JPH0370471B2 - - Google Patents

Info

Publication number
JPH0370471B2
JPH0370471B2 JP17958786A JP17958786A JPH0370471B2 JP H0370471 B2 JPH0370471 B2 JP H0370471B2 JP 17958786 A JP17958786 A JP 17958786A JP 17958786 A JP17958786 A JP 17958786A JP H0370471 B2 JPH0370471 B2 JP H0370471B2
Authority
JP
Japan
Prior art keywords
mannosidase
minutes
range
mannoside
mannose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17958786A
Other languages
Japanese (ja)
Other versions
JPS6336779A (en
Inventor
Toshiro Akino
Nobuyuki Nakamura
Koki Horikoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU JIGYODAN
Original Assignee
SHINGIJUTSU JIGYODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU JIGYODAN filed Critical SHINGIJUTSU JIGYODAN
Priority to JP17958786A priority Critical patent/JPS6336779A/en
Publication of JPS6336779A publication Critical patent/JPS6336779A/en
Priority to JP13546889A priority patent/JPH02242678A/en
Publication of JPH0370471B2 publication Critical patent/JPH0370471B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】 産業䞊の利甚分野 本発明は新芏なβ−マンノシダヌれず、その補
造法に関するものである。曎に詳しくは、新芏な
バチルス属に属するアリカリ偎に生育の至適PHを
有する奜アルカリ性の埮生物を培逊しお埗られる
酵玠反応の至適PHを䞭性近傍に有する菌䜓内β−
マンノシダヌれず、その補造法に関するものであ
る。 埓来の技術 β−マンノシダヌれは、分子内にβ−マンノシ
ド結合を有する䜎分子のβ−−マンナンマン
ナングルコマンナン、ガラクトマンナン、ガラク
トグルコマンナンに䜜甚し、非還元末端郚䜍か
ら順次マンノシド結合を加氎分解し、マンノヌス
を生成する酵玠である。 䞊蚘のβ−−マンナンを含むものずしおはア
むボリヌナツツ孊名フむテレフアス・マクロ
カルパやコロゟがよく知られおいる。その他、
β−−マンナン含有怍物ずしおは、ダシ科
のフオ゚ニクス・カナリ゚シス、オヌキス・マキ
ナラタなどが知られおいる。 ガラクトマンナンずしおはむナゎマメやグアヌ
の皮子に含たれる各粘質物、ロヌカストビヌンガ
ム及びグアヌガムが代衚的なものであり、この二
皮のガラクトマンナンは、工業的にそのたたある
いは化孊的な改質を斜しお、広く䜿甚されおい
る。たた、ガラクトマンナンは倧豆、コヌヒヌ
豆、ムラサキりマゎダシ、アカツメクサ、コロハ
などマメ科の怍物にも倚く含たれおいる。その他
のガラクトマンナン含有怍物ずしおは、ゲニス
タ・スコパリア、グレデむツシダ・プロクス、
レりカ゚ナ・グラりカなどが知られおいる。 グルコマンナン含有物ずしおはコンニダク孊
名アモルフオフアラス・コンニダクが最も有
名であるが、サトむモ科のアルム根、マツ属のゞ
ダツクパむン、ラン科の球根、゚ゟマツやハリモ
ミなどのトりヒ属の怍物などが知られおいる。そ
の他のグルコマンナン含有怍物ずしおは、アスパ
ラガス・オフむシナリス、゚レムラス・フスカ
ス、゚レムラス・レゲリヌ、゚レムラス・スペク
タビリス、フアセオラス・アりレりスなどが知ら
れおいる。グルコマンナンはこれら怍物などから
アルカリ抜出法等により埗られおいる。たた、こ
れらβ−−マンナンは糊料あるいは増粘剀ずし
お食品工業や繊維産業で工業的に倧量に消費され
おいる。 埓来、これらβ−−マンナンの非還元末端か
らマンノヌス単䜍で加氎分解する酵玠ずしお知ら
れおいるβ−マンノシダヌれは、動物〔バむオケ
ミストリヌBiochemistry1972111493〜
1501バむオシミカ ã‚š バむオフむゞカ アク
タBiochim.Biophys.Acta1973268488〜
496バむオシミカ ã‚š バむオフむゞカ アク
タBiochim.Biophys.Acta1973315123〜
127〕、怍物〔ゞダヌナル オブ バむオロゞカル
ケミストリヌJ.Biol.Chem.1964239990
〜992〕、埮生物〔バむオシミカ ã‚š バむオフむ
ã‚žã‚« アクタBiochim.Biophys.Acta1978
522521〜530特開昭51−38486号〕などの酵
玠が良く研究されおいる。 しかしながら、これらの酵玠はいずれも生産性
が䜎く、培逊法・粟補法が煩雑なものが倚く、該
酵玠を工業的に安䟡に䜿甚する堎合に難点を残し
おいた。 発明が解決しようずする問題点 倩然界に再生可胜な資源ずしお倧量に存圚する
β−−マンナンの有効利甚、特に該物質の酵玠
的加氎分解によるマンノオリゎ糖やマンノヌス、
グルコヌス、ガラクトヌスなどの糖類を効率良く
回収・利甚するためには、安定性に優れ、酵玠の
粟補が容易であるこずが奜たしい。 しかしながら、動物、怍物、埮生物などの各皮
の起源を持぀埓来提案されおいたβ−マンノシダ
ヌれは、既に述べたように、該酵玠の生産性の点
で䞍十分であり、その補法、粟補法も耇雑で実甚
化するには䟝然ずしお䞍満足なものであ぀た。 埓぀お、䞊蚘の劂き補造・粟補の容易な、しか
も高い安定性を有するこの皮の酵玠を新たに開発
するこずは、デンプンず共に倩然界に倧量に存圚
する再生利甚可胜なβ−マンナンを分解し、ある
いは分解生成物マンノヌス等を回収・利甚す
る䞊で極めお倧きな意矩をも぀。 そこで、本発明の第の目的は䞊蚘の各皮芁件
を満足する新芏な酵玠、β−マンノシダヌれを提
䟛するこずにある。 本発明の他の目的は、簡単か぀高い収率で該酵
玠を埗るこずのできる新芏な埮生物を甚いたβ−
マンノシダヌれの補造方法を提䟛するこずにあ
る。 問題点を解決するための手段 本発明者らは、工的に䜿甚するためのβ−マン
ノシダヌれが具備すべき䞊蚘諞性質を有する酵玠
を生産する胜力を持぀埮生物を埗るべく広く倩然
界を怜玢した結果、アルカリ性に生育の至適PHを
有し、バチルス属に属するいく぀かの现菌が䞊蚘
芁件を備えたβ−マンノシダヌれ産生胜を有し、
うかも、これを生産性良く生成するこずを芋出
し、本発明を完成したものである。 本発明の第の芳点によ぀お提䟛される新芏β
−マンノシダヌれは、䞋蚘のような理化孊的諞特
性を有しおいる (ã‚€) 䜜甚 非還元末端から順次β−マンノシド結合を加
氎分解し、マンノヌスを生成する。 (ロ) 基質特異性 β−メチルメチル−−マンノシドを完
党に分解し、又β−結合のマンノヌスを含むオ
リゎ糖に䜜甚しマンノヌスを遊離する。−ニ
トロ−プニル−グリコシドのβ−−マンノ
シドを基質ずなしうるが、α−−マンノシ
ドα−−グルコシドα−−グルコシ
ドα−−ガラクトシドβ−−ガラクト
シドβ−−キシロシドα−−フコシ
ドβ−−グルクロニドを基質ずなし埗な
い。 (ハ) 至適PHおよび安定PH範囲 至適PHは〜であり、40℃、30分間の加熱
条件䞋ではPH〜の範囲内で安定である。 (ニ) 枩床に察する安定性 PH6.5、30分間の加熱条件䞋では45℃たで安
定である。 (ホ) 䜜甚適枩の範囲 40℃の近傍に至適䜜甚枩床を有する。 (ヘ) 倱掻条件 40℃、30分間の凊理条件䞋ではPH5.0および
10で完党に倱掻する。たた、PH6.5、30分間の
凊理では、55℃で完党に倱掻する。 (ト) ゲルろ過法による分子量 68000±3000。 䞊蚘の新芏β−マンノシダヌれは、本発明の第
の芳点によ぀お提䟛されるその補造方法によ぀
お埗るこずができる。すなわち、䞊蚘β−マンノ
シダヌれは、バチルス属に属する䞊蚘β−マンノ
シダヌれを菌䜓内生産する埮生物を培逊埌、集菌
しお、これを分離・粟補するこずを特城ずする方
法によ぀お埗るこずができる。 本発明の方法においお䜿甚する新芏菌䜓内β−
マンノシダヌれ生産菌株は本発明者等により新た
に倩然界から怜玢・単離されたものである。この
菌株をバヌゞ゚ヌズ マニナアル オブ デタヌ
ミナテむブ バクテリオロゞヌBergey′S
Mannual of Determinative Bacteriology、第
版およびザ・ゞ−ナス・バチルス〔The
Genus Bacillus米囜、デパヌトメント オブ
アグリカルチダヌDept.of Agricultuer版
に埓぀お同定するず、奜気性有胞子桿菌であり、
運動性があり、呚べん毛を有し、グラム染色陜性
もしくはバリアブル、カタラヌれテスト陜性であ
るこずから、バチルスBacillus属する属する
こずは明らかであ぀たが、PH7.5〜11.5のアルカ
リ性で良く生育するこずから、既知のバチルス属
菌ずは分類䞊異なる新菌株ず考えられた。 以䞋の第衚に、単離した菌䜓内β−マンノシ
ダヌれ生産菌の菌孊的諞性質を瀺す。 【衚】 【衚】 (泚) 生育する又は陜性
−生育しない又は陰性
尚、䞊蚘菌は工業技術院埮生物工業技術研究所
にFERMP−8859AS−420ずしお寄蚗しおい
る。 次に、本発明の新芏な菌䜓内β−マンノシダヌ
れの補造法に぀き曎に詳しく説明する。 本発明では、䞊蚘のような菌䜓内β−マンノシ
ダヌれ生産菌を適圓な培地に接皮し、該菌䜓の生
育枩床の芳点から30〜40℃にお、48〜72時間、奜
気的に培逊する。 ここで、培地は炭玠源、窒玠源の他、必芁に応
じお無機塩、埮量栄逊玠を含むものである。 たず、炭玠源ずしおは埓来公知の各皮材料を䜿
甚するこずができ、䟋えばコンニダク粉、ロヌカ
ストビヌンガム、キダロブガム、グアヌガムある
いはこれらを含有する怍物などを兞型䟋ずしお䟋
瀺できる。 たた、窒玠源ずしおも特に制限はなく、酵母゚
キス、ペプトン、肉゚キス、コヌンステむヌプリ
カヌ、アミノ酞液、倧豆粕などの有機態窒玠、あ
るいは硫安、硝酞アンモニりム、塩化アンモニり
ムなどの無機窒玠などが安䟡か぀入手容易なもの
ずしお䟋瀺できる。 尚、有機態窒玠源は炭玠源ずなるこずはいうた
でもない。曎に、このような炭玠源、窒玠源の他
に䞀般に䜿甚されおいる各皮の塩、䟋えばマグネ
シりム塩、カリりム塩、リン酞塩、鉄塩等の無機
塩、ビタミンなどを添加するこずも可胜である。 本発明の方法においお䜿甚するのに適した培地
は、䟋えばのコンニダク粉、のポリペプ
トン、0.2の酵母゚キス、0.1のK2HPO4およ
び0.2のMgSO4・7H2Oを含有する液䜓培地で
あり埗る。 たた、本発明の方法で䜿甚する埮生物の生育PH
は塩基性の範囲内であるので、適圓なアルカリを
甚いお䞊蚘培地のPH倀を調敎する必芁がある。そ
のために0.5炭酞氎玠ナトリりムを兞型䟋ずし
お䞊げるこずができるが、これに限定されず氎酞
化ナトリりム、氎酞化カリりム、炭酞ナトリり
ム、リン酞ナトリりム、氎酞化カリりムなどのア
ルカリ詊薬も䜿甚できる。 本発明の方法においお䜿甚する菌はいずれもβ
−マンノシダヌれを菌䜓内に生産し、そこに蓄積
する。これら菌の培逊はバツチ匏、連続匏のいず
れによ぀おも実斜するこずができ、生成する酵玠
の分離・粟補は䟋えば以䞋のようにしお実斜する
こずができる。 即ち、たず培逊液䞭の菌䜓を遠心分離、濟過な
どの公知の手段で集菌した埌、埗られた菌䜓をそ
のたたマンノオリゎ糖の加氎分解反応に䜿甚する
こずも可胜であり、これは経枈的に有利である。 たた、勿論これを曎に粟補しお䜿甚するこずも
できる。そのために、䟋えば菌䜓砎砕抜出埌、硫
安による塩析、゚タノヌル、アセトン、む゜プロ
パノヌル等による溶媒沈柱法、限倖濟過法、ゲル
濟過法、むオン亀換暹脂等による䞀般的な酵玠粟
補法により粟補するこずができる。 以䞋に、本発明のβ−マンノシダヌれの奜たし
い粟補法の䟋を説明する。 奜アルカリ性バチルス属に属する䞊蚘のAS−
420菌株を、䟋えば、䞊蚘のような培地に怍菌し、
37℃にお48時間奜気的に培逊しお埗られる培逊液
を、12000r.p.m、℃にお30分間遠心分離しお菌
䜓を集め、湿重量10の菌䜓を埗る。次いで該菌
䜓を氞氎䞭で冷华しながら10mM燐酞緩衝液PH
7.0に懞濁しお超音波砎砕を数回に分け、蚈
分間皋床行う。次いで、12000r.p.m、℃にお30
分間遠心分離しお残枣を陀き、䞊柄液50mlを埗
る。次いで、該䞊柄液に酞アンモニりムを加えお
75飜和ずし、℃で䞀倜攟眮する。生じた沈柱
を濟別し、10mM燐酞緩衝液PH7.0に溶解さ
せ、䞀倜℃で同緩衝液に察しお透析する。 生じた沈柱を遠心分離しお陀き、埗られた䞊柄
液を同䞊緩衝液で平衡化したDEAD−トペパヌ
ル650Mに吞着させ、0.1〜0.5MのNaClを含む同
䞊緩衝液の濃床募法によ぀お酵玠を溶出する。溶
出した掻性画分を集め、同緩衝液に察しお䞀倜、
℃で透析した埌、同䞊緩衝液で平衡化したハむ
ドロオキシアパタむトに吞着させる。次いで、
0.4Mリン酞緩衝液PH8.0で酵玠を溶出させ、
掻性画分を集めお、平均分画分子量10000の限倖
濟過膜を甚いお濃瞮する。濃瞮酵玠は、高速液䜓
クロマトグラフ甚蛋癜質分取粟補甚カラムシペデ
ツクス プロテむンSHODEX proteinWS−
2003に充填し、10mMリン酞緩衝液PH7.0を
甚いお溶出する。かくしお埗られた掻性画分を濃
瞮した埌、同䞊カラムを甚いお同䞀条件で再床ク
ロマトグラフむヌにかけ、埗られた掻性画分を濃
瞮し、ポリアクリルアミドゲルデむスク電気泳動
法〔アナルズ ニナヌペヌク アカデミツク サ
む゚ンスANN.N.Y.Acad.Sci.121404
1964〕によ぀お均䞀な酵玠暙品15mgが埗られ
る。掻性収率は18であ぀た。 なお、β−マンノシダヌれ掻性の枬定法ずその
掻性衚瀺法は以䞋の通りである。 即ち、0.2Mの燐酞緩衝液PH7.00.2mlず
8mMの−ニトロプニル−β−−マンノピ
ラノシド氎溶液0.2mlに酵玠液0.1mlを混合し、40
℃で10分間反応させた埌、0.5Mの炭酞ナトリり
ム氎溶液1.0mlを添加しお酵玠を倱掻させた埌、
氎を加えお3mlにする。着色床を玫倖光波長
420nmで1ÎŒmolmlの−ニトロプノヌルを
暙準ずしお枬定する。 酵玠掻性の単䜍は、前述の条件䞋で分間に
1ÎŒmolの−ニトロプノヌルを遊離させる酵玠
量を単䜍ずしお衚瀺する。 本発明の方法によ぀お埗られるβ−マンノシダ
ヌれの分子量は68000±3000である。尚、この分
子量はゲル濟過法で求めたものである。 本発明のβ−マンノシダヌれおよび埓来公知の
埮生物由来のβ−マンノシダヌれの理化孊的性質
および酵玠化孊的性質を比范しお第衚に瀺す。 【衚】 䜜 甹 β−−マンナンは様々な怍物䞭に比范的倚量
に含たれおおり、皮々の分野においおそのたた、
たたは化孊的改質凊理を斜した埌、糊料、増粘
剀、食品材料ずしお工業的に利甚されおいる。 このβ−−マンナンを䟋えば繊維産業におい
お糊料などずしお䜿甚した堎合には、所定の加工
凊理の終了埌に陀去されるが、その堎合、䞀般に
その分解酵玠、β−マンノシダヌれ等が䜿甚され
る。たた、β−−マンナンを加氎分解し、埗ら
れる分解生成物を利甚する堎合にもこの皮の酵玠
が利甚される。 しかしながら、埓来知られおいるβ−マンノシ
ダヌれはいずれも生産性が䜎く、培逊法・粟補法
の煩雑なものが倚か぀た。そのため高䟡であり、
䞊蚘のような工業的な倧芏暡利甚は困難であ぀
た。 曎に、β−−マンナンの抜出工皋は䞀般にア
ルカリ偎で実斜されるが、このような堎合にはア
ルカリ性で既知の酵玠よりも安定であり、至適PH
も高い酵玠を䜿甚するこずが有利である。即ち、
酞性偎に至適PHをも぀埓来の酵玠では、分解反応
を行う前に䞭和剀で抜出液のPH調節を行う必芁が
あり、これは工皋を耇雑化するばかりか、コスト
高なものずしおしたう。 埓぀お、量産可胜な方法の開発が必芁であり、
たた既知の酵玠よりも高い至適PHをも぀酵玠の開
発が必芁である。 本発明者等の芋出した特定の埮生物によれば䞊
蚘のβ−−マンナンの分解に係る芁件をいずれ
も満足する酵玠を倚量に埗るこずが可胜であり、
埓来の諞問題点を䞀挙に解決できる。 即ち、量産性ずコストの問題は、本発明により
新たに芋出された芪菌株を甚いるこずにより簡単
な方法で倧量に、しかも、安䟡に埗るこずができ
るので、克服できる。埓぀お、倧芏暡な工業的利
甚が可胜ずなる。 たた、埗られる酵玠のマンナン分解反応におけ
る至適PHが䞭性近傍にあるので、マンナンの抜出
凊理埌、わずかなPH調節を斜した埌に即座に次の
分解反応に移行するこずができる。埓぀お、分解
操䜜が簡略化されるず共に経枈的にも有利にな
る。 以䞋、本発明を実斜䟋によりさらに詳しく説明
する。 実斜䟋  工業技術院埮生物工業技術研究所にFERMP−
8859ずしお寄蚗された奜アルカリ性现菌バチルス
AS−420株を500ml容の䞉角フラスコ䞭の、グア
ヌガム0.5、コヌンステむヌプリカヌ、硫
安0.1、K2HPO40.1、MgSO4・7H2O0.02
および炭酞゜ヌダ0.25を含む培逊液100mlPH
9.5に怍菌し、37℃で48時間、200r.p.m.で振ず
う培逊した。぀いで、該培逊液を12000rpmで、
℃にお30分間遠心分離しお菌䜓を回収し、5ml
の10mM燐酞緩衝液に懞濁した埌、超音波砎砕機
で菌䜓を砎砕した。次いで、この菌䜓砎砕液を
12000rpmにお℃で30分間遠心分離し、埗られ
た䞊柄液のβ−マンノシダヌれ掻性を枬定した結
果、16単䜍mlであ぀た。 発明の効果 以䞊詳しく述べたように、本発明によればアル
カリ偎に酵玠反応の至適PHを有するβ−−マン
ナンの加氎分解酵玠の぀、即ちβ−マンノシダ
ヌれが提䟛され、このものを䜿甚するこずにより
β−−マンナンを高い効率で、しかも簡単か぀
経枈的な工皋で分解し、䞍甚ずな぀たマンナンを
迅速に陀去でき、あるいは目的ずする分解生成物
を量産するこずができる。 たた、本発明のβ−マンノシダヌれの補造方法
によれば、該酵玠を高い生産性で簡単に埗るこず
ができる。埓぀お、該酵玠を安䟡に工業的芏暡で
利甚するこずが可胜ずなる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel β-mannosidase and a method for producing the same. More specifically, the microbial β-
This article concerns mannosidase and its production method. Conventional technology β-mannosidase acts on low-molecular β-D-mannans (mannan glucomannan, galactomannan, galactoglucomannan) that have β-mannosidic bonds in the molecule, and sequentially removes the mannoside bonds from the non-reducing terminal site. It is an enzyme that hydrolyzes and produces mannose. Ivory nuts (scientific name: Phytelehus macrocarpa) and corozo are well known as those containing the above-mentioned β-D-mannan. others,
Known plants containing β-1,4-mannan include Phoenicus canariensis and Orchis maquiulata, which belong to the palm family. Typical galactomannans include various mucilage substances contained in carob and guar seeds, locust bean gum, and guar gum, and these two types of galactomannans are industrially produced as they are or after chemical modification. , widely used. Galactomannan is also found in large amounts in leguminous plants such as soybeans, coffee beans, alfalfa, red clover, and fenugreek. Other galactomannan-containing plants include Genista scoparia, Gladeitssia fuerox,
Known examples include Leucaena glauca. The most famous glucomannan-containing substance is konjac (scientific name: Amorphopharas konjac), but other sources include arum roots of the Araceae family, jack pine of the Pinus genus, bulbs of the Orchidaceae family, and plants of the spruce genus, such as Picea abies and Pinus genus. Are known. Other known glucomannan-containing plants include Asparagus oficinalis, Eremulus fuscus, Eremulus legeri, Eremulus spectabilis, and Phaceolus aureus. Glucomannan is obtained from these plants by an alkali extraction method or the like. Further, these β-D-mannans are consumed in large quantities industrially in the food industry and the textile industry as thickeners or thickeners. β-mannosidase, which is conventionally known as an enzyme that hydrolyzes β-D-mannan into mannose units from the non-reducing end, has been used in animals [Biochemistry, 1972, 11 , 1493-
1501: Biochim.Biophys.Acta, 1973, 268 , 488~
496: Biochim.Biophys.Acta, 1973, 315 , 123~
127], Plants [J.Biol.Chem., 1964 , 239 , 990
~992], Microorganisms [Biochim.Biophys.Acta], 1978
522, 521-530: JP-A No. 51-38486)] and other enzymes have been well studied. However, all of these enzymes have low productivity and many require complicated culture and purification methods, leaving difficulties in using the enzymes industrially at low cost. Problems to be Solved by the Invention Effective use of β-D-mannan, which exists in large amounts as a renewable resource in nature, particularly mannooligosaccharides and mannose produced by enzymatic hydrolysis of the substance.
In order to efficiently recover and utilize sugars such as glucose and galactose, it is preferable that the enzyme has excellent stability and is easy to purify. However, as mentioned above, the previously proposed β-mannosidases, which have various origins such as animals, plants, and microorganisms, are insufficient in terms of productivity, and their production and purification methods are also complicated. However, it was still unsatisfactory for practical use. Therefore, the development of a new enzyme of this type that is easy to produce and purify as described above and has high stability is an effective way to degrade recyclable β-mannan, which exists in large quantities in nature along with starch. It also has great significance in recovering and utilizing decomposition products (mannose, etc.). Therefore, the first object of the present invention is to provide a novel enzyme, β-mannosidase, that satisfies the above various requirements. Another object of the present invention is to use a novel microorganism to obtain the enzyme with ease and high yield.
An object of the present invention is to provide a method for producing mannosidase. Means for Solving the Problems The present inventors extensively searched the natural world to obtain microorganisms capable of producing enzymes having the above-mentioned properties that β-mannosidase for industrial use should have. As a result, some bacteria belonging to the genus Bacillus, which have an optimal pH for growth in alkaline conditions, have the ability to produce β-mannosidase that meets the above requirements.
It has been discovered that this can be produced with good productivity, and the present invention has been completed. The novel β provided by the first aspect of the present invention
-Mannosidase has the following physical and chemical properties: (a) Action: Hydrolyzes β-mannosidic bonds sequentially from the non-reducing end to produce mannose. (b) Substrate specificity: Completely decomposes β-methyl (methyl)-D-mannoside, and acts on β-bonded mannose-containing oligosaccharides to liberate mannose. β-D-mannoside of p-nitro-phenyl-glycoside can be used as a substrate, but α-D-mannoside, α-D-glucoside, α-D-glucoside, α-D-galactoside, β-D-galactoside, β-D-xyloside, α-L-fucoside, and β-D-glucuronide cannot be used as substrates. (c) Optimal PH and stable PH range: The optimal PH is 6 to 7, and is stable within the PH range of 6 to 9 under heating conditions at 40° C. for 30 minutes. (d) Stability against temperature: Stable up to 45°C under heating conditions of PH6.5 and 30 minutes. (e) Range of optimum temperature for action: The optimum temperature for action is around 40°C. (F) Inactivation conditions: 40℃, 30 minutes treatment condition: PH5.0 and
Completely deactivated at 10. Furthermore, when treated at pH 6.5 for 30 minutes, it is completely inactivated at 55°C. (g) Molecular weight by gel filtration method: 68000±3000. The novel β-mannosidase described above can be obtained by the method for its production provided by the second aspect of the present invention. That is, the β-mannosidase can be obtained by a method characterized by culturing a microorganism that intracellularly produces the β-mannosidase belonging to the genus Bacillus, collecting the bacteria, and then isolating and purifying the microorganism. . Novel intracellular β- used in the method of the present invention
The mannosidase-producing bacterial strain was newly discovered and isolated from the natural world by the present inventors. This strain was published in Bergey's Manual of Determinative Bacteriology (Bergey'S
Mannual of Determinative Bacteriology), 8th edition and The Genus Bacillus
Genus Bacillus] Identified according to the U.S. Department of Agriculture edition, it is an aerobic sporulating bacillus;
It was clear that it belonged to Bacillus because it was motile, had periflagella, and had a positive or variable Gram stain, and a positive catalase test. Because it grew, it was considered to be a new strain that is taxonomically different from known Bacillus bacteria. Table 1 below shows various mycological properties of the isolated intracellular β-mannosidase producing bacteria. [Table] [Table] (Note) +: Growing or positive -: Not growing or negative The above bacteria has been deposited as FERMP-8859 (AS-420) at the Institute of Microbial Technology, Agency of Industrial Science and Technology. Next, the novel method for producing intracellular β-mannosidase of the present invention will be explained in more detail. In the present invention, the above-mentioned intracellular β-mannosidase-producing bacteria are inoculated into a suitable medium and cultured aerobically for 48 to 72 hours at 30 to 40°C from the viewpoint of the growth temperature of the bacteria. . Here, the medium contains inorganic salts and micronutrients as necessary in addition to a carbon source and a nitrogen source. First, various conventionally known materials can be used as the carbon source, and typical examples include konjac flour, locust bean gum, canalob gum, guar gum, and plants containing these. There are also no particular restrictions on nitrogen sources; organic nitrogen such as yeast extract, peptone, meat extract, cornstarch liquor, amino acid solution, and soybean meal, or inorganic nitrogen such as ammonium sulfate, ammonium nitrate, and ammonium chloride are inexpensive and available. This can be exemplified as one that is easily available. It goes without saying that the organic nitrogen source serves as a carbon source. Furthermore, in addition to such carbon sources and nitrogen sources, it is also possible to add various commonly used salts, such as inorganic salts such as magnesium salts, potassium salts, phosphates, and iron salts, and vitamins. . A suitable medium for use in the method of the invention includes, for example, 1% konjac flour, 2% polypeptone, 0.2% yeast extract, 0.1% K2HPO4 and 0.2 % MgSO4.7H2O . It can be a liquid medium containing. In addition, the growth pH of the microorganism used in the method of the present invention
Since it is within the basic range, it is necessary to adjust the PH value of the medium using an appropriate alkali. For this purpose, 0.5% sodium bicarbonate can be cited as a typical example, but alkaline reagents such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium phosphate, and potassium hydroxide can also be used without being limited thereto. All bacteria used in the method of the present invention are β
-Mannosidase is produced within the bacterial body and accumulated there. These bacteria can be cultured either batchwise or continuously, and the enzymes produced can be separated and purified, for example, as follows. That is, it is possible to first collect the bacterial cells in the culture solution by known means such as centrifugation or filtration, and then use the obtained bacterial cells as they are for the hydrolysis reaction of mannooligosaccharides, which is economical. It is advantageous. Of course, it can also be further purified and used. For this purpose, for example, after crushing and extracting the bacterial cells, purification can be performed by salting out with ammonium sulfate, solvent precipitation with ethanol, acetone, isopropanol, etc., ultrafiltration, gel filtration, general enzyme purification using ion exchange resin, etc. I can do it. Below, one example of a preferred purification method for β-mannosidase of the present invention will be described. The above AS- belonging to the alkalophilic Bacillus genus
420 strain, for example, inoculated into a medium as described above,
The culture solution obtained by culturing aerobically at 37° C. for 48 hours is centrifuged at 12,000 rpm and 0° C. for 30 minutes to collect bacterial cells to obtain bacterial cells with a wet weight of 10 g. Next, the bacterial cells were cooled in permanent water and added to 10mM phosphate buffer (PH).
7.0) and subjected to ultrasonic disruption several times, totaling 3 times.
Do this for about a minute. Then, at 12000rpm, 0℃ for 30
Centrifuge for 1 minute to remove the residue and obtain 50 ml of supernatant. Then, ammonium acid was added to the supernatant.
Bring to 75% saturation and leave overnight at 4°C. The resulting precipitate is filtered off, dissolved in 10 mM phosphate buffer (PH7.0), and dialyzed against the same buffer overnight at 4°C. The resulting precipitate was removed by centrifugation, and the resulting supernatant was adsorbed onto DEAD-Toyopearl 650M equilibrated with the above buffer, and then absorbed using the concentration gradient method of the above buffer containing 0.1 to 0.5 M NaCl. Elute the enzyme. The eluted active fractions were collected and incubated overnight in the same buffer.
After dialysis at 4°C, it is adsorbed onto hydroxyapatite equilibrated with the same buffer. Then,
Elute the enzyme with 0.4M phosphate buffer (PH8.0),
The active fractions are collected and concentrated using an ultrafiltration membrane with an average molecular weight cut off of 10,000. The concentrated enzyme is SHODEX protein WS-, a column for protein separation and purification for high-performance liquid chromatography.
Fill in 2003 and elute using 10mM phosphate buffer (PH7.0). After concentrating the active fraction thus obtained, it was subjected to chromatography again under the same conditions using the same column as above, and the obtained active fraction was concentrated and subjected to polyacrylamide gel disc electrophoresis [Annals New York Academic Sciences (ANN .NYAcad.Sci.), 121, 404
(1964)] to obtain 15 mg of a homogeneous enzyme preparation. The activity yield was 18%. The method for measuring β-mannosidase activity and the method for expressing the activity are as follows. That is, 0.2ml of 0.2M phosphate buffer (PH7.0) and
Mix 0.1 ml of enzyme solution with 0.2 ml of 8 mM p-nitrophenyl-β-D-mannopyranoside aqueous solution,
After reacting at ℃ for 10 minutes, the enzyme was deactivated by adding 1.0 ml of 0.5 M sodium carbonate aqueous solution.
Add water to make 3ml. The degree of coloration is determined by ultraviolet light (wavelength
420 nm) with 1 ÎŒmol/ml p-nitrophenol as standard. The unit of enzyme activity is 1 minute under the above conditions.
The amount of enzyme that liberates 1 Όmol of p-nitrophenol is expressed as 1 unit. The molecular weight of β-mannosidase obtained by the method of the present invention is 68000±3000. Note that this molecular weight was determined by gel filtration method. Table 2 shows a comparison of the physicochemical and enzymatic properties of the β-mannosidase of the present invention and the conventionally known β-mannosidase derived from microorganisms. [Table] Effect β-D-mannan is contained in relatively large amounts in various plants, and is used as it is in various fields.
Or after chemical modification treatment, it is used industrially as a paste, thickener, or food material. When this β-D-mannan is used, for example, as a thickening agent in the textile industry, it is removed after a certain processing process is completed, and in that case, its degrading enzyme, β-mannosidase, etc. are generally used. This type of enzyme is also used when β-D-mannan is hydrolyzed and the resulting decomposition product is used. However, all of the conventionally known β-mannosidases have low productivity, and many require complicated culture and purification methods. Therefore, it is expensive;
Large-scale industrial use as described above has been difficult. Furthermore, the extraction process for β-D-mannan is generally carried out in an alkaline environment;
It is advantageous to use enzymes with a high That is,
With conventional enzymes, which have an optimal pH on the acidic side, it is necessary to adjust the pH of the extract using a neutralizing agent before performing the decomposition reaction, which not only complicates the process but also increases costs. . Therefore, it is necessary to develop a method that can be mass-produced.
It is also necessary to develop enzymes with a higher optimal pH than known enzymes. According to the specific microorganism discovered by the present inventors, it is possible to obtain a large amount of an enzyme that satisfies all of the above requirements for the decomposition of β-D-mannan.
Various conventional problems can be solved all at once. That is, the problems of mass production and cost can be overcome by using the parent strain newly discovered by the present invention because it can be obtained in large quantities and at low cost by a simple method. Therefore, large-scale industrial use becomes possible. Furthermore, since the optimal pH for the mannan decomposition reaction of the resulting enzyme is near neutrality, it is possible to immediately proceed to the next decomposition reaction after making a slight pH adjustment after the mannan extraction process. Therefore, the disassembly operation is simplified and economically advantageous. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 FERMP-
Alkaliphilic bacterium Bacillus deposited as 8859
Strain AS-420 in a 500ml Erlenmeyer flask containing 0.5% guar gum, 5% cornstarch liquor, 0.1% ammonium sulfate, 0.1% K 2 HPO 4 , 0.02% MgSO 4 7H 2 O
and 100 ml of culture solution containing 0.25% soda carbonate (PH
9.5) and cultured at 37°C for 48 hours with shaking at 200 rpm. Then, the culture solution was spun at 12000 rpm.
Centrifuge for 30 minutes at 0°C to collect bacterial cells, and add 5ml
After suspending the cells in 10mM phosphate buffer, the cells were disrupted using an ultrasonic disruptor. Next, this bacterial cell suspension was
After centrifugation at 12,000 rpm for 30 minutes at 0°C, the β-mannosidase activity of the resulting supernatant was measured and found to be 16 units/ml. Effects of the Invention As described in detail above, the present invention provides one of the β-D-mannan hydrolyzing enzymes, namely β-mannosidase, which has the optimum pH for enzymatic reaction on the alkaline side. By using it, β-D-mannan can be decomposed with high efficiency in a simple and economical process, unnecessary mannan can be quickly removed, or target decomposition products can be mass-produced. Moreover, according to the method for producing β-mannosidase of the present invention, the enzyme can be easily obtained with high productivity. Therefore, it becomes possible to utilize the enzyme at low cost on an industrial scale.

Claims (1)

【特蚱請求の範囲】  䞋蚘の理化孊的性質を有する新芏β−マンノ
シダヌれ (ã‚€) 䜜甚 非還元末端から順次β−マンノシド結合を加
氎分解し、マンノヌスを生成する。 (ロ) 基質特異性 β−メチル゚チル−−マンノシドを完
党に分解し、又β−結合のマンノヌスを含むオ
リゎ糖に䜜甚しマンノヌスを遊離する。−ニ
トロ−プニル−グリコシドのβ−−マンノ
シドを基質ずなしうるが、α−−マンノシ
ドα−−グルコシドβ−−グルコシ
ドα−−ガラクトシドβ−−ガラクト
シドβ−−キシロシドα−−フコシ
ドβ−−グルクロニドを基質ずなし埗な
い。 (ハ) 至適PHおよび安定PH範囲 至適PHは〜であり、40℃、30分間の加熱
条件䞋ではPH〜の範囲内で安定である。 (ニ) 枩床に察する安定性 PH6.5、30分間の加熱条件䞋では45℃たで安
定である。 (ホ) 䜜甚適枩の範囲 40℃の近傍に至適䜜甚枩床を有する。 (ヘ) 倱掻条件 40℃、30分間の凊理条件䞋ではPH5.0および
10で完党に倱掻する。たた、PH6.5、30分間の
凊理では、55℃で完党に倱掻する。 (ト) ゲルろ過法による分子量 68000±3000  工業技術院埮生物工業技術研究所にFERMP
−8859AS−420ずしお寄蚗された菌が生産し
たものであるこずを特城ずする特蚱請求の範囲第
項に蚘茉のβ−マンノシダヌれ。  䞋蚘の理化孊的性質 (ã‚€) 䜜甚 非還元末端から順次β−マンノシド結合を加
氎分解し、マンノヌスを生成する。 (ロ) 基質特異性 β−メチル゚チル−−マンノシドを完
党に分解し、又β−結合のマンノヌスを含むオ
リゎ糖に䜜甚しマンノヌスを遊離する。−ニ
トロ−プニル−グリコシドのβ−−マンノ
シドを基質ずなしうるが、α−−マンノシ
ドα−−グルコシドβ−−グルコシ
ドα−−ガラクトシドβ−−ガラクト
シドβ−−キシロシドα−−フコシ
ドβ−−グルクロニドを基質ずなし埗な
い。 (ハ) 至適PHおよび安定PH範囲 至適PHは〜であり、40℃、30分間の加熱
条件䞋ではPH〜の範囲内で安定である。 (ニ) 枩床に察する安定性 PH6.5、30分間の加熱条件䞋では45℃たで安
定である。 (ホ) 䜜甚適枩の範囲 40℃の近傍に至適䜜甚枩床を有する。 (ヘ) 倱掻条件 40℃、30分間の凊理条件䞋ではPH5.0および
10で完党に倱掻する。たた、PH6.5、30分間の
凊理では、55℃で完党に倱掻する。 (ト) ゲルろ過法による分子量 68000±3000 を有するβ−マンノシダヌれ生産胜を有し、アル
カリ偎に生育の至適PHを有するバチルス属に属す
る埮生物を培逊し、該β−マンノシダヌれを菌䜓
内に生成・蓄積させ、これを採取するこずを特城
ずする新芏菌䜓内β−マンノシダヌれの補造方
法。  䞊蚘培逊を30〜45℃の範囲内の枩床䞋で奜気
的に行うこずを特城ずする特蚱請求の範囲第項
蚘茉の菌䜓内β−マンノシダヌれの補造方法。  䞊蚘培逊液のPHが7.5〜11.5の範囲内にある
こずを特城ずする特蚱請求の範囲第項たたは第
項蚘茉の菌䜓内β−マンノシダヌれの補造方
法。  䞊蚘埮生物が工業技術院生物工業技術研究所
にFERMP−8859AS−420ずしお寄蚗された
菌がであるこずを特城ずする特蚱請求の範囲第
項から項のいずれか䞀項に蚘茉のβ−マンノシ
ダヌれの補造方法。
[Claims] 1. A novel β-mannosidase having the following physical and chemical properties: (a) Action: Hydrolyzes β-mannosidic bonds sequentially from the non-reducing end to produce mannose. (b) Substrate specificity: Completely decomposes β-methyl (ethyl)-D-mannoside, and also acts on β-linked mannose-containing oligosaccharides to liberate mannose. β-D-mannoside of p-nitro-phenyl-glycoside can be used as a substrate, but α-D-mannoside, α-D-glucoside, β-D-glucoside, α-D-galactoside, β-D-galactoside, β-D-xyloside, α-L-fucoside, and β-D-glucuronide cannot be used as substrates. (c) Optimal PH and stable PH range: The optimal PH is 6 to 7, and is stable within the PH range of 6 to 9 under heating conditions at 40° C. for 30 minutes. (d) Stability against temperature: Stable up to 45°C under heating conditions of PH6.5 and 30 minutes. (e) Range of optimum temperature for action: The optimum temperature for action is around 40°C. (F) Inactivation conditions: 40℃, 30 minutes treatment condition: PH5.0 and
Completely deactivated at 10. Furthermore, when treated at pH 6.5 for 30 minutes, it is completely inactivated at 55°C. (g) Molecular weight by gel filtration method: 68000±3000 2 FERMP to the Institute of Microbial Technology, Agency of Industrial Science and Technology
The β-mannosidase according to claim 1, which is produced by a bacterium deposited as -8859 (AS-420). 3 The following physical and chemical properties: (a) Action: Hydrolyzes β-mannoside bonds sequentially from the non-reducing end to produce mannose. (b) Substrate specificity: Completely decomposes β-methyl (ethyl)-D-mannoside, and also acts on β-linked mannose-containing oligosaccharides to liberate mannose. β-D-mannoside of p-nitro-phenyl-glycoside can be used as a substrate, but α-D-mannoside, α-D-glucoside, β-D-glucoside, α-D-galactoside, β-D-galactoside, β-D-xyloside, α-L-fucoside, and β-D-glucuronide cannot be used as substrates. (c) Optimal PH and stable PH range: The optimal PH is 6 to 7, and is stable within the PH range of 6 to 9 under heating conditions at 40° C. for 30 minutes. (d) Stability against temperature: Stable up to 45°C under heating conditions of PH6.5 and 30 minutes. (e) Range of optimum temperature for action: The optimum temperature for action is around 40°C. (F) Inactivation conditions: 40℃, 30 minutes treatment condition: PH5.0 and
Completely deactivated at 10. Furthermore, when treated at pH 6.5 for 30 minutes, it is completely inactivated at 55°C. (g) A microorganism belonging to the genus Bacillus that has the ability to produce β-mannosidase with a molecular weight of 68000±3000 by gel filtration method and has an optimal pH for growth on the alkaline side is cultured, and the β-mannosidase is introduced into the bacterial body. A method for producing a novel intracellular β-mannosidase, which comprises producing and accumulating the product, and collecting the product. 4. The method for producing intracellular β-mannosidase according to claim 3, wherein the culture is carried out aerobically at a temperature within the range of 30 to 45°C. 5. The method for producing intracellular β-mannosidase according to claim 3 or 4, wherein the pH of the culture solution is within the range of 7.5 to 11.5. 6. Claim 3, wherein the microorganism is a bacterium deposited with the Institute of Biological Technology, Agency of Industrial Science and Technology as FERMP-8859 (AS-420).
6. The method for producing β-mannosidase according to any one of Items 5 to 5.
JP17958786A 1986-07-30 1986-07-30 Beta-mannosidase and production thereof Granted JPS6336779A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17958786A JPS6336779A (en) 1986-07-30 1986-07-30 Beta-mannosidase and production thereof
JP13546889A JPH02242678A (en) 1986-07-30 1989-05-29 Novel beta-mannosidase and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17958786A JPS6336779A (en) 1986-07-30 1986-07-30 Beta-mannosidase and production thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13546889A Division JPH02242678A (en) 1986-07-30 1989-05-29 Novel beta-mannosidase and production thereof

Publications (2)

Publication Number Publication Date
JPS6336779A JPS6336779A (en) 1988-02-17
JPH0370471B2 true JPH0370471B2 (en) 1991-11-07

Family

ID=16068336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17958786A Granted JPS6336779A (en) 1986-07-30 1986-07-30 Beta-mannosidase and production thereof

Country Status (1)

Country Link
JP (1) JPS6336779A (en)

Also Published As

Publication number Publication date
JPS6336779A (en) 1988-02-17

Similar Documents

Publication Publication Date Title
JPH0365754B2 (en)
JPH0518554B2 (en)
JP2626662B2 (en) Novel β-mannanase and method for producing the same
JPH0412707B2 (en)
JP3110064B2 (en) Novel heparitinase, method for producing the same and bacteria producing the same
JPH04349884A (en) Production of deacetylase
JPH0370471B2 (en)
JP2626663B2 (en) Method for producing novel β-mannosidase
JPH0517833B2 (en)
JPH0379991B2 (en)
JP3014950B2 (en) Method for producing trehalose
JPH0523183A (en) New alpha-galactosidase and production of sugar using the same
JP3040976B2 (en) Method for producing saccharified solution containing trehalose
JP2001069975A (en) Chitosanase
JP2833081B2 (en) Method for producing inulotriose and / or inulotetraose
JP3055041B2 (en) α-1,2-mannosidase, method for producing the same, and bacteria producing the same
JPH04237496A (en) Production of cyclic inulo oligosaccharide
JP3117691B1 (en) Novel heparitinase and method for producing the same
JP3110426B2 (en) Novel heparitinase and method for producing the same
JPH0269183A (en) Beta-1,3-glucanase and production thereof
JP2593710B2 (en) Enzyme composition having inulinase activity and method for producing the same
JPH0523175A (en) Bacillus stearothermophilus jd-72 strain and production of alpha-galactosidase using the strain
JP3110425B2 (en) Novel heparitinase and method for producing the same
JPH02227074A (en) Production of new exo-type hydrolase and inulotriose and/or inulotetraose
JPH07184647A (en) Alpha-l-fucosidase, its production an alcaligenes denitrificans subsp. denitrificans ksf-0901 bacterial strain

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term