A method for forming a semiconductor thin film, characterized in that the falling direction of the fine particle droplet is changed by vibrating the fine particle droplet with a child.
JP20808489A 1989-08-11 1989-08-11 Method of formation of semiconductor thin film Pending JPH0371619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20808489A JPH0371619A (en) 1989-08-11 1989-08-11 Method of formation of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20808489A JPH0371619A (en) 1989-08-11 1989-08-11 Method of formation of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH0371619A true JPH0371619A (en) 1991-03-27

Family

ID=16550376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20808489A Pending JPH0371619A (en) 1989-08-11 1989-08-11 Method of formation of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH0371619A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107628A (en) * 1981-12-21 1983-06-27 Nec Corp Loquid phase epitaxial growth method
JPS61244025A (en) * 1985-04-22 1986-10-30 Toa Nenryo Kogyo Kk Manufacture of thin film
JPS6431423A (en) * 1987-07-27 1989-02-01 Fuji Electric Co Ltd Forming method for cuinse2 thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107628A (en) * 1981-12-21 1983-06-27 Nec Corp Loquid phase epitaxial growth method
JPS61244025A (en) * 1985-04-22 1986-10-30 Toa Nenryo Kogyo Kk Manufacture of thin film
JPS6431423A (en) * 1987-07-27 1989-02-01 Fuji Electric Co Ltd Forming method for cuinse2 thin film

Similar Documents

Publication Publication Date Title
KR100837476B1 (en) Quartz glass crucible and method for the production thereof
US20060057317A1 (en) Vessel for holding silicon and method of producing the same
WO2021163922A1 (en) Electronic cigarette atomization assembly and manufacturing method therefor
JP6122666B2 (en) Hopper and thermal spray equipment
CN102773493A (en) Device and method for preparing metal microballoons by using ultrasonic surface standing waves
TW202122339A (en) 3d printing of fully dense and crack free silicon with selective laser melting/sintering at elevated temperatures
JPH0371619A (en) Method of formation of semiconductor thin film
JP2008163373A (en) Method for manufacturing microball of active metal, and microball
JP2004533389A (en) Jet system for spherical devices
US4934307A (en) Apparatus for application of flux
US20110057358A1 (en) Method of production of solid and porous films from particulate materials by high heat flux source
JPH0432526A (en) Manufacture of aluminum material for electronic material
JP2013209227A (en) Quartz glass crucible
US5040281A (en) Method for the preparation of apparatus for application of flux
JPS6352084B2 (en)
JPS55136552A (en) Production of broad amorphous metal tape and producing apparatus thereof
JPH0479969B2 (en)
RU2141392C1 (en) Method for making metallic powder and apparatus for performing the same
JPH07108450B2 (en) Equipment for manufacturing composite metal materials
JPS6324071B2 (en)
JPH0373519A (en) Formation of polycrystalline silicon film on semiconductor substrate
JPH0543973Y2 (en)
JPS6354076B2 (en)
JPH09286691A (en) Production of quarts glass crucible
RU2083025C1 (en) Method for producing supporting layer of silicon-on-insulator semiconductor structure