JPS58107628A - Loquid phase epitaxial growth method - Google Patents

Loquid phase epitaxial growth method

Info

Publication number
JPS58107628A
JPS58107628A JP56206563A JP20656381A JPS58107628A JP S58107628 A JPS58107628 A JP S58107628A JP 56206563 A JP56206563 A JP 56206563A JP 20656381 A JP20656381 A JP 20656381A JP S58107628 A JPS58107628 A JP S58107628A
Authority
JP
Japan
Prior art keywords
layer
inp
growth
grown
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56206563A
Other languages
Japanese (ja)
Inventor
Kenshin Taguchi
田口 剣申
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56206563A priority Critical patent/JPS58107628A/en
Publication of JPS58107628A publication Critical patent/JPS58107628A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To reduce defect and improve homogeneity by removing periphery of wafer after the liquid phase epitaxial growth of InGaAs layer on the InP substrate and then allowing the liquid phase epitaxial growth of the InP layer. CONSTITUTION:An InP buffer layer 32 is grown on the InP substrate 31 and succeedingly In1-xGaxAs (0.47>x>=0.24) layer 33 is also grown. An abnormally grown region of the liquid phase eqitaxial growth end of at least of this wafer is removed. Thereafter, the In1-xGaxAsyP1-y (0.47>x>=0.24, 1>7>=0.55) layer 34 is grown and moreover the InP layer 35 is further grown.

Description

【発明の詳細な説明】 本発明は、  InP基板上にIn、−、GagAs、
 Its、4GamAs P、  及びI n P/等
のエピタキシャル結晶−y 層を多層成長する液相エピタキシャル(LPFi )成
長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides In, -, GagAs,
The present invention relates to a liquid phase epitaxial (LPFi) growth method for growing multiple layers of epitaxial crystals such as Its, 4GamAs P, and InP.

化合物半導体の多層液相エピタキシャル成長は光通信用
発光・受光素子である。半導体レーザ(以下LDと呼ぶ
)1発光ダイオード(以下LE/と呼ぶ)、アバランシ
・フォトダイオード(以下APDと呼ぶ)、フォトダイ
オード(以下FDと呼ぶ)等の素子を得る丸めの重要な
結晶成長方法であシ。
Multilayer liquid-phase epitaxial growth of compound semiconductors is used for light-emitting and light-receiving devices for optical communications. An important crystal growth method for rounding to obtain devices such as semiconductor lasers (hereinafter referred to as LDs), light emitting diodes (hereinafter referred to as LE/), avalanche photodiodes (hereinafter referred to as APDs), and photodiodes (hereinafter referred to as FDs). Adashi.

欠陥の少ない高品質な成長結晶層が得られる成長方法の
確立がiIすれている。現在、光通信用発光素子として
は発振波長が0.8から1.6μm域のGaAs−Ga
AtAs系あるいはInP−InGaAsP系のLD及
びLEDの研究開発が主流である。
We are about to establish a growth method that can provide a high-quality grown crystal layer with few defects. Currently, GaAs-Ga with an oscillation wavelength in the 0.8 to 1.6 μm range is used as a light emitting device for optical communication.
Research and development of AtAs-based or InP-InGaAsP-based LDs and LEDs is the mainstream.

また、 GaAs−GaAtAs系のLD及びLEDの
主な発振波長0.8μm〜0.87μmに対する光検出
器としては8i単結晶を用いたPDあるいはAPDが広
く実用されている。しかしながら8i単結晶で社1μm
波長以上の光を検出することは吸収係数が小さくなるた
めに実用上作製困難であや、光ファイバーの伝送損失の
低い1.1μm〜1.6μm波長域では使用することが
できない。また、1.1μm以上1.5μm波長域用と
してはGe−APDがあるが暗電流と過剰雑音の点で必
ずしも光通信用として最適な光検出器ではない、このた
め璽−V族化合物半導体等によるFDあるいはAPDが
要求されておj)、  InGaAs、 InGaAs
P、 GaAj8beQa AtA3Sb、 Ga 8
b等による試作報告例がある。
Furthermore, PDs or APDs using 8i single crystals are widely used as photodetectors for the main oscillation wavelengths of 0.8 μm to 0.87 μm of GaAs-GaAtAs LDs and LEDs. However, with 8i single crystal, the thickness is 1 μm.
It is practically difficult to detect light of a wavelength longer than that due to the small absorption coefficient, and it cannot be used in the wavelength range of 1.1 μm to 1.6 μm, where the transmission loss of optical fibers is low. In addition, Ge-APD is available for use in the 1.1 μm to 1.5 μm wavelength range, but it is not necessarily the best photodetector for optical communications due to dark current and excessive noise. InGaAs, InGaAs
P, GaAj8beQa AtA3Sb, Ga 8
There are examples of prototypes reported by B.

第1図はIn、、、、、Ga、As、P、−、層を光吸
収層として。
In Fig. 1, layers of In, ..., Ga, As, P, - are used as light absorption layers.

InP中Kpn接合を形成したプレーナI!APDの報
告例であり、特願昭54−39169にくわしく述べら
れている。この構造のウェーハの形状としては、nIn
P基板ll上KJ−InPバッファ一層12を形成し1
次K n M I n t −x Ga ” A Iy
 P t−y層(光吸収層)13を形成した後、n型I
nP層14を形成したウーー4であシ、とのウー−/’
 K基本的には選択拡散によ1f領域15をInP層1
層中4中成するととKよシ低晴電流、高増倍特性のAP
Dが得られている。これと同様な素子構造をInPと格
子整合するI n t −m Ga ” A sy P
 s−yの最長波長組成に相当するInl−1GajA
sを光吸収層として、  In、、Ga1AsyP、−
、を活性層とするLDあるいはLED等の光源からの光
の全波長光を検出するAPD、FD等を作製する場合K
Fi、  In、−。
Planar I with Kpn junction formed in InP! This is a reported example of APD, and is described in detail in Japanese Patent Application No. 54-39169. The shape of the wafer with this structure is nIn
A KJ-InP buffer layer 12 is formed on the P substrate 1.
NextK n M I n t −x Ga ” A Iy
After forming the Pty layer (light absorption layer) 13, the n-type I
The nP layer 14 was formed using the U-4 and the U-/'
Basically, the 1f region 15 is formed into the InP layer 1 by selective diffusion.
When the 4th layer is formed, the AP has low current and high multiplication characteristics
D is obtained. A device structure similar to this is lattice matched with InP.
Inl-1GajA corresponding to the longest wavelength composition of s-y
s as a light absorption layer, In,, Ga1AsyP, -
, when producing an APD, FD, etc. that detects all wavelengths of light from a light source such as an LD or LED with K as an active layer.
Fi, In, -.

Ga5AS上KInP層をエピタキシャル成長する必要
がある。しかしながら液相成長方法においては。
It is necessary to epitaxially grow a KInP layer on Ga5AS. However, in liquid phase growth methods.

In1−jGa、 As上KInPを成長しようとする
とInP成長用溶液に逆K In、−、Gas As層
が溶けてしまうといういわゆるメルトバーク現象が生じ
多層構造ができない、このためIn、、 Gas As
上にいわゆるアンチ・メルトバックIn、JIGas 
AsyP、−、層をエピタキシャル成長後InP層を成
長するととKよ抄着構造が得られている。この場合にお
いてもIn、−。
When trying to grow KInP on In1-jGa,As, a so-called melt bark phenomenon occurs in which the reverse KIn,-,GasAs layer dissolves in the InP growth solution, and a multilayer structure cannot be formed.For this reason, In,,GasAs
Above is the so-called anti-meltback In, JIGas
When an InP layer is grown after epitaxially growing an AsyP layer, a K-shaped structure is obtained. Also in this case, In, -.

Ga1AsとI n I−s Ga ” A”v P+
−y界面を良好な鏡面にする九めにアンチ・メルトバッ
クIn、−、Ga5A5yP、−7の組成として1≧0
.24.y層0.55程度が必要であシ、これKついて
は特願1@ 56−109690にくわしく述べである
。またIn、、GamAsを光吸収層として1.0μm
以上の厚膜成長した上記同様構造の4FD用ウエーハあ
るいは光源としてのL11!iD用として2μm程度の
厚膜In、−、GagAa、P、−。
Ga1As and I n I-s Ga ” A”v P+
- To make the y interface a good mirror surface, the composition of anti-meltback In, -, Ga5A5yP, -7 is 1≧0.
.. 24. A y layer of about 0.55 is required, and this K is described in detail in Japanese Patent Application No. 1@56-109690. In addition, a light absorption layer of In, GamAs with a thickness of 1.0 μm
L11 as a wafer for 4FD or a light source with the same structure as above with the above thick film grown! A thick film of about 2 μm In, -, GagAa, P, - for iD.

層を活性層として上記In1−、 Ga、 AsyP、
−y層上に結晶層が得られるがウェーハの周縁領域では
ミスフィツト転位が導入され、極端な場合Kdヘテロな
層構造をlさないことがある。第2図、第3図にそれを
説明するための概略図をIn、−、Ga、Asを光吸収
層とするAPD用ウェーへの作製例をもとに組明する。
The above In1-, Ga, AsyP,
Although a crystalline layer is obtained on the -y layer, misfit dislocations are introduced in the peripheral region of the wafer, and in extreme cases, a Kd heterolayer structure may not be formed. FIG. 2 and FIG. 3 are schematic diagrams for explaining this, based on an example of fabricating an APD wafer having a light absorption layer of In, -, Ga, and As.

第2図h’tI”型、Ink(100)基板21上にn
+−InP 22をLPI威長後、成長温度で格子整合
条件し満足するようKn型In、。
Figure 2 h'tI'' type, n on Ink (100) substrate 21
After LPI growth of +-InP 22, Kn-type In is grown to satisfy lattice matching conditions at the growth temperature.

us、As 23を2μm程度9次にアンチ・メルトパ
ークn型I”016 Ga[4Asui PQ4rs層
24を0.5μm程JfLPE成長した断面である。こ
のとき、ウェーハの周縁部28ではI n 、−s G
a s A s層23のいわゆるエツジ・グロースと呼
ばれる異常成長が起っておりe  I n t −s 
Ga ” A s層の層厚をi、oμm以上にした時1
%に顕著であシ歇lOμmの高さに達することもある8
次にこの様なウェーハ上KInPを連&1tLPE成長
した場合の結果の一例を第3図に示すが、ウェーハの中
央領域20においてはn−InPJ−25を成長した彼
も比較的良好な結晶性を有するのと比較して、ウェーハ
の端領域28においては、いったん成長したIn、−、
GagAa 23及びl1m1jGanAsyP、−、
24層がInP成長溶液中に溶けこんでなくなってしま
い′、その領域を基点にしてミスフィツト転位29がI
nP層2層中5中量に発生する。また、この様なミスフ
ィツト転位はウェー/・の中心領域20まで伸びている
ことがしばしばあり、良品質を得る成長方法が望まれて
いる。
This is a cross section of a 9-order anti-melt park n-type I"016 Ga[4Asui PQ4rs layer 24 grown by JfLPE to a thickness of about 0.5 μm on a 9-order anti-melt park n-type I"016 Ga[4Asui PQ4rs layer 24 of about 2 μm. At this time, at the peripheral edge 28 of the wafer, I n , - s G
Abnormal growth, so-called edge growth, of the a s A s layer 23 is occurring, and e I n t -s
1 when the layer thickness of the Ga''A s layer is i,oμm or more
%, and can reach a height of 10 μm8.
Next, Fig. 3 shows an example of the results obtained when KInP is grown on a wafer by serial & 1tLPE.In the central region 20 of the wafer, he also grew n-InPJ-25 and found relatively good crystallinity. In the edge region 28 of the wafer, once grown In, -,
GagAa 23 and l1m1jGanAsyP, -,
The layer 24 dissolves into the InP growth solution and disappears, and misfit dislocations 29 start from that region.
It occurs in 5 out of 2 nP layers. Furthermore, such misfit dislocations often extend to the central region 20 of the way/., and a growth method that provides good quality is desired.

本発明の目的は上記したような特にIn、−、Ga。The object of the present invention is particularly to the above-mentioned In,-,Ga.

AsあるいはI町−Ga z A sy Pr−y層の
比較的厚い膜を必要とする多層液相エピタキシャル成長
方法を工夫して欠陥が少なく均一性のよい高品質エピタ
キシャル成長層を形成するものである。
The multilayer liquid phase epitaxial growth method, which requires a relatively thick film of As or I-GazA sy Pr-y layer, is devised to form a high-quality epitaxial growth layer with few defects and good uniformity.

本発明の液相エピタキシャル成長方法は、少くともIn
P基板上K In、jGa、 As ToるいはIn、
−。
The liquid phase epitaxial growth method of the present invention comprises at least In
K In, jGa, As To or In on P substrate,
−.

Ga1AsyPl□(Jl≧0.24.y層0.55)
液相エピタキシャル層を液相エピタキシャル成長後、液
相エピタキシャル成長層の周縁を除去した後で、前記液
相成長層上にLnP層を液相エピタキシャル成長するこ
とを特徴とする液相エピタキシャル成長方法である。
Ga1AsyPl□ (Jl≧0.24.y layer 0.55)
This is a liquid phase epitaxial growth method characterized in that after a liquid phase epitaxial layer is grown by liquid phase epitaxial growth, a peripheral edge of the liquid phase epitaxial growth layer is removed, and then an LnP layer is grown by liquid phase epitaxial growth on the liquid phase growth layer.

次に本発明の優れた利点について一実施例に4とずいて
#l明する。本実施例でFi In、−、Gam Ag
を光吸収層とする人PD及びFD用ウェーハの結晶成長
例であり、第4図Kssotrから600°C糧度の飽
和溶液を用いて0.2°C/分糧度の冷却速度で成長を
行っ九ウェーハの概略断面図を示す。成長用&−)は横
型スライド&−)で成長用溶液を少くとも2.ケ有して
いる。成長方法は例えば6500C飽和温度で1時間1
度保持後0.2°C/分で冷却を開始し、640°Cに
達したらすみやかKn”−InP(100)基板31を
InPバッファ一層成長用溶液下に位動することKよ’
I) n −InPバッファ一層32を成長する。次に
635°CK達したら650°CでIn溶液にGa及び
A3が一定飽和量仕込まれ九溶液下に前記1nP基板3
1を移行することによりn”  InP バッファ一層
32の成長を停止し、ひき続In型In、−,Ga、 
As層33を成長する。ここで4分程度成長することに
より2〜3μml!度の層厚のIn、−、Ga、 As
層33を得ることができる。所定時間Trr、−,Ga
、 As層33をLPg成長後InP基板31をIn、
sGa、 As成長用溶液下から移動し、成長炉の温度
を急冷して室温付近く達した後堰ヤ出したも・Oである
。ここでは成長用111液の大きさをInP基板よシ小
さくし九場合の結果を図に示し九が、成長用溶液の大き
さをInP基板より大きくしても状況は同じであJ) 
InP基板の中央領域30においては%に3pm8度の
In、−、Ga、 As層33が得られるのと較べて、
基板のLPE成長端35でのIn、−、Ga、 As層
33は異常成長しており数10μmの高さに達する0次
に少くともとのウェーハのLPI成長端の異常成長領域
を切断除去(第4図中A −A’線で示した部分より切
断)した後、このIn、−、Ga、人3層33を有する
InP基板31を前記同様の横型スライドボートを有す
る成長炉中に設置し、昇温して615°C飽和温度で1
時間程度保持後、急冷を行ない600°CKたつしたな
らば降下温度を0.26C/分に移行し、このときIn
1.−M O85Asyp、−、(m =0.24. 
Y=0.55 )層を       91O秒程度成長
することKより0.6μm 1111のfin型In−
8Gl、 AsyPl−、層34を得る。ひきつづきa
llInP層35を3〜5μmli度所定時間により成
長した結果の概略断面図をm5図に示す。
Next, the excellent advantages of the present invention will be explained by referring to one embodiment. In this example, Fi In, -, Gam Ag
This is an example of crystal growth of a PD and FD wafer with a light-absorbing layer, and the growth was carried out at a cooling rate of 0.2°C/min using a saturated solution at 600°C from Figure 4 Kssotr. A schematic cross-sectional view of a nine-way wafer is shown. For growth &-), use a horizontal slide &-) to apply the growth solution at least 2. I have. The growth method is, for example, 1 hour at 6500C saturation temperature.
After holding the temperature, start cooling at 0.2°C/min, and as soon as the temperature reaches 640°C, move the Kn''-InP (100) substrate 31 under the InP buffer layer growth solution.
I) Grow an n-InP buffer layer 32. Next, when 635°CK is reached, a certain saturation amount of Ga and A3 is charged into the In solution at 650°C, and the 1nP substrate 3 is placed under the solution.
1, the growth of the n'' InP buffer layer 32 is stopped by transferring the InP buffer layer 32, and the subsequent In-type In,-,Ga,
An As layer 33 is grown. By growing here for about 4 minutes, 2-3 μml! Layer thickness of In, -, Ga, As
A layer 33 can be obtained. Predetermined time Trr, -, Ga
, After growing the As layer 33 with LPg, the InP substrate 31 was grown with In,
The sGa and As were removed from under the growth solution, the temperature of the growth reactor was rapidly cooled, and after the temperature reached almost room temperature, the molten metal was poured out. Here, the results are shown in the figure when the size of the growth solution is made smaller than that of the InP substrate.However, the situation is the same even if the size of the growth solution is made larger than that of the InP substrate.
Compared to the central region 30 of the InP substrate, an In, -, Ga, As layer 33 with a thickness of 3 pm and 8 degrees is obtained.
The In, -, Ga, As layer 33 at the LPE growth edge 35 of the substrate has grown abnormally and reaches a height of several tens of micrometers. After cutting from the part shown by line A-A' in FIG. , the temperature was increased to 615°C at the saturation temperature of 1
After holding the temperature for about an hour, quenching is performed and when the temperature reaches 600°CK, the temperature drop is shifted to 0.26C/min.
1. -M O85Asyp, -, (m = 0.24.
Y=0.55) layer was grown for about 910 seconds to form a fin-type In-
8Gl, AsyPl-, layer 34 is obtained. Continued a
A schematic cross-sectional view of the result of growing the llInP layer 35 to a thickness of 3 to 5 μm for a predetermined time is shown in figure m5.

本実施例においてはI n、−、Ga、A6層の異常成
長領域、りまりウェーハのLPB成長端を除去すること
Kより第2図及び第3図を用いて説明し丸場合と較べて
、上記In、−、Ga+、ム$上K ■町−s Gag
 AayP、□y層を介してであるがInP層を成長し
たときウェーハ周縁でもへテロ層構造を構成でき、 I
nP層中にすべ夛転位であるところのンスフィット転位
の導入が極端に抑制されており高品質なAPD用結晶が
得られる。1#、実施例ではInP−In山直5−In
GaAsP−InP層構造とし九が* InP−InG
aAs −InP、 InP InGaAsP−l5P
層構造としてもよい。
In this example, the removal of the abnormal growth region of the In, -, Ga, and A6 layers and the LPB growth edge of the Marimari wafer will be explained using FIGS. 2 and 3, and will be compared with the round case. Above In, -, Ga+, Mu $ upper K ■ Town -s Gag
When an InP layer is grown through the AayP, □y layer, a heterolayer structure can be formed even at the wafer periphery, and I
The introduction of sfit dislocations, which are planar dislocations, into the nP layer is extremely suppressed, and a high-quality crystal for APD can be obtained. 1#, InP-In Yamanao 5-In in the example
GaAsP-InP layer structure and nine * InP-InG
aAs-InP, InP InGaAsP-15P
It may also have a layered structure.

以上説明し友様に1本発明の要点紘厚膜液相エピタキシ
ャル成長層が必要な場合にウェーハ周縁の異常成長領域
を除去するという簡単な工夫であるがIn、、 Gaj
AsyPl−、0液相エピタキシヤル成長の場合には特
に1μm以上の膜厚を必要とする場合には1≧0.24
. 、≧0.55組成以上のIn、−、Ga。
Having explained the above, I would like to share with you one of the main points of the present invention.It is a simple device to remove the abnormally grown region at the periphery of the wafer when a thick film liquid phase epitaxially grown layer is required.
AsyPl-, 0 In the case of liquid phase epitaxial growth, especially when a film thickness of 1 μm or more is required, 1≧0.24.
.. , ≧0.55 or more of In, -, Ga.

As、 P、、の場合kl?iKウェーハ端でのLPE
成長層に異常成長が大きいことが経験的に知られてお)
光源としてのLED等の比較的厚膜を必要とする場合の
液相エピタキシャル成長においても効果を有しており、
良品質な厚膜を有する多層構造液相エピタキシャル成長
が可能となる。
As, P, , kl? LPE at iK wafer edge
It is known empirically that abnormal growth is large in the growth layer)
It is also effective in liquid phase epitaxial growth in cases where relatively thick films are required, such as in LEDs used as light sources.
It becomes possible to liquid-phase epitaxial growth of a multilayer structure with a high-quality thick film.

【図面の簡単な説明】[Brief explanation of drawings]

菖1図はI n 、−x Ga z A sy Pl−
yを用いたAPDの報告例であシ、11はn  InP
基板、12はn+−InPバッファ一層、13#′in
型In、−、Ga、 As。 P 層、14はn型InP層であり、15はP型子1′
″y 鈍物を選択拡散技術によシ前記14層中に形成し友もの
である。第2図はIn、、 Gas As層の比較的厚
膜液相エピタキシャル成長した場合の成長端での異常成
長を示し友ものであり、21はn  InP基板、22
はn” InPバッファ一層、23はallI n s
 、−5Ga jAs層、24はn型In、−s Ga
s As、 Pr−。 層である。第3図は第2図のウェーノ・K n型−In
P層2層管5相成長した場合のウェーノ・断面を示して
おり、ウェーハ周縁、%に上記第2図のIn  Ga、
As異常成長領域上K I n、−、Ga、AayP 
、−y層24を介してInP層2層管5長したとき1町
−Ga、As及びI n I−#Ga g A ay 
Pl−y層がとけ、この傾斌を起点にしてミスフィツト
転位がn−1nP層25中に伸びていることを示してい
る。第4図、第5図は本発明の一!I!施例を示し丸も
のであシ、第4図の31はn−InP層、32はn”−
InPバッファ+ 一層、33はnllInP層である。この様なウェーハ
のIn、−jIGa、 As成長端の異常成長領域を除
去する。@5図は、第411に示し丸様な)1.−、G
a、ムS威長異常端除去ウェーハを用い液相エピタキシ
ャル成長したものであシ34はrs I! In、−、
Ga、 AsP、−y層、35はnllInP層である
。 第1図 5 蔦2図 第3図 第4図 第5図 141−
Iris 1 diagram is I n, -x Gaz A sy Pl-
This is a reported example of APD using y, 11 is n InP
Substrate, 12 is n+-InP buffer single layer, 13#'in
Type In, -, Ga, As. P layer, 14 is n-type InP layer, 15 is P-type layer 1'
A blunt material is formed in the 14 layers by selective diffusion technique. Figure 2 shows the abnormal growth at the growth edge when relatively thick liquid phase epitaxial growth of an In, Gas, and As layer is performed. 21 is an n InP substrate, 22
is n” InP buffer single layer, 23 is all I n s
, -5Ga jAs layer, 24 is n-type In, -sGa
s As, Pr-. It is a layer. Figure 3 shows the Weno-K n-type shown in Figure 2.
The figure shows a wafer cross-section when five-phase P-layer two-layer tube is grown.
K I n, -, Ga, AayP on As abnormal growth region
, - When the length of the InP two-layer tube is 5 through the y layer 24, one town - Ga, As and I n I - # Ga g A ay
This shows that the Pl-y layer melts and misfit dislocations extend into the n-1nP layer 25 starting from this tilt. Figures 4 and 5 are part of the invention! I! The embodiment is shown in a round shape, 31 in FIG. 4 is an n-InP layer, and 32 is an n''-
InP buffer + layer, 33 is nlllInP layer. Abnormal growth regions at the In, -jIGa, and As growth ends of such a wafer are removed. @5 Figure 411 shows a round shape) 1. -,G
a, Liquid phase epitaxial growth using a wafer with anomalous edges removed. 34 is rs I! In, -,
Ga, AsP, -y layer, 35 is nllInP layer. Figure 1 5 Ivy Figure 2 Figure 3 Figure 4 Figure 5 141-

Claims (1)

【特許請求の範囲】[Claims] 少くともInP基板上K In、−、Gap<As6る
い紘I n + −HG a x人1.P、−、(0,
47>廖≧0.24.1>y≧0.55 )層を液相エ
ピタキシャル成長し先後、当該液相エピタキシャル成長
層が形成されているクエハーの周縁を除去し1次いでI
nP層を前記液相エピタキシャル成長層上に液相エピタ
キシャル成長することを特徴とする液相エピタキシャル
成長方法。
At least on an InP substrate K In, -, Gap < As6 - HG a x person 1. P,−,(0,
47>Liao≧0.24.1>y≧0.55) layer is grown by liquid phase epitaxial growth, and then the periphery of the wafer on which the liquid phase epitaxial growth layer is formed is removed and then I
A liquid phase epitaxial growth method, characterized in that an nP layer is liquid phase epitaxially grown on the liquid phase epitaxial growth layer.
JP56206563A 1981-12-21 1981-12-21 Loquid phase epitaxial growth method Pending JPS58107628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56206563A JPS58107628A (en) 1981-12-21 1981-12-21 Loquid phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206563A JPS58107628A (en) 1981-12-21 1981-12-21 Loquid phase epitaxial growth method

Publications (1)

Publication Number Publication Date
JPS58107628A true JPS58107628A (en) 1983-06-27

Family

ID=16525460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206563A Pending JPS58107628A (en) 1981-12-21 1981-12-21 Loquid phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS58107628A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033322A (en) * 1989-05-31 1991-01-09 Shin Etsu Handotai Co Ltd Liquid phase epitaxy method
JPH0371619A (en) * 1989-08-11 1991-03-27 Sanyo Electric Co Ltd Method of formation of semiconductor thin film
JPH0373519A (en) * 1989-08-14 1991-03-28 Hoxan Corp Formation of polycrystalline silicon film on semiconductor substrate
JPH0373518A (en) * 1989-08-14 1991-03-28 Hoxan Corp Formation of polycrystalline silicon film on wafer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033322A (en) * 1989-05-31 1991-01-09 Shin Etsu Handotai Co Ltd Liquid phase epitaxy method
JPH0371619A (en) * 1989-08-11 1991-03-27 Sanyo Electric Co Ltd Method of formation of semiconductor thin film
JPH0373519A (en) * 1989-08-14 1991-03-28 Hoxan Corp Formation of polycrystalline silicon film on semiconductor substrate
JPH0373518A (en) * 1989-08-14 1991-03-28 Hoxan Corp Formation of polycrystalline silicon film on wafer

Similar Documents

Publication Publication Date Title
US4116733A (en) Vapor phase growth technique of III-V compounds utilizing a preheating step
US20060102916A1 (en) II-VI/III-V LAYERED CONSTRUCTION ON InP SUBSTRATE
JP2001044569A (en) Doped semiconductor material, production thereof, and semiconductor device
TW201251090A (en) Light-receiving element and method for producing same
JPWO2002078144A1 (en) Semiconductor device and crystal growth method
JPH02202071A (en) Semiconductor photodetector and manufacture thereof
JPS58107628A (en) Loquid phase epitaxial growth method
US5856208A (en) Epitaxial wafer and its fabrication method
WO1997015103A1 (en) Buried-ridge laser device
US5323027A (en) Light emitting device with double heterostructure
JPH01245569A (en) Gap green light-emitting element and manufacture thereof
JPH041496B2 (en)
JPS5810819A (en) Liquid-phase epitaxial growing method
TW498560B (en) Epitaxial wafer for infrared light-emitting device and light-emitting device using the same
JPH027920B2 (en)
Wei et al. InAs QDs monolithically grown on COMS compatible Si (001) and SOI platform with strong emission at 1300 nm and 1550 nm
JP2503263B2 (en) Method for manufacturing semiconductor light emitting device
JPS6058684A (en) Manufacture of photo detector
JPH02215169A (en) Semiconductor device
JP2005217218A (en) Method for manufacturing semiconductor substrate
JPS60173882A (en) Semiconductor device
JPH0257336B2 (en)
JPS5961125A (en) Method for liquid-phase epitaxial growth
JPS6193619A (en) Method of liquid-phase epitaxial growth
JPS61284975A (en) Semiconductor device