JP2804093B2 - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JP2804093B2
JP2804093B2 JP16959089A JP16959089A JP2804093B2 JP 2804093 B2 JP2804093 B2 JP 2804093B2 JP 16959089 A JP16959089 A JP 16959089A JP 16959089 A JP16959089 A JP 16959089A JP 2804093 B2 JP2804093 B2 JP 2804093B2
Authority
JP
Japan
Prior art keywords
crystal
compound semiconductor
layer
group
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16959089A
Other languages
Japanese (ja)
Other versions
JPH0334586A (en
Inventor
直人 茂木
奎治郎 平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16959089A priority Critical patent/JP2804093B2/en
Publication of JPH0334586A publication Critical patent/JPH0334586A/en
Application granted granted Critical
Publication of JP2804093B2 publication Critical patent/JP2804093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、発光ダイオード、半導体レーザ、光検出器
などに利用されるII−VI族化合物半導体層を有する光半
導体装置に関する。
The present invention relates to an optical semiconductor device having a II-VI compound semiconductor layer used for a light emitting diode, a semiconductor laser, a photodetector, and the like. .

(従来の技術) 可視領域を初めとして赤外線から紫外線の波長に相当
する禁制帯幅エネルギーを有する種々のII−VI族化合物
半導体及びその混晶半導体は、発光ダイオード、半導体
レーザ、光検出器及びこれらの複合素子などの光半導体
装置の材料として好適なものである。
(Prior Art) Various II-VI compound semiconductors having a bandgap energy corresponding to a wavelength from infrared to ultraviolet including a visible region and mixed crystal semiconductors thereof include light emitting diodes, semiconductor lasers, photodetectors and the like. It is suitable as a material for an optical semiconductor device such as a composite element.

ところで、高性能の光半導体装置を製造するには高品
質の結晶が必要とされるため、一般に所望の結晶基板上
にエピタキシャル結晶成長を行い、結晶成長中にpn接合
などの能動層を形成する方法が採用されている。結晶基
板としては、エピタキシャル結晶成長層と同種の結晶で
あることが、高品質の結晶層を成長させる上で望まし
い。しかしながら、II−VI族化合物半導体の場合には工
業的に必要とされるに十分な品質を有する大口径の結晶
を製作する技術が確立されていないため、II−VI族化合
物半導体を材料とする光半導体装置では従来III−V族
化合物半導体結晶やSi、Ge等の元素半導体結晶を基板と
し、これら基板上にエピタキシャル成長を行うことによ
って主に製造していた。
By the way, since high-quality crystals are required to manufacture a high-performance optical semiconductor device, an epitaxial crystal is generally grown on a desired crystal substrate, and an active layer such as a pn junction is formed during the crystal growth. The method has been adopted. It is desirable for the crystal substrate to be a crystal of the same kind as the epitaxial crystal growth layer in order to grow a high-quality crystal layer. However, in the case of II-VI group compound semiconductors, since a technology for producing a large-diameter crystal having a quality sufficient for industrial needs has not been established, II-VI group compound semiconductors are used as materials. Conventionally, optical semiconductor devices are mainly manufactured by using a group III-V compound semiconductor crystal or an elemental semiconductor crystal such as Si or Ge as a substrate and performing epitaxial growth on the substrate.

II−VI族化合物半導体結晶のエピタキシャル成長とし
ては、有機金属気相成長法(MOCVD法)、分子線エピタ
キシャル法(MBE法)を初めとする種々の結晶成長法が
知られている。しかしながら、III−V族化合物半導体
結晶上にエピタキシャル成長したII−VI族化合物半導体
層は結晶品質が光半導体装置を製造する上で十分なもの
ではなく、製造された光半導体装置は特性的に実用に耐
えるものではなかった。
As the epitaxial growth of II-VI compound semiconductor crystals, various crystal growth methods including a metal organic chemical vapor deposition method (MOCVD method) and a molecular beam epitaxial method (MBE method) are known. However, the II-VI group compound semiconductor layer epitaxially grown on the III-V group compound semiconductor crystal has insufficient crystal quality for manufacturing an optical semiconductor device, and the manufactured optical semiconductor device is characteristically practical. It was not enduring.

GaAs結晶基板上にZnSSeの混晶層をMOCVD法により成長
することにより製造した発光ダイオードを例にして説明
する。III−V族化合物半導体結晶基板上にIII−V族化
合物半導体層もMOCVD法によりエピタキシャル成長させ
る場合には、機密性の優れた結晶成長装置、高純度の原
料ガスを用い、結晶基板に格子整合した組成を有する結
晶を成長するならば、結晶欠陥が少なく、かつキャリア
濃度の高いp型、n型の導電性を有するエピタキシャル
結晶層を得ることが容易である。しかしながら、GaAs基
上にZnSSe層をエピタキシャル成長させる場合には同様
な結晶成長装置、高純度の原料ガスを用い、基板に格子
整合した結晶を成長しても、転位や積層欠陥、双晶等の
種々の結晶欠陥がエピタキシャル成長中に発生すること
を回避できない。また、p型、n型の不純物元素を転化
しても十分に活性化されず、十分な低抵抗化が望めなく
なる。更に、基板構成元素であるGaがZnSSeエピタキシ
ャネ成長層中に取り込まれ、p型キャリアを補償する効
果や、基板とエピタキシャル層の界面に異常な接合が形
成される等の種々の問題が発生する。高輝度の発光素
子、量子効率の高い受光素子を製造する上でキャリアの
濃度を高め、低抵抗化を図ることは不可欠な要素であ
る。事実、これまでGaAs基板上に成長したZnSSe層では
p型キャリア濃度は1016cm-3、n型キャリア濃度は1017
cm-3程度のものしか得られておらず、添加した不純物が
活性化していないことに関連していると思われる、深い
不純物からの発光が顕著に見出だされることや、発光効
率が低いなどの種々の問題が見出だされており、GaAs結
晶基板上にpn接合を有するZnSSe層を成長して製造した
発光ダイオードでは実用的な発光効率を持つものが得ら
れないのが現状である。
A light emitting diode manufactured by growing a ZnSSe mixed crystal layer on a GaAs crystal substrate by MOCVD will be described as an example. In the case where the III-V compound semiconductor layer is also epitaxially grown on the III-V compound semiconductor crystal substrate by MOCVD, a crystal growth apparatus with excellent confidentiality and lattice matching with the crystal substrate using a high-purity source gas are used. If a crystal having a composition is grown, it is easy to obtain an epitaxial crystal layer having p-type and n-type conductivity with few crystal defects and high carrier concentration. However, when a ZnSSe layer is epitaxially grown on a GaAs substrate, even if a crystal that is lattice-matched to the substrate is grown using a similar crystal growth apparatus and high-purity source gas, various problems such as dislocations, stacking faults, and twins can occur. Cannot be avoided during the epitaxial growth. Further, even if p-type and n-type impurity elements are converted, they are not sufficiently activated, so that a sufficiently low resistance cannot be expected. Further, Ga as a constituent element of the substrate is taken into the ZnSSe epitaxial growth layer, which causes various problems such as an effect of compensating for p-type carriers and formation of an abnormal junction at an interface between the substrate and the epitaxial layer. In order to manufacture a light-emitting element with high luminance and a light-receiving element with high quantum efficiency, it is essential to increase the carrier concentration and reduce the resistance. In fact, the ZnSSe layer grown so far on the GaAs substrate has a p-type carrier concentration of 10 16 cm −3 and an n-type carrier concentration of 10 17
Only about cm -3 is obtained, and it is thought that the emission from deep impurities is remarkably found, which is thought to be related to the fact that the added impurities are not activated. Various problems such as low luminous efficiency have been found, and at present it is not possible to obtain a light emitting diode with practical luminous efficiency by growing a ZnSSe layer with a pn junction on a GaAs crystal substrate. is there.

なお、GaAs基板上にZnSSe層をMOCVD法によりエピタキ
シャル成長させる場合において、高キャリア濃度のp
型、n型導電層が得られない問題は、他のIII−V族化
合物半導体基盤上に種々のII−VI族化合物半導体をMOCV
D法等の結晶成長法によりエピタキシャルル成長する場
合にも起こり、II−VI族化合物半導体中にpn接合を有す
る光半導体装置を製造する上で大きな障害となってい
た。
When a ZnSSe layer is epitaxially grown on a GaAs substrate by the MOCVD method, a high carrier concentration p
The problem that the n-type and n-type conductive layers cannot be obtained is that various II-VI compound semiconductors are mounted on another III-V compound semiconductor substrate.
This also occurs when epitaxial growth is performed by a crystal growth method such as the D method, which has been a major obstacle in manufacturing an optical semiconductor device having a pn junction in a II-VI compound semiconductor.

一方、Alの組成比が0〜0.13のIII−V族化合物半導
体結晶基板上にII−VI族化合物半導体層をエピタキシャ
ル成長することにより、それらの接合界面に生じるバン
ド不連続によりもたらされる電気伝導の整流性の発生を
抑制する技術が特開昭61−46031号公報に開示されてい
る。
On the other hand, by epitaxially growing a II-VI compound semiconductor layer on a III-V compound semiconductor crystal substrate having an Al composition ratio of 0 to 0.13, rectification of electric conduction caused by band discontinuity generated at their junction interface. A technique for suppressing the occurrence of the property is disclosed in JP-A-61-46031.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされた
もので、III−V族化合物半導体上に結晶欠陥の少ない
高品質の結晶構造を持ち、かつpn接合を有するII−VI族
化合物半導体層を形成した光半導体装置を提供しようと
するものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above conventional problems, and has a high-quality crystal structure with few crystal defects on a III-V compound semiconductor, and a pn junction. It is intended to provide an optical semiconductor device having a group II-VI compound semiconductor layer having the following.

[発明の構成] (課題を解決するための手段) 本発明に係わる光半導体装置は、III族元素としてAl
を組成比で0.15以上含むn型のIII−V族化合物半導体
上にII−VI族化合物半導体層を形成し、かつ前記II−VI
族化合物半導体層にpn接合を形成したことを特徴とする
ものである。
[Structure of the Invention] (Means for Solving the Problems) An optical semiconductor device according to the present invention comprises Al as a group III element.
Is formed on an n-type III-V compound semiconductor containing at least 0.15 in a composition ratio, and the II-VI compound semiconductor layer is formed.
A pn junction is formed in the group III compound semiconductor layer.

上記Alを含むIII−V族化合物半導体としては、例え
ばAlxInyGa1-x-yAs(0.15≦x<1、0≦1−x−y≦
1、yは0を含む)、AlxInyGa1-x-yP(0.15≦x<1、
0≦1−x−y≦1、yは0を含む)或いはAlxInyGa
1-x-yAszPwSb1-z-w(0.15≦x<1、0≦1−x−y≦
1、yは0を含む、0≦z≦1、0≦w≦1)といった
形で表現される混晶化合物半導体等を挙げることができ
る。かかるIII−V族化合物半導体は、基板そのものの
形でも用いてもよいし、Alを含まないIII−V族化合物
半導体基板に層状態に形成して用いてもよい。前記Alを
含まないIII−V族化合物半導体としては、例えばGaA
s、GaP、GaSb、InP、InAs、InSb、又はこれらの混晶化
合物半導体等を挙げることができる。なお、Alを含むII
I−V族化合物半導体層をAlを含まないIII−V族化合物
半導体基板上に成長させる場合には例えばGaAs基板とAl
xGa1-xAsとの組み合わせのように格子定数の整合性が満
たされていること望ましい。
As the III-V group compound semiconductor containing Al, for example, Al x In y Ga 1 -xy As (0.15 ≦ x <1, 0 ≦ 1-xy ≦
1, y includes 0), Al x In y Ga 1-xy P (0.15 ≦ x <1,
0 ≦ 1-xy ≦ 1, y includes 0) or Al x In y Ga
1-xy As z P w Sb 1-zw (0.15 ≦ x <1, 0 ≦ 1-xy ≦
1 and y include 0, and a mixed crystal compound semiconductor expressed in the form of 0 ≦ z ≦ 1, 0 ≦ w ≦ 1) can be given. Such a group III-V compound semiconductor may be used in the form of a substrate itself, or may be used in the form of a layer formed on a group III-V compound semiconductor substrate containing no Al. Examples of the group III-V compound semiconductor not containing Al include GaAs
Examples include s, GaP, GaSb, InP, InAs, InSb, and mixed crystal compound semiconductors thereof. In addition, II containing Al
When an IV group compound semiconductor layer is grown on a III-V group compound semiconductor substrate not containing Al, for example, a GaAs substrate and an Al
It is desirable that the lattice constant consistency is satisfied as in the combination with x Ga 1-x As.

上記Alを含むIII−V族化合物半導体のAlの組成比を
限定した理由は、その組成比を0.15未満にすると、II−
VI族化合物半導体を前記Alを含むIII−V族化合物半導
体上に成長する際、結晶性が良好なII−VI族化合物半導
体を形成できなくなるからである。
The reason for limiting the composition ratio of Al in the III-V group compound semiconductor containing Al is that if the composition ratio is less than 0.15, II-
This is because, when a group VI compound semiconductor is grown on the above-mentioned Al-containing group III-V compound semiconductor, a group II-VI compound semiconductor having good crystallinity cannot be formed.

上記II−VI族化合物半導体としては、例えばZnSe、Zn
S、ZnTe、CdSe、CdS、又はこれらの混晶化合物半導体を
挙げることができる。
As the II-VI group compound semiconductor, for example, ZnSe, Zn
Examples thereof include S, ZnTe, CdSe, CdS, and a mixed crystal compound semiconductor thereof.

次ぎに、本発明に係わる光半導体装置の製造方法を説
明する。
Next, a method for manufacturing an optical semiconductor device according to the present invention will be described.

まず、Alの組成比が0.15以上のIII−V族化合物半導
体上にMOCVD法等により例えば620℃以上の温度でn型
(又はp型)の不純物を含むII−VI族化合物半導体層を
エピタキシャル成長する。つづいて、前記n型(又はp
型)の不純物を含むII−VI族化合物半導体層上にp型
(又はn型)不純物を拡散もしくはイオン打ち込みする
か、或いはMOCVD法等によりp型(又はn型)の不純物
を含むII−VI族化合物半導体層をエピタキシャル成長さ
せるか、いずれかにより前記III−V族化合物半導体にp
n接合を有するII−VI族化合物半導体層を形成し、光半
導体装置を製造する。
First, a II-VI group compound semiconductor layer containing an n-type (or p-type) impurity is epitaxially grown on a III-V group compound semiconductor having an Al composition ratio of 0.15 or more by MOCVD or the like at a temperature of, for example, 620 ° C. or more. . Subsequently, the n-type (or p-type)
II-VI containing p-type (or n-type) impurities by diffusing or ion-implanting p-type (or n-type) impurities on a II-VI group compound semiconductor layer containing the The group III-V compound semiconductor is epitaxially grown, or
An II-VI compound semiconductor layer having an n-junction is formed to manufacture an optical semiconductor device.

前記Alを含むIII−V族化合物半導体へのII−VI族化
合物半導体層のエピタキシャル成長に際して前記III−
V族化合物半導体表面を空気中に曝すると、Alを含むこ
とに起因する酸化され易い性質により酸化膜を生成し、
II−VI族化合物半導体層のエピタキシャル成長が困難と
なる。これを回避するには次ぎのような方法を採用する
ことが望ましい。
In the epitaxial growth of the II-VI compound semiconductor layer on the Al-containing III-V compound semiconductor,
When the surface of the group V compound semiconductor is exposed to air, an oxide film is generated due to the property of being easily oxidized due to containing Al,
Epitaxial growth of the II-VI compound semiconductor layer becomes difficult. To avoid this, it is desirable to employ the following method.

.反応容器内でAlを含まないIII−V族化合物半導体
基板にAlを含むIII−V族化合物半導体層を成長させた
後、空気中に曝することなく、ひきつづいてAlを含むII
I−V族化合物半導体層上にII−VI族化合物半導体層を
直ちに成長させる。
. After growing a group III-V compound semiconductor layer containing Al on a group III-V compound semiconductor substrate containing no Al in the reaction vessel, without subsequently exposing it to the air,
A II-VI compound semiconductor layer is immediately grown on the IV compound semiconductor layer.

.Alを含むIII−V族化合物半導体基板上にAlを含まな
いIII−V族化合物半導体薄層を酸化防止剤として成長
させ、II−VI族化合物半導体層をエピタキシャル成長す
るに際し成長開始直前に前記Alを含まないIII−V族化
合物半導体薄層を高温処理によって蒸発させるか、塩酸
ガス等によりエッチング除去し、しかる後にII−VI族化
合物半導体層を成長させる。
A thin layer of a III-V compound semiconductor not containing Al is grown as an antioxidant on a III-V compound semiconductor substrate containing Al, and when the II-VI compound semiconductor layer is epitaxially grown, the Al Is evaporated by a high-temperature treatment or removed by etching with hydrochloric acid gas or the like, and then a II-VI compound semiconductor layer is grown.

(作用) 一般に、エピタキシャル成長すべき原子を結晶基板の
原子配列に従って正しく配列させ、熱力学的に最も安定
な原子配列を達成するためには、少なくともある一定温
度以上の温度で結晶成長することが必要である、不十分
な温度、つまり低温で成長を行った場合には、外見的に
は平坦な良好と思われる結晶表面を有するエピタキシャ
ル成長層が得られても、各原子が最も安定される原子配
列を実現しておらず、点欠陥や、結晶成長過程に依存し
た種々の不純物を取り込んだ状態での結晶となる。II−
VI族化合物半導体結晶の場合のように結晶中において二
種の原子が交互に規則的に配列されることが必要とされ
る結晶の場合には、単一な元素からなる結晶に比べては
るかに原子の規則的な配列性が結晶欠陥、不純物の取り
込みの増大要因となる。事実、GaAs基板上にZnSSe層をM
OCVD法によりエピタキシャルル成長させた場合、500℃
という低温では成長原料ガスである有機金属や有機カル
コゲナイドの構成原子として含まれる炭素を初めとする
種々の不純物が1018cm-3以上含有させることを見出だし
た。
(Operation) Generally, in order to arrange the atoms to be epitaxially grown correctly according to the atomic arrangement of the crystal substrate and achieve the most thermodynamically stable atomic arrangement, it is necessary to grow the crystal at least at a certain temperature or higher. If the growth is performed at an insufficient temperature, that is, at a low temperature, an atomic arrangement in which each atom is most stable even if an epitaxial growth layer having a crystal surface which seems to be flat and good in appearance is obtained. Is not realized, and the crystal becomes a state in which point defects and various impurities depending on the crystal growth process are incorporated. II−
In the case of a crystal in which two types of atoms are required to be arranged alternately and regularly in a crystal, such as in the case of a group VI compound semiconductor crystal, the crystal is far more than a crystal composed of a single element. The regular arrangement of atoms causes crystal defects and increases the incorporation of impurities. In fact, a ZnSSe layer
500 ℃ when grown epitaxially by OCVD method
At such a low temperature, it was found that various impurities such as carbon contained as constituent atoms of organic metal and organic chalcogenide as growth source gases contained more than 10 18 cm -3 .

結晶成長過程において、原子の不安定な配列に起因す
る結晶欠陥の発生や不純物の取り込みを抑制するために
は、高温でエピタキシャル成長することが望ましい。し
かしながら、III−V族化合物半導体結晶基板上へのII
−VI族化合物半導体結晶層のエピタキシャル成長の場合
には、結晶成長温度の高温化は次のような問題を生じ
る。即ち、基板と組成の異なる結晶をエピタキシャル成
長しようとすると、結晶基板の表面は一時的にその構成
元素に対して未飽和な蒸気を有する気相に曝らされる。
III−V族化合物半導体の場合、一般にV族原子の飽和
蒸気圧はIII族原子の飽和蒸気圧に比べてはるかに高い
値をとる。このため、III−V族化合物半導体結晶基板
が高温状態に曝されると、結晶基板の表面からV族原子
が選択的に蒸発し、結晶表面にIII族原子が取り残され
る。このようなV族原子の蒸発がある程度進行すると、
III族原子が結晶表面で凝集し、液滴となり、形成され
た液滴への基板を構成する結晶の溶解、V族原子の蒸発
が急速に進行し、結晶基板表面が顕著な凹凸を呈するな
どの極端な現象も起こる。こうしたIII−V族化合物半
導体結晶基板表面での変性が起きると、II−VI族化合物
半導体結晶のエピタキシャル成長中にIII族原子が取り
込まれる拡散現象や、III族原子とエピタキシャル成長
原子とで構成された結晶基板及びエピタキシャル成長結
晶とは異質の組成、構造を有する結晶が基板表面に生成
し、その後のエピタキシャル成長を阻害する。かかる問
題から、従来においては十分に高温でIII−V族化合物
半導体結晶基板上へのII−VI族化合物半導体結晶のエピ
タキシャル成長を行うことが実質的に困難であった。
In the crystal growth process, in order to suppress the generation of crystal defects and the incorporation of impurities due to the unstable arrangement of atoms, it is desirable to perform epitaxial growth at a high temperature. However, II on the III-V compound semiconductor crystal substrate
In the case of epitaxial growth of a -VI compound semiconductor crystal layer, raising the crystal growth temperature causes the following problem. That is, when attempting to epitaxially grow a crystal having a composition different from that of the substrate, the surface of the crystal substrate is temporarily exposed to a gas phase having a vapor unsaturated with respect to the constituent elements.
In the case of a group III-V compound semiconductor, the saturated vapor pressure of group V atoms generally takes a much higher value than the saturated vapor pressure of group III atoms. Therefore, when the group III-V compound semiconductor crystal substrate is exposed to a high temperature state, group V atoms are selectively evaporated from the surface of the crystal substrate, and group III atoms are left on the crystal surface. When such evaporation of group V atoms proceeds to some extent,
Group III atoms aggregate on the crystal surface to form droplets, dissolution of the crystal constituting the substrate in the formed droplets, evaporation of Group V atoms progresses rapidly, and the crystal substrate surface exhibits remarkable unevenness, etc. Extreme phenomena also occur. When such modification on the surface of the III-V compound semiconductor crystal substrate occurs, a diffusion phenomenon in which the group III atom is taken in during the epitaxial growth of the II-VI compound semiconductor crystal, or a crystal composed of the group III atom and the epitaxially grown atom. Crystals having a composition and structure different from those of the substrate and the epitaxially grown crystal are generated on the substrate surface, and hinder subsequent epitaxial growth. From such a problem, it has conventionally been substantially difficult to epitaxially grow a II-VI compound semiconductor crystal on a III-V compound semiconductor crystal substrate at a sufficiently high temperature.

本発明者らは、上述した実験的事実に基き、基板とし
て用いるIII−V族化合物半導体結晶として少なくとも
基板表面がIII族元素中のAl組成比を0.15以上としたも
のを用い、この基板上にII−VI族化合物半導体結晶をエ
ピタキシャル成長させることによって、前記成長を高い
温度に設定しても、基板表面での変性に起因するエピタ
キシャル成長結晶層界面の凹凸化、基板のIII族原子の
エピタキシャル成長結晶層への拡散現象、エピタキシャ
ル成長結晶層中の転位、積層欠陥、双晶界面の発生を抑
制でき、極めて結晶性が良好な高品質のII−VI族化合物
半導体結晶を成長できることを見出だした。また、前記
高温下でのエピタキシャル成長中での基板表面の変性を
抑制できることにより、p型、n型不純物の活性化率を
向上でき、p型、n型ともに高キャリア濃度、つまり低
抵抗でpn接合を有するII−VI族化合物半導体結晶層を形
成することができる。
The present inventors, based on the experimental facts described above, at least the surface of the substrate as the III-V compound semiconductor crystal used as the substrate, the Al composition ratio in the group III element is set to 0.15 or more, on this substrate By epitaxially growing a group II-VI compound semiconductor crystal, even if the growth is set at a high temperature, the surface of the substrate is made uneven due to denaturation on the surface of the substrate, and the epitaxially grown crystal layer of group III atoms of the substrate is formed. It has been found that high-quality II-VI compound semiconductor crystals having extremely good crystallinity can be grown by suppressing the phenomenon of diffusion, dislocations in the epitaxially grown crystal layer, stacking faults, and the occurrence of twin boundaries. Further, since the modification of the substrate surface during the epitaxial growth under the high temperature can be suppressed, the activation rate of the p-type and n-type impurities can be improved, and both the p-type and the n-type have a high carrier concentration, that is, a pn junction with a low resistance. A group II-VI compound semiconductor crystal layer having the following formula can be formed.

上述したAlを含むIII−V族化合物半導体へのII−VI
族化合物半導体結晶のエピタキシャル成長時における前
記III−V族化合物半導体の挙動について考察すると、A
l原子とV族原子の結合はGaやInなどのIII族原子とV族
原子の結合に比べて強く、Al原子と結合したV族原子は
結晶表面から脱離し、気相中へと蒸発し難いにことが推
定される。事実、本発明者らの実験によればAl組成比が
比較的小さいIII−V族化合物半導体結晶を用いた場合
には該半導体結晶の変性、つまりV族原子の蒸発抑制効
果が十分ではないが、III族原子中に占めるAl組成比が
0.15以上を越えると前記半導体結晶表面の変性防止効果
が顕著に生じることがわかった。このようにAl組成比が
0.15という値でAsなどのV族原子の蒸発抑制効果が発揮
されるのは、III−V族化合物半導体結晶中のV族原子
のそれぞれは4個のIII族原子と結合する結晶配位構造
をとっているため、Al組成比が0.15程度の値になると大
部分のV族原子は結晶中のAl原子と結合する状態が実現
するためであると推定される。
II-VI to III-V compound semiconductor containing Al as described above
Considering the behavior of the group III-V compound semiconductor during epitaxial growth of the group III compound semiconductor crystal, A
The bond between the l atom and the group V atom is stronger than the bond between the group III atom and the group V atom such as Ga or In, and the group V atom bonded to the Al atom is desorbed from the crystal surface and evaporates into the gas phase. It is presumed to be difficult. In fact, according to the experiments of the present inventors, when a III-V compound semiconductor crystal having a relatively small Al composition ratio is used, the modification of the semiconductor crystal, that is, the effect of suppressing evaporation of group V atoms is not sufficient. , The Al composition ratio in group III atoms is
When it exceeds 0.15 or more, it has been found that the effect of preventing denaturation of the semiconductor crystal surface is remarkably produced. Thus, the Al composition ratio
The effect of suppressing the evaporation of group V atoms such as As at a value of 0.15 is due to the fact that each of the group V atoms in the group III-V compound semiconductor crystal has a crystal coordination structure bonded to four group III atoms. Therefore, it is estimated that when the Al composition ratio becomes about 0.15, most of the group V atoms are bonded to Al atoms in the crystal.

以上、本発明によればIII族元素としてAlを含み、Al
の組成比が0.15以上のIII−V族化合物半導体を用いる
ことによって、該半導体を少なくとも表面に設けた基板
上に転位、積層欠陥、双晶界面の発生が抑制された結晶
性の良好なII−VI族化合物半導体層を形成でき、かつ該
II−VI族化合物半導体層に高キャリア濃度のpn接合を形
成できるため、自己付活発光を初めとする種々の深い準
位及び結晶欠陥に基く種々の発光線の低減された高発光
効率等の優れた特性を有する光半導体装置を得ることが
できる。
As described above, according to the present invention, Al is contained as a group III element,
By using a group III-V compound semiconductor having a composition ratio of 0.15 or more, dislocation, stacking fault, generation of twin interface at least on a substrate provided with the semiconductor is excellent in crystallinity II- A group VI compound semiconductor layer can be formed and
Since a pn junction with a high carrier concentration can be formed in the II-VI compound semiconductor layer, various deep levels including self-activated luminescence and various luminescence lines based on crystal defects have been reduced to achieve high luminous efficiency. An optical semiconductor device having excellent characteristics can be obtained.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

実施例1 まず、面方位(100)のn型GaAs基板を硫酸過酸化水
素溶液によりエッチング処理し、表面を洗浄化した後、
MOCVD結晶用成長装置の反応容器内に設置した。つづい
て、前記反応容器において常圧、水素ガス雰囲気でV族
元素原料ガスとしてアルシン(AsH3)ガスを供給しなが
ら、GaAs基板を750℃に昇温し、10分間放置した後、III
族元素原料ガスとしてトリメチルガリウム(TMG)、ト
リメチルアルミニウム(TMA)を前記V族元素ガスとの
供給比(V/III比)が20となるように供給すると共にn
型不純物原料ガスとしてセレン化水素(H2Se)ガスを供
給してGaAs基板上にAl組成比x(x>0.15)のAlxGa1-x
As層を成長させた。
Example 1 First, an n-type GaAs substrate having a plane orientation of (100) was etched with a sulfuric acid / hydrogen peroxide solution to clean the surface.
It was set in the reaction vessel of the MOCVD crystal growth apparatus. Subsequently, the GaAs substrate was heated to 750 ° C. and left for 10 minutes while supplying arsine (AsH 3 ) gas as a group V element source gas in a hydrogen gas atmosphere at normal pressure in the reaction vessel, and allowed to stand for 10 minutes.
Trimethylgallium (TMG) and trimethylaluminum (TMA) are supplied as group-group element source gases so that the supply ratio (V / III ratio) with the group-V element gas becomes 20 and n
Hydrogen selenide (H 2 Se) gas is supplied as a source material gas of Al type to form Al x Ga 1-x having an Al composition ratio x (x> 0.15) on a GaAs substrate.
As layer was grown.

次いで、前記各原料ガスの供給を停止し、反応容器内
のガスを排気しつつ降温し、ひきつづきVI族原料ガスと
してジエチルセレン(DESe)ジエチル硫黄(DES)の混
合ガスを所定比率で供給すると共に昇温し、650℃に到
達した時点でII族元素原料としてジエチル亜鉛(DEZ)
を前記VI族原料ガスに対する比(VI/II比)が2となる
ように供給しながらp型不純物(Li原料)としてt−ブ
チルリチウムガスを導入して前記Al組成比xが異なるAl
xGa1-xAs層上にp型のZnS0.06Se0.94層を成長した。
Next, the supply of each of the raw material gases was stopped, and the temperature in the reactor was lowered while exhausting the gas. Subsequently, a mixed gas of diethyl selenium (DESe) and diethyl sulfur (DES) was supplied as a Group VI raw material gas at a predetermined ratio. When the temperature rises and reaches 650 ° C, diethylzinc (DEZ) is used as a Group II element raw material.
While supplying t-butyllithium gas as a p-type impurity (Li raw material) while supplying so that the ratio (VI / II ratio) with respect to the group VI raw material gas becomes 2, the Al composition ratio x is different.
A p-type ZnS 0.06 Se 0.94 layer was grown on the x Ga 1-x As layer.

得られたGaAs基板上のAl組成比が異なるAlxGa1-xAs層
上に形成されたp型のZnS0.06Se0.94層について、エッ
チピット密度を測定した。このエッチピット密度評価に
は、希釈したブロム−メタノール系混合溶液を用いてエ
ッチピット密度に対応する転位密度を測定することによ
って行った。その結果を第2図に示した。この第2図よ
り明らかなようにAl組成比が0.15以上のAlxGa1-xAs層上
にp型のZnS0.06Se0.94層を成長させると、650℃という
高温での成長を行ってもIII−V族化合物半導体結晶表
面の変性に基づくII−VI族化合物半導体結晶成長中の転
位発生を効果的に抑制できることがわかる。
The etch pit density of the p-type ZnS 0.06 Se 0.94 layer formed on the Al x Ga 1 -x As layers having different Al composition ratios on the obtained GaAs substrate was measured. The etch pit density was evaluated by measuring the dislocation density corresponding to the etch pit density using a diluted bromo-methanol mixed solution. The results are shown in FIG. As is clear from FIG. 2, when a p-type ZnS 0.06 Se 0.94 layer is grown on an Al x Ga 1 -x As layer having an Al composition ratio of 0.15 or more, even if the growth is performed at a high temperature of 650 ° C. It can be seen that dislocation generation during growth of the II-VI compound semiconductor crystal based on the modification of the III-V compound semiconductor crystal surface can be effectively suppressed.

また、GaAs基板上のAl0.4Ga0.6As層上にVI族原料ガス
としてジエチルセレン(DESe)とジエチル硫黄(DES)
の混合ガスを所定比率で供給すると共に昇温し、所定の
温度(450〜800℃)に到達した時点でII族元素原料とし
てジエチル亜鉛(DEZ)を前記VI族原料ガスに対する比
(VI/II比)が2となるように供給してZnS0.06Se0.94
を成長し、その層中の不純物炭素原子濃度を2次イオン
質量分析法により測定した。その結果を第3図に示す。
この第3図から明らかなように成長温度をおおよそ620
℃以上とすることにより不純物炭素原子濃度を炭素原子
の検出限界濃度、つまり良好なpn接合形成に必要なp
型、n型導電層のキャリア濃度である1016cm-3以下の濃
度に抑えることができることがわかる。
In addition, diethyl selenium (DESe) and diethyl sulfur (DES) were used as group VI source gases on the Al 0.4 Ga 0.6 As layer on the GaAs substrate.
Is supplied at a predetermined ratio and the temperature is raised. When the temperature reaches a predetermined temperature (450 to 800 ° C.), diethylzinc (DEZ) as a Group II element raw material is added to the Group VI raw material gas at a ratio (VI / II The ZnS 0.06 Se 0.94 layer was grown by supplying so as to have a ratio of 2 and the impurity carbon atom concentration in the layer was measured by secondary ion mass spectrometry. FIG. 3 shows the results.
As apparent from FIG. 3, the growth temperature was set to about 620.
C. or higher, the impurity carbon atom concentration is reduced to the detection limit concentration of carbon atoms, that is, p necessary for good pn junction formation.
It can be seen that the concentration can be suppressed to 10 16 cm −3 or less, which is the carrier concentration of the type and n-type conductive layers.

実施例2 まず、面方位(100)のn型GaAs基板1を硫酸過酸化
水素溶液によりエッチング処理し、表面を洗浄化した
後、MOCVD結晶用成長装置の反応容器内に設置した。つ
づいて、前記反応容器において常圧、水素ガス雰囲気で
V族元素原料ガスとしてアルシン(AsH3)ガスを供給し
ながら、GaAs基板を750℃に昇温し、10分間放置した
後、III族元素原料ガスとしてトリメチルガリウム(TM
G)、トリメチルアルミニウム(TMA)を前記V族元素ガ
スとの供給比(V/III比)が20となるように供給すると
共にn型不純物としてセレン化水素(H2Se)ガスを供給
してGaAs基板1上に厚さ1μmのn型GaAsバッファ層2
を成長し、ひきつづき厚さ2μmのAl0.3Ga0.7As層3を
成長した(第1図(a)図示)。
Example 2 First, an n-type GaAs substrate 1 having a plane orientation of (100) was etched with a sulfuric acid / hydrogen peroxide solution to clean the surface, and then placed in a reaction vessel of a MOCVD crystal growth apparatus. Subsequently, the GaAs substrate was heated to 750 ° C. while being supplied with arsine (AsH 3 ) gas as a group V element source gas under a normal pressure and a hydrogen gas atmosphere in the reaction vessel, and allowed to stand for 10 minutes. Trimethylgallium (TM
G), trimethylaluminum (TMA) was supplied so that the supply ratio (V / III ratio) to the group V element gas became 20, and hydrogen selenide (H 2 Se) gas was supplied as an n-type impurity. 1 μm thick n-type GaAs buffer layer 2 on GaAs substrate 1
Then, an Al 0.3 Ga 0.7 As layer 3 having a thickness of 2 μm was grown (FIG. 1A).

次いで、III族原料ガスとセレン化水素ガスの供給を
停止し、直ちにGaAs基板の降温を開始し、500℃まで低
下した後に、アルシンガスの供給を停止した。アルシン
ガスの供給停止後、20秒間の時間を置くことにより反応
容器内のアルシンガスを置換排気し、直にVI族原料ガス
としてジエチルセレン(DESe)とジエチル硫黄(DES)
の混合ガスを所定比率で供給すると共に昇温を開始し、
650℃に到達した時点でII族元素原料としてジエチル亜
鉛(DEZ)を前記VI族原料ガスに対する比(VI/II比)が
2となるように供給しながらn型不純物原料である臭素
ガスを導入して前記Al0.3Ga0.7As層3上に厚さ4μmの
n型のZnS0.06Se0.94層4を成長した。つづいて、臭素
ガスの供給を停止し、厚さ4μmのアンドープZnS0.06S
e0.94層5aを成長した(第1図(b)図示)。
Next, the supply of the group III source gas and the hydrogen selenide gas was stopped, the temperature of the GaAs substrate was immediately started, and after the temperature was lowered to 500 ° C., the supply of the arsine gas was stopped. After the supply of arsine gas is stopped, the arsine gas in the reaction vessel is replaced and evacuated by leaving for 20 seconds, and diethyl selenium (DESe) and diethyl sulfur (DES) are directly used as group VI source gases.
The mixed gas is supplied at a predetermined ratio and the temperature is increased,
When the temperature reaches 650 ° C., bromine gas as an n-type impurity raw material is introduced while supplying diethyl zinc (DEZ) as a group II element raw material so that the ratio (VI / II ratio) to the group VI raw material gas becomes 2. Then, an n-type ZnS 0.06 Se 0.94 layer 4 having a thickness of 4 μm was grown on the Al 0.3 Ga 0.7 As layer 3. Subsequently, the supply of bromine gas was stopped, and a 4 μm thick undoped ZnS 0.06 S
e A 0.94 layer 5a was grown (FIG. 1 (b)).

次いで、II族原料ガス(DEZ)の供給を停止すると共
に、直ちに降温を開始し、GaAs基板1の温度が350℃に
低下した時点でVI族原料ガス(DES、DESe)の供給を停
止した。つづいて、前記アンドープZnS0.06Se0.94層5a
が成長された基板1をZnS、ZnSe粉末とLi2Se粉末と共に
石英アンプル中に真空封止し、500℃、1時間熱処理す
ることにより前記ZnS0.06Se0.94層5aにLiを拡散してp
型のZnS0.06Se0.94層5を形成した(第1図(c)図
示)。前記ZnS0.06Se0.94層5のLiの濃度は、1×1018c
m-3、キャリア濃度は約1×1017cm-3であった。
Next, the supply of the group II source gas (DEZ) was stopped, and the temperature was immediately started. When the temperature of the GaAs substrate 1 dropped to 350 ° C., the supply of the group VI source gas (DES, DESe) was stopped. Subsequently, the undoped ZnS 0.06 Se 0.94 layer 5a
Is grown in a quartz ampoule together with ZnS, ZnSe powder and Li 2 Se powder, and heat-treated at 500 ° C. for 1 hour to diffuse Li into the ZnS 0.06 Se 0.94 layer 5a to form p.
A type ZnS 0.06 Se 0.94 layer 5 was formed (FIG. 1 (c)). The concentration of Li in the ZnS 0.06 Se 0.94 layer 5 is 1 × 10 18 c
m -3 and the carrier concentration were about 1 × 10 17 cm -3 .

次いで、n型GaAs基板1の裏面を研磨除去し、該基板
1裏面にAuGeからなるn型電極6を蒸着した後、400℃
で短時間の熱処理を施し、更にZnS0.06Se0.94層5上にA
uからなるp型電極7を蒸着した(第1図(d)図
示)。電極形成後の基板をチップに劈開し、青色発光ダ
イオード(図示せず)を製造した。
Next, the back surface of the n-type GaAs substrate 1 is polished and removed, and an n-type electrode 6 made of AuGe is deposited on the back surface of the n-type GaAs substrate 1.
Heat treatment for a short period of time, and further apply A on ZnS 0.06 Se 0.94 layer 5.
A p-type electrode 7 made of u was deposited (shown in FIG. 1 (d)). The substrate after the electrodes were formed was cleaved into chips to produce blue light emitting diodes (not shown).

本実施例2により得られた発光ダイオードは、良好な
pn接合が形成されていることを示す電流−電圧特性を有
し、4V順方向電圧印加に対し、10mAの電流が流れ、中心
波長400nm、輝度10ミリカンデラという従来得られなか
った高効率青色発光特性を示した。
The light emitting diode obtained according to Example 2 has a good
It has a current-voltage characteristic indicating that a pn junction has been formed, a current of 10 mA flows when a forward voltage of 4 V is applied, and a high efficiency blue light emission with a center wavelength of 400 nm and a luminance of 10 mCandela, which could not be obtained conventionally. The characteristics were shown.

実施例3 まず、面方位(100)のn型GaAs基板上に厚さ2μm
のn型Al0.3Ga0.7As層、更にこの上に厚さ50ÅのAl無添
加のGaAs薄層をエピタキシャル成長した。つづいて、前
記GaAs基板をMOCVD結晶用成長装置の反応容器内に設置
し、僅かな量のアルシンを含む水素ガス雰囲気下で800
℃まで昇温し10分間放置した、この工程により、前記Al
無添加のGaAs薄層のみが選択的に蒸発された。この工程
において、前記Al無添加のGaAs薄層の蒸発は下地のAl
0.3Ga0.7As層が安定であるため、局部的に進むことな
く、全体に亘って均一に進行する。ひきつづき、降温を
開始すると共にアルシンガスの供給を停止し、650℃ま
で降温した時点で、ジエチルセンレン(DESe)とジエチ
ル硫黄(DES)の混合ガスを所定比率で供給し、ジエチ
ル亜鉛(DEZ)を前記VI族原料ガスに対する比(VI/II
比)が2となるように供給しながらn型不純物原料であ
る臭素ガスを導入して厚さ4μmのn型ZnS0.06Se0.94
層をエピタキシャル成長し、更に臭素ガス導入を停止し
厚さ4μmのアンドープZnS0.06Se0.94層をエピタキシ
ャル成長した。アンドープZnS0.06Se0.94層は、前記Al
0.3Ga0.7As層の表面が平滑でGa等の残留がないため、極
めて結晶性等が良好なものであった。この後、実施例2
と同様な方法により前記アンドープZnS0.06Se0.94層にL
iを拡散してp型ZnS0.06Se0.94層を形成し、更にn型、
p型の電極形成し、チップに劈開して青色発光ダイオー
ドを製造した。
Example 3 First, a 2 μm thick n-type GaAs substrate with (100) plane orientation was formed.
The n-type Al 0.3 Ga 0.7 As layer was further epitaxially grown on the n-type Al 0.3 Ga 0.7 As layer. Subsequently, the GaAs substrate was placed in a reaction vessel of a MOCVD crystal growth apparatus, and was placed under a hydrogen gas atmosphere containing a small amount of arsine for 800 hours.
° C and left for 10 minutes.
Only the undoped GaAs thin layer was selectively evaporated. In this step, the evaporation of the Al-free GaAs thin layer is caused by the underlying Al
Since the 0.3 Ga 0.7 As layer is stable, it progresses uniformly over the whole without locally proceeding. Subsequently, the temperature was started and the supply of arsine gas was stopped. When the temperature was lowered to 650 ° C., a mixed gas of diethylsenlen (DESe) and diethylsulfur (DES) was supplied at a predetermined ratio, and diethylzinc (DEZ) was supplied. The ratio to the group VI source gas (VI / II
Ratio) of 2, while introducing bromine gas, which is an n-type impurity raw material, to form a 4 μm-thick n-type ZnS 0.06 Se 0.94
The layer was epitaxially grown, the introduction of bromine gas was stopped, and an undoped ZnS 0.06 Se 0.94 layer having a thickness of 4 μm was epitaxially grown. The undoped ZnS 0.06 Se 0.94 layer is made of the Al
Since the surface of the 0.3 Ga 0.7 As layer was smooth and no Ga or the like remained, the crystallinity and the like were extremely good. Thereafter, the second embodiment
In the same manner as described above, the undoped ZnS 0.06 Se 0.94 layer
i is diffused to form a p-type ZnS 0.06 Se 0.94 layer,
A p-type electrode was formed and cleaved into chips to produce a blue light emitting diode.

本実施例3の発光ダイオードは、前記実施例2と同
様、高効率青色発光特性を示した。
The light emitting diode of the third embodiment exhibited high-efficiency blue light emission characteristics as in the second embodiment.

なお、上記実施例3においてAl無添加のGaAs薄層の除
去を熱処理により行なったが、塩化水素ガスなどのエッ
チングガスを流すことにより行なってもよい。
In the third embodiment, the removal of the Al-free GaAs thin layer is performed by heat treatment. However, the removal may be performed by flowing an etching gas such as a hydrogen chloride gas.

[発明の効果] 以上詳述した如く、本発明によればIII族元素としてA
lを含み、Alの組成比が0.15以上のIII−V族化合物半導
体を用いることによって、該半導体を少なくとも表面に
設けた基板上に転位、積層欠陥、双晶界面の発生が抑制
された結晶性の良好なII−VI族化合物半導体層を形成で
き、かつ該II−VI族化合物半導体層に高キャリア濃度の
pn接合を形成できるため、自己付活発光を初めとする種
々の深い準位及び結晶欠陥に基く種々の発光線の低減さ
れた高発光効率などの優れた特性を有する発光ダイオー
ド、半導体レーザ、光検出器等に有用な光半導体装置を
提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, A
l, the composition ratio of Al is 0.15 or more, by using a group III-V compound semiconductor, the dislocation, stacking faults on at least the substrate provided on the surface of the semiconductor, the crystallinity in which the occurrence of twin boundaries is suppressed II-VI compound semiconductor layer having a good carrier density and a high carrier concentration in the II-VI compound semiconductor layer.
Since a pn junction can be formed, light emitting diodes, semiconductor lasers, and light with excellent characteristics such as high luminous efficiency with reduced various emission lines based on various deep levels and crystal defects including self-activated light emission An optical semiconductor device useful for a detector or the like can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(d)は本発明の実施例2における発光
ダイオードの製造工程を示す断面図、第2図はAl組成比
が異なるAlxGa1-xAsとこれら層上に形成されたZnS0.06S
e0.94層のエッチピット密度との関係を示す特性図、第
3図はAl0.3Ga0.7As層上にZnS0.06Se0.94層をエピタキ
シャル成長する際の温度と該ZnS0.06Se0.94層中の不純
物炭素量との関係を示す特性図である。 1……n型GaAs基板、 3……n型Al0.3Ga0.7As層、 4……n型ZnS0.06Se0.94層、 5a……アンドープZnS0.06Se0.94層、 5……p型ZnS0.06Se0.94層、 6、7……電極。
1 (a) to 1 (d) are cross-sectional views showing manufacturing steps of a light-emitting diode according to Example 2 of the present invention, and FIG. 2 shows Al x Ga 1-x As having different Al composition ratios and formed on these layers. ZnS 0.06 S
e is a characteristic diagram showing the relationship between the etch pit density of the 0.94 layer and FIG. 3 shows the temperature and the amount of impurity carbon in the ZnS 0.06 Se 0.94 layer when the ZnS 0.06 Se 0.94 layer is epitaxially grown on the Al 0.3 Ga 0.7 As layer. FIG. 4 is a characteristic diagram showing a relationship between 1 n-type GaAs substrate 3 n-type Al 0.3 Ga 0.7 As layer 4 n-type ZnS 0.06 Se 0.94 layer 5 a undoped ZnS 0.06 Se 0.94 layer 5 p-type ZnS 0.06 Se 0.94 Layers 6, 7, ... electrodes.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 33/00 H01L 31/10──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 33/00 H01L 31/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】III族元素としてAlを組成比で0.15以上含
むn型のIII−V族化合物半導体上にII−VI族化合物半
導体層を形成し、かつ前記II−VI族化合物半導体層にpn
接合を形成したことを特徴とする光半導体装置。
An II-VI compound semiconductor layer is formed on an n-type III-V compound semiconductor containing 0.15 or more Al as a group III element, and pn is formed on the II-VI compound semiconductor layer.
An optical semiconductor device, wherein a junction is formed.
JP16959089A 1989-06-30 1989-06-30 Optical semiconductor device Expired - Fee Related JP2804093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16959089A JP2804093B2 (en) 1989-06-30 1989-06-30 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16959089A JP2804093B2 (en) 1989-06-30 1989-06-30 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JPH0334586A JPH0334586A (en) 1991-02-14
JP2804093B2 true JP2804093B2 (en) 1998-09-24

Family

ID=15889308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16959089A Expired - Fee Related JP2804093B2 (en) 1989-06-30 1989-06-30 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2804093B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179472A (en) * 1988-01-07 1989-07-17 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting element

Also Published As

Publication number Publication date
JPH0334586A (en) 1991-02-14

Similar Documents

Publication Publication Date Title
JP2001160627A (en) Group iii nitride compound semiconductor light emitting element
JPH0770755B2 (en) High brightness LED epitaxial substrate and method of manufacturing the same
US20110062466A1 (en) AlxGa(1-x)As Substrate, Epitaxial Wafer for Infrared LEDs, Infrared LED, Method of Manufacturing AlxGa(1-x)As Substrate, Method of Manufacturing Epitaxial Wafer for Infrared LEDs, and Method of Manufacturing Infrared LEDs
JP3251046B2 (en) Method for growing compound semiconductor, compound semiconductor light emitting device and method for manufacturing the same
JP4045499B2 (en) Method for manufacturing ZnO-based semiconductor element
US5856208A (en) Epitaxial wafer and its fabrication method
US20110049542A1 (en) AlxGa(1-x)As Substrate, Epitaxial Wafer for Infrared LEDs, Infrared LED, Method of Manufacturing AlxGa(1-x)As Substrate, Method of Manufacturing Epitaxial Wafer for Infrared LEDs, and Method of Manufacturing Infrared LEDs
JPH05243613A (en) Light-emitting device and its manufacture
JP3916361B2 (en) Low resistance p-type single crystal ZnS thin film and method for producing the same
JP2804093B2 (en) Optical semiconductor device
JP3432444B2 (en) Semiconductor light emitting device
JP2001015803A (en) AlGaInP LIGHT EMITTING DIODE
JPH0728052B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
US4284467A (en) Method for making semiconductor material
JP2009212112A (en) Epitaxial wafer
JP3646706B2 (en) Boron phosphide-based semiconductor light-emitting diode and manufacturing method thereof
JP4156873B2 (en) Epitaxial wafer manufacturing method
JP2545212B2 (en) Blue light emitting element
JP4376373B2 (en) Epitaxial wafer for semiconductor light emitting device, manufacturing method thereof, and semiconductor light emitting device
JP2004153169A (en) Method of manufacturing p-type boron phosphide semiconductor layer, compound semiconductor element, zener diode, and light emitting diode
JPH03161981A (en) Manufacture of semiconductor device and ii-vi compound semiconductor crystal layer
JP3607827B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
JP2540229B2 (en) Compound semiconductor light emitting device
JP2002064249A (en) Compound semiconductor and method of manufacturing the same, and compound semiconductor light-emitting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees