JPH0518554B2 - - Google Patents

Info

Publication number
JPH0518554B2
JPH0518554B2 JP21995189A JP21995189A JPH0518554B2 JP H0518554 B2 JPH0518554 B2 JP H0518554B2 JP 21995189 A JP21995189 A JP 21995189A JP 21995189 A JP21995189 A JP 21995189A JP H0518554 B2 JPH0518554 B2 JP H0518554B2
Authority
JP
Japan
Prior art keywords
mannanase
mannan
range
minutes
stable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21995189A
Other languages
Japanese (ja)
Other versions
JPH0347076A (en
Inventor
Toshiro Akino
Nobuyuki Nakamura
Koki Horikoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Godo Shusei KK
Nihon Shokuhin Kako Co Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Godo Shusei KK
Nihon Shokuhin Kako Co Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Godo Shusei KK, Nihon Shokuhin Kako Co Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Godo Shusei KK
Priority to JP21995189A priority Critical patent/JPH0347076A/en
Publication of JPH0347076A publication Critical patent/JPH0347076A/en
Publication of JPH0518554B2 publication Critical patent/JPH0518554B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は新規なβマンナナーゼ並びにその製造
法に関する。更に詳しくは、バチルス属に属し、
生育の至適PHをアルカリ性に有する好アルカリ性
の新規微生物を培養して得られ、酵素反応の至適
PHをアルカリ性に有する菌体外β−マンナナーゼ
およびその製造法に関する。 従来の技術 β−マンナナーゼは分子内にβ−1,4−D−
マンノピラノシド結合を持つホモおよびヘテロの
β−D−マンナンであるマンナン、グルコマンナ
ン、ガラクトマンナン、ガラクトグルコマンナン
などの主要骨格であるβ−1,4−D−マンノピ
ラノシド結合を任意に加水分解し、粘性を低下せ
しめると同時に一連のマンノオリゴ糖を生成する
酵素である。 まず、β−1,4−D−マンナンを含むものと
して、アイボリーナツツ(学名:フイテレフア
ス・マクロカルパ)やコロゾがよく知られてい
る。その他β−1,4−マンナン含有植物として
はヤシ科のフオエニクス・カナリエンシス、オー
キス・マキユラタなどが知られている。 ガラクトマンナンはイナゴマメ及びグアーの種
子に含まれる各々の粘質物、ローカストビーンガ
ム及びグアーガムが代表的なものであり、この二
種のガラクトマンナンは、そのままあるいは化学
的な改質をほどこした後、工業的に広く使用され
ている。また、ガラクトマンナンは大豆、コーヒ
ー豆、ムラサキウマゴヤシ、アカツメクサ、コロ
ハなどマメ科の植物にも多く含まれている。その
他のガラクトマンナン含有植物としてはゲニス
タ・スコパリア、グレデイツシヤ・フエロクス、
レウカエナ・グラウカなどが知られている。 グルコマンナン含有物としてはコンニヤク(学
名:アモルフオフアラス・コンニヤク)が最も有
名であるが、サトイモ科のアルム根、マツ属のジ
ヤツクパイン、ラン科の球根、エゾマツやハリモ
ミなどのトウヒ属の植物などが知られている。そ
の他のグルコマンナン含有植物としては、アスパ
ラガス・オフイシナリス、エレムラス・フスカ
ス、エレムラス・レゲリー、エレムラス・スペク
タビリス、フアセオラス・アウレウスなどが知ら
れている。これらは、一般にアルカリ抽出法など
により得られている。また、これらβ−D−マン
ナンは糊料あるいは増粘剤として、食品工業や繊
維産業で工業的に大量に消費されているものであ
る。 これらβ−D−マンナンを任意に加水分解する
酵素として知られているβ−マンナナーゼは、従
来から多数の研究者の研究対象とされており、非
常に多くの微生物由来のものが検討されてきた。
例えば、〔アドバンスズ イン カルボハイドレ
ート ケミストリー アンド バイオケミストリ
ー(Advances in Carbohydrate Chemistry
and Biochemistry)、1976、32、299〜316〕特
に、糸状菌〔アクタ ケミカ スカンジナビカ
(Acta.Chem.Scand.)、1968、22、1924;農化、
1969、43、317;バイオケミカル ジヤーナル
(Biochem.J.)、1984、219、857〕、放線菌〔アグ
リカルチユラル アンド バイオロジカル ケミ
ストリー(Agric.Biol.Chem.)、1984、48
2189〕、細菌〔ジヤーナル オブ バイオケミス
トリー(J.Biochem.)、1982、91、1181;特開昭
57−65182号〕などの酵素が良く研究されている。 しかしながら、これらの酵素はいずれも温度安
定性に劣る場合や、培養に長時間必要なものが多
く、該酵素を工業的に安価に使用する場合に難点
を残していた。 発明が解決しようとする問題点 天然界に再生可能な資源として大量に存在する
β−D−マンナンの有効利用、特に該物質の酵素
的加水分解によりマンノオリゴ糖やマンノース、
グルコース、ガラクトースなどの糖類を効率良く
回収利用するためには耐熱性に優れ、かつβ−マ
ンナンの各種植物からの抽出操作が主にアルカリ
性で行われていることから、中和操作を簡略化
し、かつ分解工程を単純化するためには、アルカ
リ側に酵素反応の至適PHを有することが好まし
い。 さらに、高温度下で酵素反応を行うことにより
腐敗を防止したり、酵素反応速度を増大し、生成
物の量産性を高めるなどが期待できることから、
至適温度も高温であることが望ましい。 しかしながら、既に述べたように、従来のβ−
マンナナーゼはいずれも温度安定性の点で不十分
であつたり、該酵素の生成のためには長い培養時
間が必要である等の欠点を有しており、従つてこ
れら酵素を工業的規模で、β−D−マンナンの加
水分解生成物を得るために利用することは困難で
あるか、コストの点で不満であつた。 そこで、本発明の目的は上記のような酵素反応
における各種要件を満足し、β−D−マンナンの
加水分解を、経済的かつ工業的規模で実施するこ
とを可能とする新規なβ−マンナナーゼを提供す
ることにある。 また、本発明のもう一つの目的は、上記の新規
なβ−マンナナーゼの製造方法を提供することに
ある。 問題点を解決するための手段 本発明者らは、工業的に使用するためのβ−マ
ンナナーゼが具備すべきこれらの諸性質を有する
酵素を生産する能力を持つ微生物を得るべく広く
天然界を検索した結果、アルカリ性に生育の至適
PHを有し、バチルス属に属するいくつかの細菌が
上記要件を備えた酵素を産生し、またこれを量産
性良く産生することを見出し、本発明を完成した
ものである。 即ち、本発明は、まず新規β−マンナナーゼを
提供するものであり、これは以下のような理化学
的諸特性を有している。 (イ) 作用: マンナン、グルコマンナン、ガラクトマンナ
ン、ガラクトグルコマンナンのβ−1,4−D
−マンノピラノシド結合を非特異的に加水分解
し、マンノオリゴ糖を生成する。 (ロ) 基質特異性: β−マンナンに特異的に作用し、α−マンナ
ンに作用しない。β−1,4−D−マンノテト
ラオース以上の分子量をもつマンノオリゴ糖に
作用し、これを加水分解する。 (ハ) 至適PHおよび安定PH範囲: 至適PHは8〜10であり、60℃、30分間の加熱
条件下ではPH6〜10の範囲内で安定である。 (ニ) 温度に対する安定性: PH8.0、30分間の加熱条件下では65℃まで安
定である。 (ホ) 作用適温の範囲: 70℃近傍に至適作用温度を有する。 (ヘ) 失活条件: 60℃、30分間の処理条件ではPH5.0および
12.5で完全に失活する。また、PH8.0、30分間
の処理では、80℃で完全に失活する。 (ト) 阻害および活性化: 塩化第二水銀、硝酸銀、エチレンジアミン四
酢酸二ナトリウム(EDTANa2)、尿素、ドデ
シル硫酸ナトリウム、ドデシルベンゼンスルフ
オン酸ナトリウムにより阻害を受ける。 (チ) クロマトフオーカシング法による等電点: 5.3〜5.4 (リ) ゲルろ過法による分子量: 37000±3000 本発明は、さらに、上記の新規β−マンナナー
ゼの製法にも関り、この方法によれば該β−マン
ナナーゼはバチルス属に属し、上記β−マンナナ
ーゼを菌体外生産する微生物を培養し、培養液中
に該酵素を生成・蓄積せしめ、これを分離・精製
することによつて得ることができる。 本発明の方法において使用する新規菌体外β−
マンナナーゼ生産菌株は本発明者等により新たに
天然界から検索・単離されたものである。これら
の菌株をバージエーズ マニユアル オブ デタ
ーミナテイブ バクテリオロジー(Bergey′s
Mannual of Determinative Bacteriology)、第
8版およびザ・ジーナス・バチルス〔The
Genus Bacillus、米国、デパートメント オブ
アグリカルチヤー(Dept.of Agricaltute)版〕
に従つて同定すると、いずれも好気性有胞子桿菌
であり、運動性があり、周ベン毛を有し、グラム
染色陽性もしくはバリアブル、カタラーゼテスト
陽性であることから、バチルス(Bacillus)属に
属することは明らかであつたが、PH7.5〜11.5の
アルカリ性で良く生育することから、既知のバチ
ルス属菌とは分類学上異なる新菌株と考えた。 以下の第1表に単離した菌体外β−マンナナー
ゼ生産菌の菌学的諸性質を示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a novel β-mannanase and a method for producing the same. More specifically, it belongs to the genus Bacillus,
Obtained by culturing a new alkaliphilic microorganism that has an alkaline optimal pH for growth, it has an optimal pH for enzyme reactions.
The present invention relates to an extracellular β-mannanase having an alkaline pH and a method for producing the same. Conventional technology β-mannanase contains β-1,4-D-
The β-1,4-D-mannopyranoside bond, which is the main skeleton of mannan, glucomannan, galactomannan, galactoglucomannan, etc., which are homo and hetero β-D-mannans with a mannopyranosidic bond, is optionally hydrolyzed to increase the viscosity. It is an enzyme that simultaneously lowers the mannooligosaccharides and produces a series of mannooligosaccharides. First, ivory nuts (scientific name: Phytelehus macrocarpa) and corozo are well known as those containing β-1,4-D-mannan. Other known β-1,4-mannan-containing plants include Phoenicus canariensis and Orchis maquillata, both of the palm family. Typical examples of galactomannan are the mucilage contained in carob and guar seeds, locust bean gum, and guar gum. widely used. Galactomannan is also found in large amounts in leguminous plants such as soybeans, coffee beans, alfalfa, red clover, and fenugreek. Other galactomannan-containing plants include Genista scoparia, Gleditsia fuerox,
Known examples include Leucaena glauca. The most famous glucomannan-containing substance is konjac (scientific name: Amorphopharas konjac), but other sources include arum roots of the Araceae family, jack pine of the Pinus genus, bulbs of the Orchidaceae family, and plants of the spruce genus, such as Picea abies and Pinus genus. Are known. Other known glucomannan-containing plants include Asparagus oficinalis, Eremulus fuscus, Eremulus legeri, Eremulus spectabilis, and Phaceolus aureus. These are generally obtained by an alkali extraction method or the like. Further, these β-D-mannans are consumed in large quantities industrially in the food industry and the textile industry as thickeners or thickeners. β-mannanase, which is known as an enzyme that arbitrarily hydrolyzes β-D-mannan, has been the subject of research by many researchers, and a large number of microbial-derived enzymes have been investigated. .
For example, [Advances in Carbohydrate Chemistry and Biochemistry]
and Biochemistry), 1976, 32 , 299-316] In particular, filamentous fungi [Acta.Chem.Scand., 1968, 22 , 1924;
1969, 43 , 317; Biochem.J., 1984, 219 , 857], Actinobacteria [Agricultural and Biological Chemistry (Agric.Biol.Chem.), 1984, 48 ;
2189], Bacteria [J.Biochem., 1982, 91 , 1181;
No. 57-65182] and other enzymes have been well studied. However, many of these enzymes have poor temperature stability or require a long period of time for culturing, which poses difficulties in using the enzymes industrially at low cost. Problems to be Solved by the Invention Effective use of β-D-mannan, which exists in large quantities as a renewable resource in nature, and in particular, the use of enzymatic hydrolysis of the substance to produce mannooligosaccharides, mannose, etc.
In order to efficiently recover and utilize sugars such as glucose and galactose, we have developed a method that simplifies the neutralization process because it has excellent heat resistance and extraction operations for β-mannan from various plants are mainly carried out under alkaline conditions. In addition, in order to simplify the decomposition process, it is preferable to have the optimum pH for the enzymatic reaction on the alkaline side. Furthermore, by carrying out enzymatic reactions at high temperatures, it is expected that spoilage will be prevented, the enzyme reaction rate will be increased, and the mass production of products will be improved.
It is desirable that the optimum temperature is also high. However, as already mentioned, the conventional β-
All mannanases have drawbacks such as insufficient temperature stability and the need for long culture times to produce the enzymes. It has been difficult or unsatisfactory in terms of cost to utilize it to obtain hydrolysis products of β-D-mannan. Therefore, the object of the present invention is to develop a novel β-mannanase that satisfies the various requirements for enzymatic reactions as described above and that enables hydrolysis of β-D-mannan to be carried out economically and on an industrial scale. It is about providing. Another object of the present invention is to provide a method for producing the above-mentioned novel β-mannanase. Means for Solving the Problems The present inventors have extensively searched the natural world in order to obtain microorganisms capable of producing enzymes having these properties that β-mannanase for industrial use should have. As a result, growth is optimal in alkaline conditions.
The present invention was completed by discovering that some bacteria that have PH and belong to the genus Bacillus produce enzymes that meet the above requirements, and that they can be produced in large quantities with good productivity. That is, the present invention first provides a novel β-mannanase, which has the following physical and chemical properties. (b) Action: β-1,4-D of mannan, glucomannan, galactomannan, galactoglucomannan
-Non-specifically hydrolyzes the mannopyranoside linkage to produce mannooligosaccharides. (b) Substrate specificity: Acts specifically on β-mannan and does not act on α-mannan. It acts on mannooligosaccharides with a molecular weight greater than β-1,4-D-mannotetraose and hydrolyzes them. (c) Optimal PH and stable PH range: The optimal PH is 8 to 10, and is stable within the PH range of 6 to 10 under heating conditions at 60° C. for 30 minutes. (d) Stability against temperature: Stable up to 65℃ under heating conditions of PH8.0 and 30 minutes. (e) Range of optimum temperature for action: The optimum temperature for action is around 70°C. (f) Inactivation conditions: PH5.0 and
It becomes completely inactive at 12.5. Furthermore, when treated at pH 8.0 for 30 minutes, it is completely inactivated at 80°C. (g) Inhibition and activation: Inhibited by mercuric chloride, silver nitrate, disodium ethylenediaminetetraacetate (EDTANa 2 ), urea, sodium dodecyl sulfate, and sodium dodecylbenzenesulfonate. (h) Isoelectric point by chromatofocusing method: 5.3-5.4 (li) Molecular weight by gel filtration method: 37000±3000 The present invention further relates to a method for producing the above-mentioned novel β-mannanase, and provides a method for producing the novel β-mannanase. According to the above, the β-mannanase belongs to the genus Bacillus, and can be obtained by culturing a microorganism that produces the β-mannanase extracellularly, producing and accumulating the enzyme in the culture solution, and then separating and purifying the enzyme. be able to. Novel extracellular β- used in the method of the present invention
The mannanase-producing bacterial strain was newly discovered and isolated from the natural world by the present inventors. These strains were listed in Bergey's Manual of Determinative Bacteriology.
Mannual of Determinative Bacteriology), 8th edition and The Genus Bacillus
Genus Bacillus, United States, Department of Agriculture (Dept. of Agriculture) edition]
Accordingly, all of them are aerobic spore-forming bacilli, motile, have pericytium, positive or variable Gram staining, and positive catalase test, so they belong to the genus Bacillus. However, since it grows well in an alkaline pH of 7.5 to 11.5, it was considered to be a new strain that is taxonomically different from known Bacillus bacteria. Table 1 below shows various mycological properties of the isolated extracellular β-mannanase producing bacteria.

【表】【table】

【表】 +:生育する又は陽性
−:生育しない又は陰性
尚、上記菌は工業技術院微生物工業技術研究所
に、寄託番号FERM P−8858(AM−044)とし
て寄託してある。 本発明の新規な菌体外β−マンナナーゼの製造
法につき更に詳しく説明する。上記のような菌体
外β−マンナナーゼ生産菌を適当な培地に接種
し、菌体の生育温度の観点から30〜40℃にて、48
〜72時間、好気的に培養するが、培地は炭素源、
窒素源の他、必要に応じて無機塩、微量栄養素等
を含むものである。 まず、炭素源としては従来公知の各種材料を使
用することができ、例えばコンニヤク粉、ローカ
ストビーンガム、キヤロブガム、グアーガムある
いはこれらを含有する植物などを典型例として例
示できる。 また、窒素源としても特に制限はなく、酵母エ
キス、ペプトン、肉エキス、コーンステイープリ
カー、アミノ酸液、大豆粕などの有機態窒素、あ
るいは硫安、尿素、硝酸アンモニウム、塩化アン
モニウムなどの無機態窒素などが安価かつ入手容
易なものとして例示できる。 尚、有機態窒素源は炭素源ともなることはいう
までもない。更に、このような炭素源、窒退源の
他、一般に使用されている各種の塩、例えばマグ
ネシウム塩、カリウム塩、リン酸塩、鉄塩等の無
機塩、ビタミンなどを添加することも可能であ
る。 本発明の方法において使用するのに適した培地
は、例えば1%のコンニヤク粉、2%のポリペプ
トン、0.2%の酵母エキス、0.1%のK2HPO4およ
び0.2%のMgSO4・7H2Oを含有する液体培地で
あり得る。 また、本発明の方法で使用する微生物の生育PH
は塩基性の範囲内であるので、適当なアルカリを
用いて上記培地のPH値を調整する必要がある。そ
のために0.5%炭酸水素ナトリウムを典型例とし
て挙げることができるが、これに限定されず水酸
化ナトリウム、水酸化カリウム、炭酸ナトリウ
ム、リン酸ナトリウム、水酸化カルシウムなどの
アルカリ試薬も使用できる。 本発明の方法において使用する菌はβ−マンナ
ナーゼを菌体外生産するので、生産されるβ−マ
ンナナーゼは培養液中に放出され、そこに蓄積さ
れる。これら菌の培養はバツチ式、連続式のいず
れによつて行うこともでき、生成される酵素の分
離精製は例えば以下のようにして実施することが
できる。 即ち、まず培養液中の菌体を遠心分離、濾過な
どで除去した後、得られる上澄液(粗酵素液)を
そのままβ−マンナンの加水分解反応に適用する
ことも可能であり、これは経済的に有利である。
また、これを更に精製して使用することもでき
る。そのためには、例えば硫安等による塩析、エ
タノール、アセトン、イソプロパノール等による
溶媒沈澱法、限外濾過法、ゲル濾過法、イオン交
換樹脂等による一般的な酵素精製法により精製す
ることができる。 以下に、本発明のβ−マンナナーゼの好ましい
精製法の1例につき説明する。 好アルカリ性バチルス属に属するAM−044菌
株を、例えば上記のような培地に植菌し、37℃に
て72時間好気的に培養して得られる培養液に0.8
%(w/v)のセタブロン(セチルトリメチルア
ンモニウムブロマイド)を添加し、30分間放置
後、7000rpm、0℃にて20分間遠心分離して菌体
を除き、3の上澄液を得る。次いで、該上澄液
に硫酸アンモニウムを加えて75%飽和とし、4℃
で一夜放置する。生じた沈澱をろ別し、10mM燐
酸緩衝液(PH7.0)に溶解させ、一夜4℃で同緩
衝液に対して透析する。 生じた沈殿を遠心分離して除いた上澄液を同上
緩衝液で平衡化したDEAE−トヨパール650Mに
吸着させ、0.1〜0.5MのNaClを含む同上緩衝液の
濃度勾配法によつて酵素を溶出する。溶出した活
性画分を集め、同上緩衝液に対して一夜4℃で透
析した後、同上緩衝液で平衡化したハイドロオキ
シアパタイトに吸着させる。ついで、0.4Mリン
酸緩衝液(PH8.0)で酵素を溶出させ、活性画分
を集めて、平均分画分子量10000の限外濾過膜を
用いて濃縮する。濃縮酵素は、高速液体クロマト
グラフ用蛋白質分取精製用カラム、シヨデツク
ス、プロテイン(SHODEX protein)WS−
2003、に充填し、10mMリン酸緩衝液(PH7.0)
を用いて溶出する。かくして得られた活性画分は
濃縮した後再度同上カラムを用いて同一条件で再
度クロマトグラフイーにかけ、得られる活性画分
を濃縮し、ポリアクリルアミドゲルデイスク電気
泳動法〔アナルズ オブ ザ ニユーヨーク ア
カデミー オブ サイエンス(ANN.N.Y.Acad.
Sci.)、1964、121、404〕において均一な酵素標
品18mgが得られ、活性収率は23%であつた。 なお、β−マンナナーゼ活性の測定法並びに活
性表示法は以下の通りである。即ち、0.1Mのグ
リシン−NaOH−NaCl緩衝液(PH9.0)0.4mlと
1%(w/v)のコンニヤクマンナン水溶液0.5
mlに酵素液0.1mlを混合し、50℃で10分間反応さ
せた後、ソモギー〔Somogyi;ジヤーナル オ
ブ バイオロジカル ケミストリー(J.Biol.
Chem.)、1952、195、19〕液1.0mlを添加して酵
素を失活させた後、沸騰水浴中で加熱する。10分
後、氷浴中で急冷し、ネルソン〔Nelson、ジヤ
ーナル オブ バイオロジカル ケミストリー
(J.Biol.Chem.)、1944、153、、375〕液1.0mlを加
えよく撹拌した後、水を加えて10mlにする。着色
度を紫外光(波長:660nm)で100μg/mlのマ
ンノースを標準として測定する。酵素活性の単位
は前述の条件下で1分間に1μmolのマンノースに
相当する還元糖を生成するのに要する酵素量を1
単位として表示する。 上記の菌株AM−044から得られる酵素の分子
量は37000±3000である。尚、この分子量はゲル
濾過法で求めたものである。本発明のβ−マンナ
ナーゼと、従来公知の微生物由来のβ−マンナナ
ーゼの理化学的性質および酵素化学的性質を比較
して第2表に示す。
[Table] +: Growing or positive -: Not growing or negative The above bacteria have been deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology under deposit number FERM P-8858 (AM-044). The novel method for producing extracellular β-mannanase of the present invention will be explained in more detail. The above-mentioned extracellular β-mannanase-producing bacteria were inoculated into an appropriate medium, and incubated at 30 to 40°C for 48°C from the perspective of the growth temperature of the bacteria.
Incubate aerobically for ~72 hours, but the medium is a carbon source,
In addition to a nitrogen source, it contains inorganic salts, micronutrients, etc. as necessary. First, various conventionally known materials can be used as the carbon source, and typical examples include konjac flour, locust bean gum, canalob gum, guar gum, and plants containing these. There are also no particular restrictions on nitrogen sources, including organic nitrogen such as yeast extract, peptone, meat extract, cornstarch liquor, amino acid solution, and soybean meal, or inorganic nitrogen such as ammonium sulfate, urea, ammonium nitrate, and ammonium chloride. can be exemplified as being inexpensive and easily available. It goes without saying that the organic nitrogen source also serves as a carbon source. Furthermore, in addition to such carbon sources and nitrogen sources, it is also possible to add various commonly used salts, such as inorganic salts such as magnesium salts, potassium salts, phosphates, and iron salts, and vitamins. be. A suitable medium for use in the method of the invention includes, for example, 1% konjac flour, 2% polypeptone, 0.2% yeast extract, 0.1% K2HPO4 and 0.2 % MgSO4.7H2O . It may be a liquid medium containing. In addition, the growth pH of the microorganism used in the method of the present invention
Since it is within the basic range, it is necessary to adjust the PH value of the medium using an appropriate alkali. For this purpose, 0.5% sodium hydrogen carbonate can be cited as a typical example, but alkaline reagents such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium phosphate, and calcium hydroxide can also be used without being limited thereto. Since the bacteria used in the method of the present invention produce β-mannanase extracellularly, the produced β-mannanase is released into the culture solution and accumulated there. These bacteria can be cultured either batchwise or continuously, and the enzymes produced can be separated and purified, for example, as follows. That is, it is possible to first remove the bacterial cells in the culture solution by centrifugation, filtration, etc., and then apply the resulting supernatant (crude enzyme solution) as it is to the hydrolysis reaction of β-mannan. Economically advantageous.
It can also be used after further purification. For this purpose, purification can be carried out by, for example, salting out using ammonium sulfate, solvent precipitation using ethanol, acetone, isopropanol, etc., ultrafiltration, gel filtration, or general enzyme purification using ion exchange resins. Below, one example of a preferred purification method for β-mannanase of the present invention will be explained. The AM-044 strain, which belongs to the alkaliphilic Bacillus genus, is inoculated into a medium such as the one described above, and cultured aerobically at 37°C for 72 hours.
% (w/v) of cetabron (cetyltrimethylammonium bromide) was added, and after standing for 30 minutes, the cells were centrifuged at 7000 rpm and 0° C. for 20 minutes to remove the bacterial cells to obtain the supernatant liquid of 3. Next, ammonium sulfate was added to the supernatant to make it 75% saturated, and the mixture was heated at 4°C.
Leave it overnight. The resulting precipitate is filtered off, dissolved in 10 mM phosphate buffer (PH7.0), and dialyzed against the same buffer overnight at 4°C. The resulting precipitate was removed by centrifugation, and the supernatant was adsorbed onto DEAE-Toyopearl 650M equilibrated with the above buffer, and the enzyme was eluted using the concentration gradient method of the above buffer containing 0.1 to 0.5 M NaCl. do. The eluted active fractions are collected, dialyzed overnight at 4°C against the above buffer, and then adsorbed onto hydroxyapatite equilibrated with the above buffer. Then, the enzyme is eluted with 0.4M phosphate buffer (PH8.0), active fractions are collected, and concentrated using an ultrafiltration membrane with an average molecular weight cutoff of 10,000. Concentrated enzymes include columns for protein separation and purification for high-performance liquid chromatography, SHODEX, and protein (SHODEX protein) WS-
2003, filled with 10mM phosphate buffer (PH7.0)
Elute using The active fraction thus obtained was concentrated and then subjected to chromatography again under the same conditions using the same column as above, and the active fraction obtained was concentrated and subjected to polyacrylamide gel disk electrophoresis [Annals of the New York Academy of Science (ANN.NYAcad.
Sci., 1964, 121 , 404], 18 mg of a homogeneous enzyme preparation was obtained, and the activity yield was 23%. The method for measuring β-mannanase activity and the method for displaying the activity are as follows. That is, 0.4 ml of 0.1 M glycine-NaOH-NaCl buffer (PH9.0) and 0.5 ml of 1% (w/v) konjac mannan aqueous solution.
ml and 0.1 ml of enzyme solution, reacted at 50°C for 10 minutes, and then added to the Somogyi Journal of Biological Chemistry (J.Biol.
Chem.), 1952, 195 , 19] to inactivate the enzyme, and then heat in a boiling water bath. After 10 minutes, quench in an ice bath, add 1.0 ml of Nelson's solution, stir well , and add water. Make it 10ml. The degree of coloration is measured using ultraviolet light (wavelength: 660 nm) using 100 μg/ml mannose as a standard. The unit of enzyme activity is the amount of enzyme required to produce reducing sugar equivalent to 1 μmol of mannose per minute under the above conditions.
Display as a unit. The molecular weight of the enzyme obtained from the above strain AM-044 is 37000±3000. Note that this molecular weight was determined by gel filtration method. Table 2 shows a comparison of the physicochemical properties and enzymatic chemical properties of the β-mannanase of the present invention and conventionally known β-mannanase derived from microorganisms.

【表】【table】

【表】 作 用 天然界に多量に存在するβ−D−マンナンは、
デンプンと同様に、食品、繊維、濃薬、化糖品等
の各種分野で広範に利用されている。ところで、
このβ−D−マンナンを有効利用するためには、
これを効率良く加水分解し得る酵素(β−マンナ
ナーゼ)の開発が必要となる。即ち、β−D−マ
ンナンを高効率で加水分解し得る酵素を得ること
は、これを分解して有用なマンノオリゴ糖、マン
ノース、グルコース、ガラクトースなどの糖類と
し、これを回収、利用したり、あるいはβ−D−
マンナン自体として使用した後にこれを分解・除
去するなどの目的のために重要である。 このような用途において、β−マンナナーゼは
高温安定性を有し、しかもアルカリ側に酵素反応
の至適PHを有するものであることが、工業的応用
という観点から極めて望ましい。 このような目的で、従来から様々な起源のマン
ナン加水分解酵素が見出され、利用されてきた
が、いずれも工業的観点から十分満足し得るもの
ではなかつた。即ち、従来研究され、また実用化
されていた酵素はいずれも高温安定性に劣るもの
であつたり、酵素産生微生物の培養時間が著しく
長いものであつた。 そこで、本発明者等は種々検索し、好アルカリ
性バチルス属に属する細菌が有効なβ−マンナナ
ーゼを高い生産率で生産することを見出した。こ
の酵素は、上記β−D−マンナンの加水分解反応
における諸要件をいずれも満足するものであり、
従来知られていた酵素の諸問題点をいずれも解決
した。 即ち、まず本発明のβ−マンナナーゼ酵素は上
記微生物により菌体外生産されるので、分離・精
製法が極めて簡単であり、労力、製造コストの点
で大巾な改善が期待できる。 更に、高温安定性に優れ、しかもアルカリ側に
酵素反応の至適PHを有するので、アルカリ条件下
で行われる各種植物からのβ−マンナンの抽出操
作後、中和操作等を施すことなしに、そのまま酵
素分解反応に付することが可能であるので、作業
が著しく簡略化されると共に、余分な試薬の使用
が不用となるので、分解生成物の製造コストも節
減できる。 かくして、本発明の新規な酵素によれば、工業
的規模でのβ−D−マンナンの分解利用が可能と
なる。また、コストパーフオーマンスの点でも極
めて有利である。 以下、本発明を実施例によりさらに詳しく説明
する。 実施例 好アルカリ性細菌バチルスNo.−AM−044株
(FERM P−8858)を500ml容の三角フラスコ中
のやし搾油カス2%、大豆カス1%、KNO30.2
%、Na2HPO40.1%、MgSO4・7H2O0.02%およ
び炭酸ソーダ0.5%を含む培養液100ml(PH1.00)
に植菌し、40℃で50時間、250r.p.m.で振とう培
養した。ついで該培養液上澄中のβ−マンナナー
ゼ活性を、上記同様に測定した結果、30単位/ml
であつた。 発明の効果 以上詳しく述べたように、本発明の新規なβ−
マンナナーゼはアルカリ側に酵素反応の至適PHを
有しかつ高温安定性にも優れている。従つて、β
−マンナンの酵素分解反応をアルカリ側で実施で
き、このことはマンナン抽出工程後ただちに酵素
分解反応を行うことを可能とする。更に、高温度
下で酵素反応を実施し得ることから反応速度を大
巾に高めることができる。 かくして、本発明のβ−マンナナーゼによれ
ば、工業的に有利に、不要となつたβ−D−マン
ナンの分解・廃棄並びにその分解生成物の製造を
行うことができ、高い分解効率、分解生成物の生
産性を達成でき、しかも製造コストの節減を図る
ことが可能となる。 また、本発明のβ−マンナナーゼはこれを菌体
外生産する好アルカリ性のバチルス属に属する微
生物から得ることができるので、分離・精製が容
易であり、従つて安価に量産できるものである。
[Table] Effect β-D-mannan, which exists in large quantities in nature,
Like starch, it is widely used in various fields such as foods, fibers, concentrated medicines, and sweetened sugar products. by the way,
In order to effectively utilize this β-D-mannan,
It is necessary to develop an enzyme (β-mannanase) that can efficiently hydrolyze this. That is, in order to obtain an enzyme that can hydrolyze β-D-mannan with high efficiency, it is necessary to decompose it into useful sugars such as mannooligosaccharides, mannose, glucose, and galactose, and to recover and utilize them. β-D-
This is important for purposes such as decomposing and removing mannan after use as mannan itself. In such uses, it is extremely desirable from the viewpoint of industrial application that β-mannanase has high temperature stability and has an optimum pH for enzyme reaction on the alkaline side. For this purpose, mannan hydrolases of various origins have been discovered and utilized, but none of them have been fully satisfactory from an industrial standpoint. That is, all the enzymes that have been studied and put into practical use have had poor high-temperature stability, or the culture time of enzyme-producing microorganisms has been extremely long. Therefore, the present inventors conducted various searches and found that bacteria belonging to the alkaliphilic Bacillus genus produce effective β-mannanase at a high production rate. This enzyme satisfies all of the requirements for the hydrolysis reaction of β-D-mannan,
All of the problems with previously known enzymes have been solved. That is, first of all, since the β-mannanase enzyme of the present invention is produced extracellularly by the above-mentioned microorganism, the separation and purification method is extremely simple, and a significant improvement can be expected in terms of labor and production costs. Furthermore, it has excellent high-temperature stability and has the optimum pH for enzymatic reactions on the alkaline side, so it can be used without neutralization after extracting β-mannan from various plants under alkaline conditions. Since it is possible to subject the enzyme to the enzymatic decomposition reaction as it is, the work is significantly simplified, and since the use of extra reagents becomes unnecessary, the production cost of the decomposition product can also be reduced. Thus, the novel enzyme of the present invention enables the decomposition and utilization of β-D-mannan on an industrial scale. It is also extremely advantageous in terms of cost performance. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example Alkaliophilic bacterium Bacillus No.-AM-044 strain (FERM P-8858) was grown in a 500 ml Erlenmeyer flask with 2% palm oil residue, 1% soybean residue, and KNO 3 0.2
%, 100 ml of culture solution containing 0.1 % Na2HPO4 , 0.02 % MgSO4.7H2O and 0.5% soda carbonate (PH1.00)
The cells were inoculated and cultured at 40°C for 50 hours with shaking at 250 rpm. Next, the β-mannanase activity in the culture supernatant was measured in the same manner as above, and the result was 30 units/ml.
It was hot. Effects of the Invention As described in detail above, the novel β-
Mannanase has an optimal pH for enzymatic reaction on the alkaline side and has excellent high temperature stability. Therefore, β
- The enzymatic decomposition reaction of mannan can be carried out on the alkaline side, which makes it possible to carry out the enzymatic decomposition reaction immediately after the mannan extraction step. Furthermore, since the enzymatic reaction can be carried out at high temperatures, the reaction rate can be greatly increased. Thus, according to the β-mannanase of the present invention, it is possible to industrially advantageously decompose and dispose of unnecessary β-D-mannan and to produce its decomposition products, resulting in high decomposition efficiency and decomposition products. Product productivity can be achieved and manufacturing costs can be reduced. Furthermore, since the β-mannanase of the present invention can be obtained from an alkaliphilic microorganism belonging to the genus Bacillus that is produced extracellularly, it can be easily isolated and purified, and therefore can be mass-produced at low cost.

Claims (1)

【特許請求の範囲】 1 下記の理化学的性質を有する新規β−マンナ
ナーゼ: (イ) 作用: マンナン、グルコマンナン、ガラクトマンナ
ン、ガラクトグルコマンナンのβ−1,4−D
−マンノピラノシド結合を非特異的に加水分解
し、マンノオリゴ糖を生成する。 (ロ) 基質特異性: β−マンナンに特異的に作用し、α−マンナ
ンに作用しない。β−1,4−D−マンノテト
ラオース以上の分子量をもつマンノオリゴ糖に
作用し、これを加水分解する。 (ハ) 至適PHおよび安定PH範囲: 至適PHは8〜10であり、60℃、30分間の加熱
条件下ではPH6〜10の範囲内で安定である。 (ニ) 温度に対する安定性: PH8.0、30分間の加熱条件下では65℃まで安
定である。 (ホ) 作用適温の範囲: 70℃近傍に至適作用温度を有する。 (ヘ) 失活条件: 60℃、30分間の処理条件ではPH5.0および
12.5で完全に失活する。また、PH8.0、30分間
の処理では、80℃で完全に失活する。 (ト) 阻害および活性化: 塩化第二水銀、硝酸銀、エチレンジアミン四
酢酸二ナトリウム(EDTANa2)、尿素、ドデ
シル硫酸ナトリウム、ドデシルベンゼンスルフ
オン酸ナトリウムにより阻害を受ける。 (チ) クロマトフオーカシング法による等電点: 5.3〜5.4 (リ) ゲルろ過法による分子量: 37000±3000 2 下記の理化学的性質: (イ) 作用: マンナン、グルコマンナン、ガラクトマンナ
ン、ガラクトグルコマンナンのβ−1,4−D
−マンノピラノシド結合を非特異的に加水分解
し、マンノオリゴ糖を生成する。 (ロ) 基質特異性: β−マンナンに特異的に作用し、α−マンナ
ンに作用しない。β−1,4−D−マンノテト
ラオース以上の分子量をもつマンノオリゴ糖に
作用し、これを加水分解する。 (ハ) 至適PHおよび安定PH範囲: 至適PHは8〜10であり、60℃、30分間の加熱
条件下ではPH6〜10の範囲内で安定である。 (ニ) 温度に対する安定性: PH8.0、30分間の加熱条件下では65℃まで安
定である。 (ホ) 作用適温の範囲: 70℃近傍に至適作用温度を有する。 (ヘ) 失活条件: 60℃、30分間の処理条件ではPH5.0および
12.5で完全に失活する。また、PH8.0、30分間
の処理では、80℃で完全に失活する。 (ト) 阻害および活性化: 塩化第二水銀、硝酸銀、エチレンジアミン四
酢酸二ナトリウム(EDTANa2)、尿素、ドデ
シル硫酸ナトリウム、ドデシルベンゼンスルフ
オン酸ナトリウムにより阻害を受ける。 (チ) クロマトフオーカシング法による等電点: 5.3〜5.4 (リ) ゲルろ過法による分子量: 37000±3000 を有するβ−マンナナーゼ生産能を有し、生育の
至適PHをアルカリ性に有するバチルス属に属する
微生物を培養し、該β−マンナナーゼを培養液中
に生成・蓄積させ、これを採取することを特徴と
する上記新規菌体外β−マンナナーゼの製造方
法。 3 上記のβ−マンナナーゼ生産能を有する微生
物が工業技術院微生物工業技術研究所に寄託番号
FERM P−8858(AM−044)として寄託された
菌株であることを特徴とする特許請求の範囲第2
項に記載の方法。 4 上記培養を30〜50℃の範囲内の温度下で好気
的に行うことを特徴とする特許請求の範囲第2項
または第3項に記載の菌体外βマンナナーゼの製
造方法。 5 上記培養液のPHが、7.5〜11.5の範囲内にあ
ることを特徴とする特許請求の範囲第2〜4項の
いずれか一項に記載の菌体外β−マンナナーゼの
製造方法。
[Claims] 1. A novel β-mannanase having the following physical and chemical properties: (a) Action: β-1,4-D of mannan, glucomannan, galactomannan, galactoglucomannan
-Non-specifically hydrolyzes the mannopyranoside linkage to produce mannooligosaccharides. (b) Substrate specificity: Acts specifically on β-mannan and does not act on α-mannan. It acts on mannooligosaccharides with a molecular weight greater than β-1,4-D-mannotetraose and hydrolyzes them. (c) Optimal PH and stable PH range: The optimal PH is 8 to 10, and is stable within the PH range of 6 to 10 under heating conditions at 60° C. for 30 minutes. (d) Stability against temperature: Stable up to 65°C under heating conditions of PH8.0 and 30 minutes. (e) Range of optimum temperature for action: The optimum temperature for action is around 70°C. (f) Inactivation conditions: PH5.0 and
It becomes completely inactive at 12.5. Furthermore, when treated at pH 8.0 for 30 minutes, it is completely inactivated at 80°C. (g) Inhibition and activation: Inhibited by mercuric chloride, silver nitrate, disodium ethylenediaminetetraacetate (EDTANa 2 ), urea, sodium dodecyl sulfate, and sodium dodecylbenzenesulfonate. (H) Isoelectric point determined by chromatofocusing method: 5.3-5.4 (L) Molecular weight determined by gel filtration method: 37000±3000 2 Physical and chemical properties of the following: (B) Action: Mannan, glucomannan, galactomannan, galactogluco β-1,4-D of mannan
-Non-specifically hydrolyzes the mannopyranoside linkage to produce mannooligosaccharides. (b) Substrate specificity: Acts specifically on β-mannan and does not act on α-mannan. It acts on mannooligosaccharides with a molecular weight greater than β-1,4-D-mannotetraose and hydrolyzes them. (c) Optimal PH and stable PH range: The optimal PH is 8 to 10, and is stable within the PH range of 6 to 10 under heating conditions at 60° C. for 30 minutes. (d) Stability against temperature: Stable up to 65°C under heating conditions of PH8.0 and 30 minutes. (e) Range of optimum temperature for action: The optimum temperature for action is around 70°C. (f) Inactivation conditions: PH5.0 and
It becomes completely inactive at 12.5. Furthermore, when treated at pH 8.0 for 30 minutes, it is completely inactivated at 80°C. (g) Inhibition and activation: Inhibited by mercuric chloride, silver nitrate, disodium ethylenediaminetetraacetate (EDTANa 2 ), urea, sodium dodecyl sulfate, and sodium dodecylbenzenesulfonate. (h) Isoelectric point determined by chromatofocusing method: 5.3 to 5.4 (li) Molecular weight determined by gel filtration method: 37000±3000 A Bacillus genus that has the ability to produce β-mannanase and has an alkaline optimum pH for growth. The method for producing the above-mentioned novel extracellular β-mannanase, which comprises culturing a microorganism belonging to the above-mentioned species, producing and accumulating the β-mannanase in a culture solution, and collecting the same. 3 The above microorganisms capable of producing β-mannanase have been deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology
The second claim is characterized in that it is a strain deposited as FERM P-8858 (AM-044).
The method described in section. 4. The method for producing extracellular β-mannanase according to claim 2 or 3, wherein the culturing is carried out aerobically at a temperature within the range of 30 to 50°C. 5. The method for producing extracellular β-mannanase according to any one of claims 2 to 4, wherein the pH of the culture solution is within the range of 7.5 to 11.5.
JP21995189A 1989-08-25 1989-08-25 Beta-mannase and production thereof Granted JPH0347076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21995189A JPH0347076A (en) 1989-08-25 1989-08-25 Beta-mannase and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21995189A JPH0347076A (en) 1989-08-25 1989-08-25 Beta-mannase and production thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17958686A Division JPS6356289A (en) 1986-07-30 1986-07-30 Beta-mannanase and production thereof

Publications (2)

Publication Number Publication Date
JPH0347076A JPH0347076A (en) 1991-02-28
JPH0518554B2 true JPH0518554B2 (en) 1993-03-12

Family

ID=16743597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21995189A Granted JPH0347076A (en) 1989-08-25 1989-08-25 Beta-mannase and production thereof

Country Status (1)

Country Link
JP (1) JPH0347076A (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69628656D1 (en) * 1995-09-20 2003-07-17 Genencor Int MANNASE OF BACILLUS AMYLOLIQUEFACIENS AND METHOD FOR YOUR PREPARATION
US6376445B1 (en) 1997-08-14 2002-04-23 Procter & Gamble Company Detergent compositions comprising a mannanase and a protease
US6964943B1 (en) 1997-08-14 2005-11-15 Jean-Luc Philippe Bettiol Detergent compositions comprising a mannanase and a soil release polymer
AU755850B2 (en) 1998-06-10 2002-12-19 Novozymes A/S Novel mannanases
US6420331B1 (en) 1998-06-10 2002-07-16 Procter & Gamble Company Detergent compositions comprising a mannanase and a bleach system
CA2660645C (en) 2006-08-11 2016-04-05 Novozymes Biologicals, Inc. Bacillus cultures for use in washing, cleaning, stain removal, or degrading waste materials
US20080233093A1 (en) 2007-03-23 2008-09-25 Novozymes Biologicals, Inc. Preventing and Reducing Biofilm Formation and Planktonic Proliferation
GB0810881D0 (en) 2008-06-16 2008-07-23 Unilever Plc Improvements relating to fabric cleaning
EP2149786A1 (en) 2008-08-01 2010-02-03 Unilever PLC Improvements relating to detergent analysis
DE212009000119U1 (en) 2008-09-12 2011-12-30 Unilever N.V. Dispenser and pretreatment agent for viscous liquids
EP2202290A1 (en) 2008-12-23 2010-06-30 Unilever PLC A flowable laundry composition and packaging therefor
WO2012010405A1 (en) 2010-07-22 2012-01-26 Unilever Plc Detergent compositions comprising biosurfactant and enzyme
GB201015672D0 (en) 2010-09-20 2010-10-27 Unilever Plc Improvements relating to fabric treatment compositions comprising targeted benefit agents
WO2012047430A1 (en) 2010-10-07 2012-04-12 Danisco Us Inc. Processing of palm kernel waste using mannanase and pectinase
WO2012052306A1 (en) 2010-10-22 2012-04-26 Unilever Plc Externally structured aqueous detergent liquid
DK2655644T3 (en) 2010-12-22 2019-03-04 Direvo Ind Biotechnology Gmbh IMPROVEMENT OF FERMENTATION PROCESSES AND BY-PRODUCTS
WO2014127852A1 (en) 2013-02-21 2014-08-28 Direvo Industrial Biotechnology Gmbh Prebiotic animal feed product
AU2012213597B2 (en) 2011-01-31 2014-08-28 Unilever Plc Alkaline liquid detergent compositions
EP2675891B1 (en) 2011-02-15 2018-06-20 Novozymes Biologicals, Inc. Mitigation of odor in cleaning machines and cleaning processes
ES2421162T3 (en) 2011-04-04 2013-08-29 Unilever Nv Fabric washing procedure
BR112013028716A2 (en) 2011-05-13 2017-01-24 Unilever Nv aqueous concentrated liquid laundry detergent, composition, method of washing polyester fabrics and their use
EP2522715A1 (en) 2011-05-13 2012-11-14 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Aqueous concentrated laundry detergent compositions
EP2522714A1 (en) 2011-05-13 2012-11-14 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Aqueous concentrated laundry detergent compositions
US20140106427A1 (en) 2011-06-28 2014-04-17 Novozymes A/S Biogas From Enzyme-Treated Bagasse
US20140147895A1 (en) 2011-07-22 2014-05-29 Novozymes A/S Processes for Pretreating Cellulosic Material and Improving Hydrolysis Thereof
EP2756063B1 (en) 2011-09-15 2017-10-04 Unilever PLC Detergent compositions comprising surfactant and enzyme
WO2013083801A2 (en) 2011-12-09 2013-06-13 Novozymes A/S Biogas from substrates comprising animal manure and enzymes
CN104011192B (en) 2011-12-20 2017-08-25 荷兰联合利华有限公司 Isotropic liquid detergent comprising soil release polymer
ES2595218T3 (en) 2012-04-23 2016-12-28 Unilever N.V. Structured aqueous liquid detergent
DK2958438T3 (en) 2013-02-21 2019-02-25 Direvo Ind Biotechnology Gmbh Mycotoxin binders
WO2014198840A1 (en) 2013-06-12 2014-12-18 Earth Alive Clean Technologies Inc. Dust suppressant
BR112017019942A2 (en) 2015-04-02 2018-06-12 Unilever Nv liquid laundry detergent composition and polymer release for dirt release
WO2017036915A1 (en) 2015-08-28 2017-03-09 Unilever N.V. Liquid detergency composition comprising protease and non-protease enzyme
WO2017133879A1 (en) 2016-02-04 2017-08-10 Unilever Plc Detergent liquid
CN109312259A (en) 2016-06-09 2019-02-05 荷兰联合利华有限公司 Laundry product
WO2019038186A1 (en) 2017-08-24 2019-02-28 Unilever Plc Improvements relating to fabric cleaning
WO2019038187A1 (en) 2017-08-24 2019-02-28 Unilever Plc Improvements relating to fabric cleaning
WO2023227356A1 (en) 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Composition containing enzyme

Also Published As

Publication number Publication date
JPH0347076A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
JPH0518554B2 (en)
JPH0365754B2 (en)
JP2626662B2 (en) Novel β-mannanase and method for producing the same
JPH0412707B2 (en)
JPH04278087A (en) New heparitinases, their production and microorganism producing the same
US5057418A (en) Process for the preparation of difructose dianhydride iii
Horikoshi et al. Studies on autolysis of Aspergillus oryzae. The lytic phenomenon of Aspergillus oryzae caused by Bacillus circulans.
EP0188049A2 (en) Pullulanase-like enzyme, method for preparation thereof, and method for saccharification of starch therewith
CA1081633A (en) Heat and acid-stable alpha-amylase enzymes and processes for producing the same
JPH0379991B2 (en)
JPH0523183A (en) New alpha-galactosidase and production of sugar using the same
JP2626663B2 (en) Method for producing novel β-mannosidase
JPS63209595A (en) Production of beta-1,4-mannobiose
US3896000A (en) Halophilic nuclease and a process for producing the same
JPH0517833B2 (en)
JP3014950B2 (en) Method for producing trehalose
JPH0370471B2 (en)
JPH0761265B2 (en) New strain belonging to the genus Thomas, new β-galactosidase and method for producing the same
JP3040976B2 (en) Method for producing saccharified solution containing trehalose
EP0320685B1 (en) A process for the obtention of thermostable alpha-amylases by culturing superproductive microorganisms at high temperatures
JP2833081B2 (en) Method for producing inulotriose and / or inulotetraose
JPH04237496A (en) Production of cyclic inulo oligosaccharide
JPH0523175A (en) Bacillus stearothermophilus jd-72 strain and production of alpha-galactosidase using the strain
JPH0269183A (en) Beta-1,3-glucanase and production thereof
JP2593710B2 (en) Enzyme composition having inulinase activity and method for producing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees