JPS5961125A - Method for liquid-phase epitaxial growth - Google Patents

Method for liquid-phase epitaxial growth

Info

Publication number
JPS5961125A
JPS5961125A JP57171223A JP17122382A JPS5961125A JP S5961125 A JPS5961125 A JP S5961125A JP 57171223 A JP57171223 A JP 57171223A JP 17122382 A JP17122382 A JP 17122382A JP S5961125 A JPS5961125 A JP S5961125A
Authority
JP
Japan
Prior art keywords
layer
inp
growth
temperature
ingaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57171223A
Other languages
Japanese (ja)
Inventor
Susumu Yamazaki
進 山崎
Jiro Okazaki
岡崎 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57171223A priority Critical patent/JPS5961125A/en
Publication of JPS5961125A publication Critical patent/JPS5961125A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Semiconductor Lasers (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To grow an InP layer without generation of a meltback as well as to form an excellent hetero-junction interface between said InP layer and an InGaAs layer by a method wherein the InGaAs layer is grown on an InP substrate at the specific growth termination temperature, and the InP layer grown at the specific cooling speed in such a manner that it comes in contact with the InGaAs layer. CONSTITUTION:The InP substrate 1, having the raw material of solution of the prescribed composition ratio and the surface 111A as a main surface, is placed in a sliding boat, and it is maintained at an approximate temperature of 630 deg.C for approximtely one hour. Subsequenty, using the temperature program having a growth termination temperature of 580 deg.C or below, the meltback of the InP substrate 1 and the growth of the first InP layer 2, an InGaAs layer 3 and the second InP layer 4 are performed successively while said InP substrate 1 is being cooled when the fixed cooling speed alpha is 2 deg.C/min or above, namely. alpha=2.5 deg.C/min for example. The lattice dismatching of DELTAa/a with the InGaAs layer 3, the InGaAs layers 2 and 3 in room temperature of the semiconductor substrate formed through the above procedures is brought to -0.03%, for example, which is within the tolerance limit.

Description

【発明の詳細な説明】 +a+  発明の技術分野 本発明は液相エピタキシャル成長方法、特にIrl (
J aΔs lff1に接して1nPW4を形成する液
相エピタキンヤル成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION +a+ Technical Field of the Invention The present invention relates to a liquid phase epitaxial growth method, particularly Irl (
The present invention relates to a liquid phase epitaxial growth method for forming 1nPW4 in contact with J aΔs lff1.

tb+  技術の背景 長波長光通信用の発光素子および受光素子の材料として
m−v族化合物半導体が研究開発されている。と(に、
In7−xGazAs中でInP基板結晶上に格子整合
させることのできるI n O,53G a 0.47
A sはエネルギーギャップが0.74 e Vであり
発光波長1.68μmが得られるので、レーザや発光ダ
イオード(LED)の発光素子あるいはホトダイオード
(PD)やアバランシュホトダイオード(APD)の受
光素子の材料として有望である。このI n O,53
G a O,47ΔSを発光素子に用いる場合には、こ
のInGaAsを活性層として、キャリヤーの閉じ込め
効果を最も大きくすることのできるInGaAsP四元
結晶中でも最もエネルギーギャップの大きなInPクラ
ッド層が活性層をはさんだダブルへテロ(D H)構造
とすることが望ましい。また、受光素子に用いる場合ニ
ハ、このInGaAsを光吸収層とし、その上にInP
層をウィンド層兼増倍層として形成することが望ましい
。このように光半導体素子の活性層等にl n G a
AS層を用いる場合には1通雷このI nGaA3層に
接してInP層が形成されている。
Background of the tb+ Technology M-V compound semiconductors are being researched and developed as materials for light emitting elements and light receiving elements for long wavelength optical communications. and(ni,
I n O,53G a 0.47 that can be lattice matched on InP substrate crystal in In7-xGazAs
Since A s has an energy gap of 0.74 eV and an emission wavelength of 1.68 μm, it can be used as a material for light emitting elements of lasers and light emitting diodes (LEDs), or light receiving elements of photodiodes (PDs) and avalanche photodiodes (APDs). It's promising. This I n O, 53
When using GaO, 47ΔS in a light emitting device, this InGaAs is used as the active layer, and an InP cladding layer, which has the largest energy gap among the InGaAsP quaternary crystals and can maximize the carrier confinement effect, separates the active layer. It is desirable to have a sandwich double hetero (DH) structure. In addition, when used in a light-receiving element, this InGaAs is used as a light absorption layer, and InP
Preferably, the layer is formed as a wind layer and multiplication layer. In this way, L n Ga is applied to the active layer of an optical semiconductor device.
When an AS layer is used, an InP layer is formed in contact with the three InGaA layers.

(C)(メを来技術と問題点 先に述べたI n P / I n 0.53G a 
O,47Δs / 1nPなるI)II槽構造液相エピ
タキシャル成長方法によって形成することを試めるなら
ば、最終のInP層成長溶液中に先に成長させたInG
aAs層が溶りこむ(ノル1−ハックと称する)ために
(C) (I n P / I n 0.53G a
O,47Δs/1nP I) If you try to form the II tank structure by the liquid phase epitaxial growth method, the previously grown InG will be added to the final InP layer growth solution.
In order for the aAs layer to dissolve (referred to as nor-1-hack).

InGaAs層に接してInP層を液相エピタキシャル
成長させることは従来不可能とされCいた。
It was conventionally considered impossible to liquid-phase epitaxially grow an InP layer in contact with an InGaAs layer.

この問題を解決することを目的として1本特許出願人は
先に特願昭5−7−(150103号によって一つの発
明を提供した。該発明においては、InPJiNを成長
させるInGaAs1ii面を(11,1)A面とし、
InP/8液の成長開始温度を580(”C)以下とし
、かつ過冷却度を10G℃)B上とすることによって、
InGaAs層?に接するInPIfWの液相エピタキ
シャル成長を可能にしている。
In order to solve this problem, the applicant of the present patent previously provided an invention in Japanese Patent Application No. 150103. In this invention, an InGaAs1ii surface on which InPJiN is grown is 1) Side A,
By setting the growth start temperature of the InP/8 liquid to 580 ("C) or lower, and setting the degree of supercooling to 10G C) or higher,
InGaAs layer? This enables liquid-phase epitaxial growth of InPIfW in contact with the substrate.

すなわち該発明は、  (1)(111)A面のInG
aAs層の上にInP溶液を載せたときにメルトハック
が非常に起りにくいこと、および(2)メルトバンクは
InPのエピタキシャル成長開始温度およびInPの過
冷却度に非常に敏感であるが、580(’C)以下の成
長開始温度で10 〔℃〕以上の過冷却度であればメル
トハックをなしにInP層が成長することを見出したこ
とに基づいている。
That is, the invention includes (1) (111) InG on the A side;
(2) the melt bank is very sensitive to the InP epitaxial growth initiation temperature and the degree of supercooling of InP; This is based on the discovery that an InP layer can grow without melt hacking if the degree of supercooling is 10° C. or more at a growth start temperature of 10° C. or less.

しかしながら該発明を実施するにあたって、InGaA
s層の液相エピタキシャル成長開始を品度が最終のIn
P層の成長開始温度より大幅に高いならば、”’InG
aAs層成長終了1A I n p層成長開始までの間
に例えば10分間を越える待ち時間が介在することとな
り、その間600(’C)前後の高温においてInGa
AS層表面が雰囲気ガス例えば水素(142)に晒され
るために2表面近傍に結晶欠陥を生ずるなどの劣化を招
いてInP層成層成長窓図する特性のD H構造が得ら
れず例えばPD、APDなどの受光素子を作製した場合
暗電流が増大するなどの問題がある。
However, in implementing the invention, InGaA
The liquid phase epitaxial growth of the s-layer is started when the quality is final.
If it is significantly higher than the growth start temperature of the P layer, "'InG
There is a waiting time of, for example, more than 10 minutes before the aAs layer growth starts.
Since the surface of the AS layer is exposed to an atmospheric gas such as hydrogen (142), it causes deterioration such as the formation of crystal defects near the 2nd surface, making it impossible to obtain a DH structure with characteristics similar to those in the InP layer growth window. There are problems such as an increase in dark current when a light receiving element such as the above is fabricated.

(dl  発明の目的 本発明は、InP/InO,53GaO,47As/1
n PのDH構造を液相エピタキシャル成長力法で形成
するに際し、InGaAs1iiに接してInP層をメ
ルトハックを生ずることなく成長さ・u、かつInGa
As層とInP層との間に良好なヘテロ接合界面を形成
する方法を提供することを目的とする。
(dl Purpose of the Invention The present invention is directed to InP/InO, 53GaO, 47As/1
When forming an nP DH structure using the liquid phase epitaxial growth method, an InP layer can be grown in contact with InGaAs1ii without causing melt hacking.
It is an object of the present invention to provide a method for forming a good heterojunction interface between an As layer and an InP layer.

(el  発明の構成 本発明の前記目的は、(111)A面を主面とするイン
ジウム・燐(IriP)基板上にインジウム・ガリウム
・砒素(InGaAs)層を成長終了温度を580(’
c)以下として成長させ、続けてインジウム・燐(In
P)層を前記インジウム・ガリウム・砒素(InGaA
s)層に接して。
(el) Structure of the Invention The object of the present invention is to grow an indium gallium arsenic (InGaAs) layer on an indium phosphorous (IriP) substrate having a (111)A plane as its main surface at a growth finishing temperature of 580 ('
c) grown as below, followed by indium phosphorous (In
P) layer is made of the indium-gallium-arsenic (InGaA) layer.
s) in contact with the layer.

前記特願昭57−050103号の方法によって成長さ
せることにより達成される。
This can be achieved by growing according to the method described in Japanese Patent Application No. 57-050103.

更に特に本発明を受光素子等に用いられるInP / 
I n G aΔs / I n PのDH構造の成長
に実施するに際しては、冷却速度を2(’C/m1n)
以上に選択することにより1例えば厚さ2 〔μm〕程
度以上の[nGaA3層を含む前記D11構造を。
More particularly, the present invention can be applied to InP/
When growing the DH structure of I n GaΔs / I n P, the cooling rate was set to 2 ('C/m1n).
By making the above selection, the D11 structure including three nGaA layers having a thickness of, for example, about 2 [μm] or more can be obtained.

一定した冷却速度で連続的に成長さ−Uることが極めて
容易となる。
It is extremely easy to grow continuously at a constant cooling rate.

(fl  発明の実施例 以下本発明を実施例により図面を参照して具体的に説明
する。
(fl Embodiments of the Invention The present invention will be specifically described below by way of embodiments with reference to the drawings.

第1図は本発明の液相エピタキシャル成長方法によって
形成された半導体基体の断面図であり。
FIG. 1 is a cross-sectional view of a semiconductor substrate formed by the liquid phase epitaxial growth method of the present invention.

1は(111) A面を主面とするInP基板、2は第
1の1 n P、Ff、  3はI n O,53G 
a O,47A s N。
1 is an InP substrate with (111) A plane as the main surface, 2 is the first 1 n P, Ff, 3 is In O, 53G
a O, 47 A s N.

4は第2のInP層を示す。また、第2図は本実施例の
温度プログラムを示し、1′はInP基板1の表面層の
メルトハソク工程、2乃至4ば第1図に同一符号で示し
た層の成長工程である。
4 indicates the second InP layer. Further, FIG. 2 shows the temperature program of this embodiment, in which 1' is the melting process for the surface layer of the InP substrate 1, and 2 to 4 are the growth steps for the layers indicated by the same reference numerals in FIG.

本実施例においては、 l&に示す組成比の溶液原料及
びInP基板1をスライドボートに収容し。
In this example, a solution raw material having a composition ratio shown in l& and an InP substrate 1 were placed in a slide boat.

温度約630(’C)に約1時間保持した後に第2図に
示す温度プログラムによって、一定の冷却速度α−2,
5(’C/ min )で冷却する間に、lnP基板I
のメルトバック並びに第1のIn2層2゜I n G 
aΔ5Wi3及び第2のInPIii4の成長を順次連
続して実施している。ただし各工程の詳細は下記の通り
である。
After maintaining the temperature at about 630 ('C) for about 1 hour, a constant cooling rate α-2,
During cooling at 5 ('C/min), the lnP substrate I
meltback and first In2 layer 2゜I n G
The growth of aΔ5Wi3 and the second InPIii4 is performed successively. However, the details of each step are as follows.

InP基i反Iのメルトバック メルトハソクン容ン夜  :In メルトバック開始温度: 59 B、5 (°C)メル
トバック終了塩度:598  じC〕第1のTnP屓2
の成長 成長/8液の組成比: +n:  1nP=1   (g)   :5.5  
 (+ng)成長溶液の飽和温度:610(’C) 成長開始7M!r度:598[’C) 過冷却度=12〔“C〕 成し終了温度:585(”C) 成長層の厚さ:約3Cμm〕 InGaAsJW3の成長 成長溶液の組成比: In : InAs :GaAs層1 (g):22.
069 C■)  : 26.244 C■〕成長溶液
の飽和塩度:5B8(’C) 成長開始温度:585(’C) 過冷却度1(’c) 成長終了温度:580(”C) 成長層の厚さ:約2 〔μm〕 第2のInPlii4の成長 成長溶液の組成比: In: 1nP=1  (g):4.8 (w)成長溶
液の飽和温度:602(’C) 成長開始温度:580(”C) 過冷却度=22〔°C〕 成長終了温度:579(”C) 成長層の厚さ:約1 〔μm〕 以上説明した方法によって形成された本実施例の半導体
基体において、InGaAs1it3とIn2層2及び
4との室温における格子不整合△a/aは−0,03G
%〕であって許容範囲内にあった。
Meltback temperature of InP group I: In Meltback start temperature: 59 B, 5 (°C) Meltback end salinity: 598 °C] First TnP layer 2
Growth/composition ratio of 8 liquids: +n: 1nP=1 (g): 5.5
(+ng) Saturation temperature of growth solution: 610 ('C) Start of growth 7M! Degree of r: 598 ['C] Degree of supercooling = 12 ["C] Completion temperature: 585 ("C) Thickness of growth layer: approximately 3Cμm] Growth of InGaAsJW3 Composition ratio of growth solution: In: InAs:GaAs Layer 1 (g): 22.
069 C■): 26.244 C■] Saturated salinity of growth solution: 5B8 ('C) Growth start temperature: 585 ('C) Supercooling degree 1 ('C) Growth end temperature: 580 (''C) Growth Layer thickness: approximately 2 [μm] Growth of second InPlii4 Composition ratio of growth solution: In: 1nP=1 (g): 4.8 (w) Saturation temperature of growth solution: 602 ('C) Start of growth Temperature: 580 ("C) Supercooling degree = 22 [°C] Growth end temperature: 579 ("C) Growth layer thickness: Approximately 1 [μm] Semiconductor substrate of this example formed by the method explained above In, the lattice mismatch Δa/a between InGaAs1it3 and In2 layers 2 and 4 at room temperature is -0.03G
%] and was within the allowable range.

また、この半導体を襞間して襞間断面を観察した結果、
ヘテロ接合界面は平坦であり、1nGaAS層3のメル
トハックも発生していないことが確認された。更に、こ
の半導体を用いて、アバランシェフォトダイオードを形
成して、波長λ−1,65cμm〕において励子効率7
0[%〕程度、暗電流が動作電圧の2においてlXl0
  (八/ cnl〕程度となる良好な結果を得た。
In addition, as a result of folding this semiconductor and observing the cross section between the folds,
It was confirmed that the heterojunction interface was flat and no melt hacking of the 1nGaAS layer 3 occurred. Furthermore, using this semiconductor, an avalanche photodiode was formed, and the excitonic efficiency was 7 at wavelength λ-1, 65 cm.
When the dark current is around 0 [%] and the operating voltage is 2, lXl0
A good result of approximately (8/cnl) was obtained.

従来l n GaA3層の液相エピタキシャル成長に際
しては、X長温度が前記実施例より大幅に高い650(
’C)程度とされている場合が多く、成長温度を低下さ
せるならば成長可能な厚さが制限されるとされていた。
Conventionally, in the liquid phase epitaxial growth of l n GaA three layers, the X-length temperature was 650 (
In many cases, it was considered to be about 'C), and it was thought that if the growth temperature was lowered, the thickness that could be grown would be limited.

しかしながら前記実施例のInGaAs層成長/8液に
ついて第3図に例示する如<、]nGaΔS層の成長厚
さは該溶液の飽和温度と成長終了温度との差すなわち温
度降下幅によって定まり1例えば0.8〔μm〕乃至4
.0〔pm)程度の範囲内の所要の値に温度降下幅の選
択によって制御することができる。
However, as illustrated in FIG. 3 for the InGaAs layer growth/8 solution of the above embodiment, the growth thickness of the nGaΔS layer is determined by the difference between the saturation temperature of the solution and the growth end temperature, that is, the temperature drop width. .8 [μm] to 4
.. It can be controlled to a desired value within a range of about 0 [pm] by selecting the temperature drop width.

従って本発明を実施するに当っては、580 (’c)
以下に選択された[nGa八sへの成長終了1ML度に
、所要のInGaAs層成長厚さが得られる温度降下幅
を加えた温度をその飽和温度とする組成のInGaAs
層成長溶液を使用する。
Therefore, in carrying out the present invention, 580 ('c)
[InGaAs with a composition whose saturation temperature is the temperature obtained by adding the temperature drop width to obtain the required InGaAs layer growth thickness to 1 ML degree of completion of growth to nGa8S selected below.
Use a layer growth solution.

なお、成長温度580℃付近の低温におけるIn c 
a A S Mの成長に際して、従来成長温度65o 
’c付近で行われている例えば0.5 (”C/ mi
n )程度の低い冷却速度とすることなく、  2 (
’C/m1n)以上の冷却速度としても良好なるInG
aAsNを得ることができ、これによって] n P 
/ 1nGaAs/InP  DH構造等を、一定した
冷却速度で連続的に成長させることが極めて容易となる
Incidentally, Inc. at a low temperature around 580° C.
When growing ASM, the conventional growth temperature was 65o.
For example, 0.5 ("C/ mi
2 (
'C/m1n) or higher cooling rate
aAsN can be obtained, thereby] n P
/1nGaAs/InP It becomes extremely easy to continuously grow a DH structure or the like at a constant cooling rate.

+gl  発明の詳細 な説明した如く本発明によってI n 0.53G a
o、47A s層を成長させ、続けてこのInGaAS
層に接するInP層を前記先頭願発明によって成長させ
るならば1例えばInP/InGaAs/InPのDH
構造などを連続して容易に形成することができ、かつ従
来問題とされたI nGaA3層のメルトバンク並びに
この層と+nP層とのへテロ接合界面の劣化が防止され
、また最終のIn2層の表面モフオロジーも良好で、ヒ
ルロック等も生じない。
+gl According to the present invention, as described in the detailed description of the invention, I n 0.53G a
o, 47A s layer is grown, followed by this InGaAS layer.
If the InP layer in contact with the layer is grown according to the invention of the first application, 1, for example, a DH of InP/InGaAs/InP.
Structures etc. can be easily formed continuously, and deterioration of the InGaA three-layer melt bank and the heterojunction interface between this layer and the +nP layer, which had been a problem in the past, can be prevented, and the final In2 layer can be easily formed. The surface morphology is also good and no hillocks occur.

従って本発明によって製造された半導体基体を用いて1
例えば発振波長λ−1,68(μm〕程度の発光素子或
いは前記波長をカバーする受光素子等を優れた品質をも
って提供することが可能となる。
Therefore, using a semiconductor body produced according to the invention, 1
For example, it is possible to provide a light emitting element with an oscillation wavelength of about λ-1.68 (μm) or a light receiving element covering the above wavelength with excellent quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例としたD H構造の断面図、第
2図は実施例の温度プログラムを示す図表。 第3図は温度降下幅とInGaAs層の成長厚さとの相
関を示す図表である。 図において、1はInP基板、2はInP層。 3はI n O,53G a 0.4TA s層、4は
InP層を示す。 ィ j 図 一72図 日1     間        〔つT」f 5 図
FIG. 1 is a sectional view of a D H structure according to an embodiment of the present invention, and FIG. 2 is a chart showing a temperature program of the embodiment. FIG. 3 is a chart showing the correlation between the temperature drop width and the growth thickness of the InGaAs layer. In the figure, 1 is an InP substrate and 2 is an InP layer. 3 indicates an InO, 53G a 0.4TAs layer, and 4 indicates an InP layer. Figure 1 72 Figure Day 1 [T''f 5 Figure

Claims (1)

【特許請求の範囲】 +11(111)入面を主面とするインジウム・燐(J
nP)基板上に、インジウム・ガリウム・砒素(InG
aAs)層を成長終了温度を580(’C〕以下として
成長し、続いてインジウム・燐(InP)litを前記
インジウム・ガリウム・砒素(InGaAs)層に接し
て成長する工程を含んでなることを特徴とする液相エピ
タキシャル成長方法。 (2)前記液相エピタキシャル成長系の冷却速度が2〔
“C/m1n)以上であることを特徴とする特許請求の
範囲第1項記載の液相エピタキシャル成長方法。
[Claims] Indium phosphorus (J
Indium gallium arsenide (InG
aAs) layer at a growth end temperature of 580 ('C) or lower, and then growing indium phosphorus (InP) lit in contact with the indium gallium arsenic (InGaAs) layer. A liquid phase epitaxial growth method characterized by: (2) The cooling rate of the liquid phase epitaxial growth system is 2 [
2. The liquid phase epitaxial growth method according to claim 1, wherein the liquid phase epitaxial growth method is not less than "C/m1n).
JP57171223A 1982-09-30 1982-09-30 Method for liquid-phase epitaxial growth Pending JPS5961125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57171223A JPS5961125A (en) 1982-09-30 1982-09-30 Method for liquid-phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57171223A JPS5961125A (en) 1982-09-30 1982-09-30 Method for liquid-phase epitaxial growth

Publications (1)

Publication Number Publication Date
JPS5961125A true JPS5961125A (en) 1984-04-07

Family

ID=15919323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57171223A Pending JPS5961125A (en) 1982-09-30 1982-09-30 Method for liquid-phase epitaxial growth

Country Status (1)

Country Link
JP (1) JPS5961125A (en)

Similar Documents

Publication Publication Date Title
US4116733A (en) Vapor phase growth technique of III-V compounds utilizing a preheating step
US5356509A (en) Hetero-epitaxial growth of non-lattice matched semiconductors
US4425650A (en) Buried heterostructure laser diode
WO1987001522A1 (en) Semiconductor device
JPH0677580A (en) Semiconductor structure for optoelectronic component
US5323027A (en) Light emitting device with double heterostructure
JPH02146779A (en) Double-hetero type epitaxial wafer
JPS5961125A (en) Method for liquid-phase epitaxial growth
JPS5997595A (en) Liquid phase epitaxial growing method
JPH01245569A (en) Gap green light-emitting element and manufacture thereof
JPS63200586A (en) Semiconductor device
JP2946280B2 (en) Semiconductor crystal growth method
US6236067B1 (en) Semiconductor light emitting device using an AlGaInP group or AlGaAs group material
JPS61106497A (en) Method for growing epitaxial film of gallium phosphide and arsenide
JP2880984B2 (en) Compound semiconductor substrate
JP2804093B2 (en) Optical semiconductor device
JPS61276314A (en) Liquid-phase epitaxial growth method of compound semiconductor
JPH0448669A (en) Semiconductor laser device and its manufacture
JPS5824456Y2 (en) semiconductor laser
JP2841849B2 (en) Manufacturing method of epitaxial wafer
JPH0547996B2 (en)
Jones et al. A new technology for epitaxial II-VI compound semiconductor devices
JPS5986281A (en) Visible light semiconductor laser
JPH04278522A (en) Semiconductor material having si-doped gainp cap layer
JPS5810819A (en) Liquid-phase epitaxial growing method