JPH0412707B2 - - Google Patents

Info

Publication number
JPH0412707B2
JPH0412707B2 JP18065186A JP18065186A JPH0412707B2 JP H0412707 B2 JPH0412707 B2 JP H0412707B2 JP 18065186 A JP18065186 A JP 18065186A JP 18065186 A JP18065186 A JP 18065186A JP H0412707 B2 JPH0412707 B2 JP H0412707B2
Authority
JP
Japan
Prior art keywords
enzyme
mannanase
mannosidase
mannan
enzymes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18065186A
Other languages
Japanese (ja)
Other versions
JPS6336775A (en
Inventor
Toshiro Akino
Nobuyuki Nakamura
Koki Horikoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU JIGYODAN
Original Assignee
SHINGIJUTSU JIGYODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU JIGYODAN filed Critical SHINGIJUTSU JIGYODAN
Priority to JP18065186A priority Critical patent/JPS6336775A/en
Publication of JPS6336775A publication Critical patent/JPS6336775A/en
Publication of JPH0412707B2 publication Critical patent/JPH0412707B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は新規微生物に関する。更に詳しくは、
βマンナナーゼおよびβ−マンノシダーゼ生産能
を有し、アルカリ側に生育の至適PHを有する好ア
ルカリ性の新規微生物およびその利用法に関する
ものである。 従来の技術 β−マンナナーゼは分子内にβ−1,4−D−
マンノピラノシド結合を持つホモおよびヘテロの
β−D−マンナンであるマンナン、グルコマンナ
ン、ガラクトマンナン、ガラクトグルコマンナン
などの主要骨格であるβ−1,4−D−マンノピ
ラノシド結合を任意に加水分解し、粘性を低下せ
しめると同時に一連のマンノオリゴ糖を生成する
酵素である。 まず、β−D−マンナンを含むものとして、ア
イボリーナツツ(学名:フイテレフアス・マクロ
カルパ)やコロゾがよく知られている。その他β
−1,4−マンナン含有植物としてはヤシ科のフ
オエニクス・カナリエンシス、オーキス・マキユ
ラタなどが知られている。 ガラクトマンナンはイナゴマメ及びグアーの種
子に含まれる各々の粘質物、ローカストビーンガ
ム及びグアーガムが代表的なものであり、この二
種のガラクトマンナンは、そのままあるいは化学
的な改質をほどこした後、工業的に広く使用され
ている。また、ガラクトマンナンは大豆、コーヒ
ー豆、ムラサキウマゴヤシ、アカツメクサ、コロ
ハなどマメ科の植物にも多く含まれている。その
他のガラクトマンナン含有植物としてはゲニス
タ・スコパリア、グレデイツシヤ・フエロクス、
レウカエナ・グラウカなどが知られている。 グルコマンナン含有物としてはコンニヤク(学
名:アモルフオフアラス・コンニヤク)が最も有
名であるが、サトイモ科のアルム根、マツ属のジ
ヤツクパイン、ラン科の球根、エゾマツやハリモ
ミなどのトウヒ属の植物などが知られている。そ
の他のグルコマンナン含有植物としては、アスパ
ラガス・オフイシナリス、エレムラス・フスカ
ス、エレムラス・レゲリー、エレムラス・スペク
タビリス、フアセオラス・アウレウスなどが知ら
れている。これらは、一般にアルカリ抽出法など
により得られている。また、これらβ−D−マン
ナンは糊料であるいは増粘剤として、食品工業や
繊維産業で工業的に大量に消費されているもので
ある。 これらβ−D−マンナンを任意に加水分解する
酵素として知られているβ−マンナナーゼは、従
来から多数の研究者の研究対象とされており、非
常に多くの微生物由来のものが検討されてきた。
例えば、〔アドバンスズ イン カルボハイドレ
ート ケミストリー アンド バイオケミストリ
ー(Advances in Carbohydrate Chemistry
and Biochemistry)、1976、32、299〜316〕特
に、糸状菌〔アクタ ケミカ スカンジナビカ
(Acta.Chem.Scand.)、1968、22、1924;農化、
1969、43、317;バイオケミカル ジヤーナル
(Biochem.J.)、1984、219、857〕、放線菌〔アグ
リカルチユラル アンド バイオロジカル ケミ
ストリー(Agric.Biol Chem.)、1984、48
2189〕、細菌〔ジヤーナル オブ バイオケミス
トリー(J.Biochem.)、1982、91、1181;特開昭
57−65182号〕などの酵素が良く研究されている。 しかしながら、これらの酵素はいずれも温度安
定性に劣る場合や、培養に長時間必要なものが多
く、該酵素を工業的に安価に使用する場合に難点
を残していた。 また、β−マンノシダーゼは、分子内にβ−マ
ンノシド結合を有する低分子のβ−D−マンナン
(マンナン、グルコマンナン、ガラクトマンナン、
ガラクトグルコマンナン)に作用し、非還元末端
部位から順次マンノシド結合を加水分解し、マン
ノースを生成する酵素である。 従来、これらβ−D−マンナンの非還元末端か
らマンノース単位で加水分解する酵素として知ら
れているβ−マンノシダーゼは、動物〔バイオケ
ミストリー(Biochemistry)、1972、11、1493〜
1501:バイシオミカ エ バイオフイジカ アク
タ(Biochim.Biophys.Acta)、1973、268、488〜
496:バイオシミカ エ バイオフイジカ アク
タ(Biochim.Biophys.Acta)、1973、315、123〜
127〕、植物〔ジヤーナル オブ バイオロジカル
ケミストリー(J.Biol.Chem.)、1964、239
990〜992〕、微生物〔バイオシミカ エ バイオ
フイジカ アクタ(Biochim.Biophys.Acta)、
1978、522、521〜530:特開昭51−38486号)〕な
どの酵素が良く研究されている。 しかしながら、これらの酵素はいずれも生産性
が低く、培養法・精製法が煩雑なものが多く、該
酵素を工業的に安価に使用する場合に難点を残し
ていた。 発明が解決しようとする問題点 天然界に再生可能な資源として大量に存在する
β−D−マンナンの有効利用、特に該物質の酵素
的加水分解によるマンノオリゴ糖やマンノース、
グルコース、ガラクトースなどの糖類を効率良く
回収・利用するためには、安定性に優れ、酵素の
精製が容易であることが好ましい。 しかしながら、動物、植物、微生物などの各種
の起源を持つ従来提案されていたβ−マンノシダ
ーゼは、既に述べたように、該酵素の生産性の点
で不十分であり、その製法、精製法も複雑で実用
化するには依然として不満足なものであつた。ま
た、β−マンナナーゼにあつても上記のような理
由から工業的に大規模利用するには理化学的特
性、特に温度安定性、至適PHなどにおいて不十分
であり、また経済性の点でも不利であつた。 従つて、上記の如き製造・精製の容易な、しか
も高い安定性を有するこの種の酵素を新たに開発
することは、デンプンと共に天然界に大量に存在
する再生利用可能なβ−マンナンを分解し、ある
いは分解生成物(マンノース、ガラクトース、グ
ルコース、マンノオリゴ糖等)を回収・利用する
上で極めて大きな意義をもつ。 そこで、本発明の第1の目的は上記の各種要件
を満足する新規な酵素、β−マンノシダーゼおよ
びβ−マンナナーゼ、を高い生産効率で生成し得
る新規微生物を提供することにある。また、簡単
かつ高い収率でこれらの酵素を得るために上記の
新規微生物を利用する方法は本発明のもう一つの
目的を構成する。 問題点を解決するための手段 本発明者らは、工業的に使用するためのβ−マ
ンナナーゼが具備すべきこれらの諸性質を有する
酵素を生産する能力を持つ微生物を得るべく広く
天然界を検索した結果、アルカリ性に生育の至適
PHを有し、バチルス属に属するある種の微生物が
上記要件を備えた酵素を産生し、またこれを量産
性良く産生することを見出し、本発明を完成した
ものである。 即ち、本発明はまず上記のようなβ−マンナナ
ーゼおよびβ−マンノシダーゼを生産する新規微
生物を提供することにあり、該新規微生物はβ−
マンナナーゼおよびβ−マンノシダーゼ生産能を
有し、生育の至適PHをアルカリ側に有する、バチ
ルス属に属する新規微生物、微工研菌寄第8856号
(FERM P−8856)である。 本発明の新規菌株は本発明者等により天然界か
ら新たに検索・単離されたものであり、この菌株
をバージエーズ マニユアル オブ デターミナ
テイブ バクテリオロジー(Bergey′s Mannual
of Determinative Becteriology)、第8版およ
びザ・ジーナス・バチルス〔The Genus
Bacillus:米国、デパートメント オブ アグリ
カルチヤー(Dept.of Agricalture)版〕に従つ
て同定すると、好気性有胞子桿菌であり、運動性
があり、周べん毛を有し、グラム染色バリアブル
であることからバチルス属(Bacillus sp.)に属
することは明らかであつたが、PH7.5〜11.5のア
ルカリ性で良く生育することから、既知のバチル
ス属菌とは分類学上異る新菌株と考えた。 以下の第1表に単離したβ−マンナナーゼおよ
びβ−マンノシダーゼ生産菌の菌学的諸性質を示
す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a novel microorganism. For more details,
The present invention relates to a new alkaliphilic microorganism that has the ability to produce β-mannanase and β-mannosidase and has an optimal pH for growth on the alkaline side, and a method for using the same. Conventional technology β-mannanase contains β-1,4-D-
The β-1,4-D-mannopyranoside bond, which is the main skeleton of mannan, glucomannan, galactomannan, galactoglucomannan, etc., which are homo and hetero β-D-mannans with a mannopyranosidic bond, is optionally hydrolyzed to increase the viscosity. It is an enzyme that simultaneously lowers the mannooligosaccharides and produces a series of mannooligosaccharides. First, ivory nuts (scientific name: Phytelehus macrocarpa) and corozo are well known as those containing β-D-mannan. Other β
-1,4-mannan-containing plants include Phoenicus canariensis and Orchis maquillata, which belong to the palm family. Typical examples of galactomannan are the mucilage contained in carob and guar seeds, locust bean gum, and guar gum. widely used. Galactomannan is also found in large amounts in leguminous plants such as soybeans, coffee beans, alfalfa, red clover, and fenugreek. Other galactomannan-containing plants include Genista scoparia, Gleditsia fuerox,
Known examples include Leucaena glauca. The most famous glucomannan-containing substance is konjac (scientific name: Amorphopharas konjac), but other sources include arum roots of the Araceae family, jack pine of the Pinus genus, bulbs of the Orchidaceae family, and plants of the spruce genus, such as Picea abies and Pinus genus. Are known. Other known glucomannan-containing plants include Asparagus oficinalis, Eremulus fuscus, Eremulus legeri, Eremulus spectabilis, and Phaceolus aureus. These are generally obtained by an alkali extraction method or the like. Further, these β-D-mannans are consumed in large quantities industrially in the food industry and the textile industry as thickeners or thickeners. β-mannanase, which is known as an enzyme that arbitrarily hydrolyzes β-D-mannan, has been the subject of research by many researchers, and a large number of microbial-derived enzymes have been investigated. .
For example, [Advances in Carbohydrate Chemistry and Biochemistry]
and Biochemistry), 1976, 32 , 299-316] In particular, filamentous fungi [Acta.Chem.Scand., 1968, 22 , 1924;
1969, 43 , 317; Biochem.J., 1984, 219, 857], Actinobacteria [Agricultural and Biological Chem., 1984, 48 ,
2189], Bacteria [J.Biochem., 1982, 91 , 1181;
No. 57-65182] and other enzymes have been well studied. However, many of these enzymes have poor temperature stability or require a long period of time for culturing, which poses difficulties in using the enzymes industrially at low cost. In addition, β-mannosidase is a low-molecular β-D-mannan (mannan, glucomannan, galactomannan,
It is an enzyme that acts on galactoglucomannan) and hydrolyzes mannoside bonds sequentially from the non-reducing end to produce mannose. β-mannosidase, which is conventionally known as an enzyme that hydrolyzes β-D-mannan into mannose units from the non-reducing end, has been used in animals [Biochemistry, 1972 , 11 , 1493-
1501: Biochim.Biophys.Acta, 1973, 268 , 488~
496: Biochim.Biophys.Acta, 1973, 315 , 123~
127], Plants [J.Biol.Chem., 1964 , 239 ,
990-992], Microorganisms [Biochim.Biophys.Acta],
1978, 522, 521-530: JP-A No. 51-38486)] and other enzymes have been well studied. However, all of these enzymes have low productivity and many require complicated culture and purification methods, leaving difficulties in using the enzymes industrially at low cost. Problems to be Solved by the Invention Effective use of β-D-mannan, which exists in large amounts as a renewable resource in nature, particularly mannooligosaccharides and mannose produced by enzymatic hydrolysis of the substance.
In order to efficiently recover and utilize sugars such as glucose and galactose, it is preferable that the enzyme has excellent stability and is easy to purify. However, as mentioned above, the previously proposed β-mannosidases, which have various origins such as animals, plants, and microorganisms, are insufficient in terms of productivity, and their production and purification methods are also complicated. However, it was still unsatisfactory for practical use. Furthermore, for the reasons mentioned above, β-mannanase is insufficient in its physical and chemical properties, especially its temperature stability and optimum pH, for industrial large-scale use, and it is also disadvantageous in terms of economic efficiency. It was hot. Therefore, the development of a new enzyme of this type that is easy to produce and purify as described above and has high stability is an effective way to degrade recyclable β-mannan, which exists in large quantities in nature along with starch. It is of great significance in recovering and utilizing decomposition products (mannose, galactose, glucose, mannooligosaccharides, etc.). Therefore, the first object of the present invention is to provide a new microorganism capable of producing novel enzymes, β-mannosidase and β-mannanase, with high production efficiency, which satisfy the above various requirements. Moreover, a method utilizing the above-mentioned novel microorganisms to obtain these enzymes easily and in high yield constitutes another object of the present invention. Means for Solving the Problems The present inventors have extensively searched the natural world in order to obtain microorganisms capable of producing enzymes having these properties that β-mannanase for industrial use should have. As a result, growth is optimal in alkaline conditions.
The present invention was completed by discovering that a certain type of microorganism that has a pH and belongs to the genus Bacillus produces an enzyme that meets the above requirements, and that it can be produced in large quantities with good productivity. That is, the present invention first provides a novel microorganism that produces β-mannanase and β-mannosidase as described above;
FERM P-8856 is a new microorganism belonging to the genus Bacillus that has the ability to produce mannanase and β-mannosidase and has an optimal pH for growth on the alkaline side. The novel strain of the present invention was newly searched and isolated from the natural world by the present inventors, and was published in Bergey's Manual of Determinative Bacteriology.
of Determinative Becteriology), 8th edition and The Genus Bacillus
Bacillus: Identified according to the U.S. Department of Agriculture edition], it is an aerobic sporulating bacillus, motile, with periflagella, and Gram staining variable. Therefore, it was clear that it belonged to the genus Bacillus, but since it grows well in an alkaline pH of 7.5 to 11.5, it was considered to be a new strain that is taxonomically different from known Bacillus sp. . Table 1 below shows various mycological properties of the isolated β-mannanase and β-mannosidase producing bacteria.

【表】【table】

【表】【table】

【表】 +:生育する又は陽性
−:生育しない又は陰性
尚、上記菌株は工業技術院微生物工業技術研究
所に微工研菌寄第8856号(FERM P−8856)と
して寄託している。 また、本発明の新規菌株は以下のようにしてス
クリーニングした。まず、採取場所は国立市谷保
の圃場内における古ダタミの腐朽拓肥である。該
堆肥カスを水に懸濁し、上澄の一滴を以下の組成
の寒天培地に塗抹した。使用した寒天培地は寒天
2%、0.5%のNaHCO3、ヤシ油抽出残渣1%、
0.5%のポリペプトン、0.5%の酵母エキス、0.1%
のK2HPO4および0.02%のMgSO4・7H2Oを含有
する。かくして、寒天平板培地で37℃にて好気的
に培養し、平板上に現われた各コロニーを得、
夫々のコロニーを更に寒天を除いた他は上記と同
様の組成の液体培地中で30〜40℃にて48〜72時間
好気的に培養した。次いで、各培養液を12000g
にて10分間、4℃で遠心分離し、菌体と上澄とに
分離した。かくして得た上澄液と、更に0.1Mリ
ン酸緩衝液(PH7.0)に菌体を懸濁させ、得られ
る懸濁液とを、以下に述べるような活性測定法に
より、夫々β−マンナナーゼ活性およびβ−マン
ノシダーゼ活性を示すものを選んだ。その結果、
上記のような菌学的諸特性を有する菌株が分離で
きた。 本発明の上記新菌株はβ−マンナナーゼを菌体
外に生産し、かつβ−マンノシダーゼを菌体内に
生産する能力を有している。従つてこのものの性
質を利用してこれら酵素を有利に生産することが
できる。 即ち、本発明はまた上記新菌株の利用法を提供
するものであり、該方法は該新菌株を培養し、β
−マンナナーゼを培養液中にかつβ−マンノシダ
ーゼ菌体内に生成・蓄積させ、これを採取するこ
とを特徴とするものである。この方法により得ら
れるβ−マンナナーゼおよびβ−マンノシダーゼ
は夫々以下のような理化学的特性を有している。 () β−マンナナーゼ (イ) 作用: マンナン、グルコマンナン、ガラクトマン
ナン、ガラクトグルコマンナンのβ−1,4
−D−マンノピラノシド結合を非特異的に加
水分解し、マンノオリゴ糖を生成する。 (ロ) 基質特異性: β−マンナンに特異的に作用し、α−マン
ナンに作用しない。β−1,4−D−マンノ
テトラオース以上の分子量をもつマンノオリ
ゴ糖に作用し、これを加水分解する。 (ハ) 至適PHおよび安定PH範囲: 至適PHは8〜10であり、60℃、30分間の加
熱条件下ではPH6〜10の範囲内で安定であ
る。 (ニ) 温度に対する安定性: PH8.0、30分間の加熱条件下では65℃まで
安定である。 (ホ) 作用適温の範囲: 65℃近傍に至適作用温度を有する。 (ヘ) 失活条件: 60℃、30分間の処理条件ではPH5.0および
12.5で完全に失活する。また、PH8.0、30分
間の処理では、80℃で完全に失活する。 (ト) 阻害および活性化: 塩化第二水銀、硝酸銀、エチレンジアミン
四酢酸二ナトリウム(EDTANa2)、尿素、
ドデシル硫酸ナトリウム(SDS)、ドデシル
ベンゼンスルフオン酸ナトリウム(DBS)
により阻害を受ける。 (チ) クロマトフオーカシング法による等電点:
5.0〜5.4 (リ) SDS−ポリアクリルアミド電気泳動法によ
る分子量 43000±3000および57000±3000 () β−マンノシダーゼ (イ) 作用: 非還元末端から順次β−マンノシド結合を
加水分解し、マンノースを生成する。 (ロ) 基質特異性: β−メチル(エチル)−D−マンノシドを
完全に分解し、またβ−結合のマンノースを
含むオリゴ糖に作用し、マンノースを遊離す
る。p−ニトロフエニル−グリコシドのβ−
D−マンノシドを基質となし得るが、α−D
−マンノシド、α−D−グルコシド、β−D
−グルコシド、α−D−ガラクトシド、β−
D−ガラクトシド、β−D−キシロシド、α
−L−フコシド、β−D−グルクロニドを基
質となし得ない。 (ハ) 至適PHおよび安定PH範囲: 至適PHは6〜7であり、40℃、30分間の加
熱条件下ではPH6〜9の範囲内で安定であ
る。 (ニ) 温度に対する安定性: PH6.5、30分間の加熱条件下では45℃まで
安定である。 (ホ) 作用適温の範囲: 50℃近傍に至適作用温度を有する。 (ヘ) 失活条件: 40℃、30分間の処理条件下ではPH5.0およ
び10で完全に失活する。また、PH6.5、30分
の処理では、55℃で完全に失活する。 (ト) ゲル濾過法による分子量: 63000±3000 本発明の新規な菌株の利用法につき更に詳しく
説明する。上記のようなβ−マンナナーゼおよび
β−マンノシダーゼ生産菌を適当な培地に接種
し、該菌体の生育温度の観点から30〜40℃にて、
48〜72時間、好気的に培養する。ここで、培地は
炭素源、窒素源の他、必要に応じて無機塩、微量
栄養素を含むものである。 まず、炭素源としては従来公知の各種材料を使
用することができ、例えばコンニヤク粉、ローカ
ストビーンガム、キヤロブガム、グアーガムある
いはこれらを含有する植物などを典型例として例
示できる。 また、窒素源としても特に制限はなく、酵母エ
キス、ペプトン、肉エキス、コーンステイープリ
カー、アミノ酸液、大豆粕などの有機態窒素、あ
るいは硫安、尿素、硝酸アンモニウム、塩化アン
モニウムなどの無機態窒素などか安価かつ入手容
易なものとして例示できる。 尚、有機態窒素源は炭素源となることはいうま
でもない。更に、このような炭素源、窒素源の
他、一般に使用されている各種の塩、例えばマグ
ネシウム塩、カリウム塩、リン酸塩、鉄塩等の無
機塩、ビタミンなどを添加することも可能であ
る。 本発明の方法において使用するのに適した培地
は、例えば1%のコンニヤク粉、2%のポリペプ
トン、0.2%の酵母エキス、0.1%のK2HPO4およ
び0.2%のMgSO4・7H2Oを含有する液体培地で
あり得る。 また、本発明の利用法における上記微生物の生
育PHは塩基性の範囲内であるので、適当なアルカ
リを用いて上記培地のPH値を調整する必要があ
る。そのために0.5%炭酸水素ナトリウムを典型
例として拳げることができるが、これに限定され
ず水酸化ナトリウム、水酸化カリウム、炭酸ナト
リウム、リン酸ナトリウム、水酸化カルシウムな
どのアルカリ試薬も使用できる。 本発明の利用法において上記菌はまずβ−マン
ノシダーゼを菌体内に生産し、そこに蓄積する。
この菌の培養はバツチ式、連続式のいずれによつ
ても実施することができ、生成する酵素の分離・
精製は例えば以下のようにして実施することがで
きる。 即ち、まず培養液中の菌体を遠心分離、濾過な
どの公知の手段で集菌した後、得られた菌体をそ
のままマンノオリゴ糖の加水分解反応に使用する
ことも可能であり、これは経済的に有利である。 また、勿論これを更に精製して使用することも
できる。そのために、例えば菌体破砕抽出後、硫
安による塩析、エタノール、アセトン、イソプロ
パノール等による溶媒沈澱法、限外濾過法、ゲル
濾過法、イオン交換樹脂等による一般的な酵素精
製法により精製することができる。 以下に、本発明のβ−マンノシダーゼの好まし
い精製法の1例につき説明する。好アルカリ性バ
チルス属に属するAM−001菌株を、例えば上記
のような培地に植菌し、37℃にて48時間好気的に
培養して得られる培養液を、12000r.p.m、0℃に
て30分間遠心分離して菌体を集め、湿重量10gの
菌体を得る。次いで該菌体を氷水中で冷却しなが
ら10mMの燐酸緩衝液(PH7.0)に懸濁して超音
波破砕を数回に分け、計3分間程度行う。次い
で、12000r.p.m、0℃にて30分間遠心分離して残
渣を除き、上澄液50mlを得る。次いで該上澄液に
硫酸アンモニウムを加えて75%飽和とし、4℃で
一夜放置する。生じた沈澱を濾別し、10mM燐酸
緩衝液(PH7.0)に溶解させ、一夜4℃で同緩衝
液に対して透析する。 生じた沈澱を遠心分離して除き、得られた上澄
液を同上緩衝液で平衡化したDEAE−トヨパール
650Mに吸着させ、0.1〜0.5MのNaClを含む同上
緩衝液の濃度勾配法によつて酵素を溶出する。溶
出した活性画分を集め、同上緩衝液に対して一
夜、4℃で透析した後、同上緩衝液で平衡化した
ハイドロオキシアパタイトに吸着させる。つい
で、0.4Mリン酸緩衝液(PH8.0)で酵素を溶出さ
せ、活性画分を集めて、平均分画分子量10000の
限外濾過膜を用いて濃縮する。濃縮酵素は、高速
液体クロマトグラフ用蛋白質分取精製用カラムシ
ヨデツクス プロテイン(SHODEX protein)
WS−2003に充填し、10mMリン酸緩衝液(PH
7.0)を用いて溶出する。かくして得られた活性
画分は濃縮した後、同上カラムを用いて同一条件
で再度クロマトグラフイーにかけ、得られる活性
画分を濃縮し、ポリアクリルアミドゲルデイスク
電気泳動法〔アナルズ ニユーヨーク アカデミ
ツク サイエンス(ANN.N.Y.Acad.Sci.)、121、
404(1964)〕において均一な酵素標品11mgが得ら
れた活性収率は17%であつた。 なお、β−マンノシダーゼ活性の測定法並びに
活性表示法は以下の通りである。 即ち、0.2Mの燐酸緩衝液(PH7.0)0.2mlと8m
Mのp−ニトロフエニル−β−D−マンノピラノ
シド水溶液0.2mlに酵素液0.1mlを混合し、40℃で
10分間反応させた後、0.5Mの炭酸ナトリウム水
溶液1.0mlを添加して酵素を失活させた後、水を
加えて3mlにする。着色度を紫外光(波長420n
m)で1μmol/mlのp−ニトロフエノールを標準
として測定する。 酵素活性の単位は前述の条件下で1分間に
1μmolのp−ニトロフエノールを遊離させる酵素
量を1単位として表示する。
[Table] +: Growing or positive -: Not growing or negative The above bacterial strain has been deposited with the Institute of Microbiology, Agency of Industrial Science and Technology as FERM P-8856. In addition, the novel strain of the present invention was screened as follows. First, the sample was collected from old rotted manure in a field in Yaho, Kunitachi City. The compost residue was suspended in water, and one drop of the supernatant was spread on an agar medium having the following composition. The agar medium used was 2% agar, 0.5% NaHCO 3 , 1% coconut oil extraction residue,
0.5% polypeptone, 0.5% yeast extract, 0.1%
of K2HPO4 and 0.02% MgSO4.7H2O . Thus, each colony that appeared on the plate was obtained by culturing aerobically at 37°C on an agar plate.
Each colony was further cultured aerobically at 30 to 40°C for 48 to 72 hours in a liquid medium having the same composition as above except for the agar. Next, 12000g of each culture solution
The cells were centrifuged at 4°C for 10 minutes to separate the bacterial cells and the supernatant. The supernatant thus obtained and the suspension obtained by further suspending the bacterial cells in 0.1M phosphate buffer (PH7.0) were tested for β-mannanase, respectively, by the activity assay method described below. and β-mannosidase activity were selected. the result,
A strain with the mycological characteristics described above was isolated. The new strain of the present invention has the ability to produce β-mannanase outside the bacterial cells and to produce β-mannosidase inside the bacterial cells. Therefore, these enzymes can be advantageously produced by utilizing the properties of this substance. That is, the present invention also provides a method for utilizing the above-mentioned new bacterial strain, and the method comprises culturing the new bacterial strain and culturing β.
- This method is characterized by producing and accumulating mannanase in a culture medium and within β-mannosidase cells, and collecting the resulting product. β-mannanase and β-mannosidase obtained by this method each have the following physicochemical properties. () β-mannanase (a) Action: β-1,4 of mannan, glucomannan, galactomannan, galactoglucomannan
-D-mannopyranoside bonds are non-specifically hydrolyzed to produce mannooligosaccharides. (b) Substrate specificity: Acts specifically on β-mannan and does not act on α-mannan. It acts on mannooligosaccharides with a molecular weight greater than β-1,4-D-mannotetraose and hydrolyzes them. (c) Optimal PH and stable PH range: The optimal PH is 8 to 10, and is stable within the PH range of 6 to 10 under heating conditions at 60° C. for 30 minutes. (d) Stability against temperature: Stable up to 65°C under heating conditions of PH8.0 and 30 minutes. (e) Range of optimum temperature for action: The optimum temperature for action is around 65°C. (f) Inactivation conditions: PH5.0 and
It becomes completely inactive at 12.5. Furthermore, when treated at pH 8.0 for 30 minutes, it is completely inactivated at 80°C. (g) Inhibition and activation: mercuric chloride, silver nitrate, disodium ethylenediaminetetraacetate (EDTANa 2 ), urea,
Sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (DBS)
is inhibited by (h) Isoelectric point by chromatofocusing method:
5.0-5.4 (li) Molecular weight by SDS-polyacrylamide electrophoresis 43000±3000 and 57000±3000 () β-mannosidase (a) Action: Hydrolyzes β-mannosidic bonds sequentially from the non-reducing end to generate mannose . (b) Substrate specificity: Completely decomposes β-methyl (ethyl)-D-mannoside, and also acts on β-linked mannose-containing oligosaccharides to liberate mannose. β- of p-nitrophenyl-glycoside
D-mannoside can be used as a substrate, but α-D
-Mannoside, α-D-glucoside, β-D
-Glucoside, α-D-galactoside, β-
D-galactoside, β-D-xyloside, α
-L-fucoside and β-D-glucuronide cannot be used as substrates. (c) Optimal PH and stable PH range: The optimal PH is 6 to 7, and is stable within the PH range of 6 to 9 under heating conditions at 40° C. for 30 minutes. (d) Stability against temperature: Stable up to 45°C under heating conditions of PH6.5 and 30 minutes. (e) Range of optimum temperature for action: The optimum temperature for action is around 50°C. (f) Inactivation conditions: Under the treatment conditions of 40°C and 30 minutes, it is completely inactivated at pH 5.0 and 10. Furthermore, when treated at pH 6.5 for 30 minutes, it is completely inactivated at 55°C. (g) Molecular weight as determined by gel filtration method: 63000±3000 The method of using the novel strain of the present invention will be explained in more detail. The β-mannanase and β-mannosidase producing bacteria described above were inoculated into an appropriate medium, and from the viewpoint of the growth temperature of the bacterial cells, the bacteria were incubated at 30 to 40°C.
Incubate aerobically for 48-72 hours. Here, the medium contains inorganic salts and micronutrients as necessary in addition to a carbon source and a nitrogen source. First, various conventionally known materials can be used as the carbon source, and typical examples include konjac flour, locust bean gum, canalob gum, guar gum, and plants containing these. There are also no particular restrictions on nitrogen sources, including organic nitrogen such as yeast extract, peptone, meat extract, cornstarch liquor, amino acid solution, and soybean meal, or inorganic nitrogen such as ammonium sulfate, urea, ammonium nitrate, and ammonium chloride. This can be exemplified as something that is inexpensive and easily available. It goes without saying that the organic nitrogen source serves as a carbon source. Furthermore, in addition to such carbon sources and nitrogen sources, it is also possible to add various commonly used salts, such as inorganic salts such as magnesium salts, potassium salts, phosphates, and iron salts, and vitamins. . A suitable medium for use in the method of the invention includes, for example, 1% konjac flour, 2% polypeptone, 0.2% yeast extract, 0.1% K2HPO4 and 0.2 % MgSO4.7H2O . It can be a liquid medium containing. Furthermore, since the growth pH of the microorganism in the method of the present invention is within the basic range, it is necessary to adjust the pH value of the medium using an appropriate alkali. For this purpose, 0.5% sodium bicarbonate can be used as a typical example, but alkaline reagents such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium phosphate, and calcium hydroxide can also be used. In the method of use of the present invention, the above-mentioned bacterium first produces β-mannosidase within the bacterium and accumulates it there.
Cultivation of this bacterium can be carried out either batchwise or continuously, and the enzyme produced can be separated and
Purification can be carried out, for example, as follows. That is, it is possible to first collect the bacterial cells in the culture solution by known means such as centrifugation or filtration, and then use the obtained bacterial cells as they are for the hydrolysis reaction of mannooligosaccharides, which is economical. It is advantageous. Of course, it can also be further purified and used. For this purpose, for example, after crushing and extracting the bacterial cells, purification can be performed by salting out with ammonium sulfate, solvent precipitation with ethanol, acetone, isopropanol, etc., ultrafiltration, gel filtration, general enzyme purification using ion exchange resin, etc. I can do it. Below, one example of a preferred purification method for β-mannosidase of the present invention will be explained. The AM-001 strain belonging to the alkaliphilic Bacillus genus is inoculated into a medium such as the one described above, and the culture solution obtained by culturing it aerobically at 37°C for 48 hours is incubated at 12000 rpm and 0°C. The cells were collected by centrifugation for 30 minutes to obtain cells weighing 10 g wet. Next, the bacterial cells are suspended in 10 mM phosphate buffer (PH7.0) while being cooled in ice water, and subjected to ultrasonic disruption several times for a total of about 3 minutes. Next, the mixture is centrifuged at 12,000 rpm and 0° C. for 30 minutes to remove the residue and obtain 50 ml of supernatant. Ammonium sulfate was then added to the supernatant to make it 75% saturated, and the mixture was allowed to stand overnight at 4°C. The resulting precipitate is filtered off, dissolved in 10 mM phosphate buffer (PH7.0), and dialyzed against the same buffer overnight at 4°C. The resulting precipitate was removed by centrifugation, and the resulting supernatant was equilibrated with the same buffer as DEAE-Toyopearl.
The enzyme is adsorbed to 650M and eluted by a concentration gradient method using the same buffer containing 0.1-0.5M NaCl. The eluted active fractions are collected and dialyzed against the above buffer solution overnight at 4°C, and then adsorbed onto hydroxyapatite equilibrated with the above buffer solution. Then, the enzyme is eluted with 0.4M phosphate buffer (PH8.0), active fractions are collected, and concentrated using an ultrafiltration membrane with an average molecular weight cutoff of 10,000. The concentrated enzyme is SHODEX protein, a column for protein separation and purification for high-performance liquid chromatography.
Fill WS-2003 and add 10mM phosphate buffer (PH
7.0). The active fraction thus obtained was concentrated and then subjected to chromatography again under the same conditions using the same column as above, and the resulting active fraction was concentrated and subjected to polyacrylamide gel disc electrophoresis [Annals New York Academic Sciences (ANN. NYAcad.Sci.), 121,
404 (1964)], the activity yield of 11 mg of homogeneous enzyme preparation was 17%. The method for measuring β-mannosidase activity and the method for displaying the activity are as follows. That is, 0.2 ml of 0.2 M phosphate buffer (PH7.0) and 8 m
Mix 0.1 ml of enzyme solution with 0.2 ml of p-nitrophenyl-β-D-mannopyranoside aqueous solution of M, and incubate at 40℃.
After reacting for 10 minutes, add 1.0 ml of 0.5 M sodium carbonate aqueous solution to inactivate the enzyme, and then add water to make up to 3 ml. Coloring degree with ultraviolet light (wavelength 420n)
m) with 1 μmol/ml p-nitrophenol as a standard. The unit of enzyme activity is per minute under the above conditions.
The amount of enzyme that liberates 1 μmol of p-nitrophenol is expressed as 1 unit.

【表】【table】

【表】【table】

【表】 更に、本発明の上記菌株はβ−マンナナーゼを
菌体外生産するので、生産されるβ−マンナナー
ゼは培養液中に放出され、そこに蓄積される。こ
の菌の培養は上記と同様に行うことができ、精製
される酵素の分離精製は例えば以下のようにして
実施することができる。 即ち、まず培養液中の菌体の遠心分離、濾過な
どで除去した後、得られる上澄液(粗酵素液)を
そのままβ−マンナンの加水分解反応に適用する
ことも可能であり、これは経済的に有利である。
また、これを更に精製して使用することもでき
る。その精製法は、β−マンノシダーゼの場合と
同様に実施することができる。 以下に、本発明のβ−マンナナーゼの好ましい
精製法の1例につき説明する。好アルカリ性バチ
ルス属に属する本発明のAM−001菌株を、例え
ば上記のような培地に植菌し、37℃にて72時間好
気的に培養して得られる培養液に、0.8%(w/
v)のセタブロン(セチルトリメチルアンモニウ
ムブロマイド)を添加し、30分間放置後、7000r.
p.m、0℃にて20分間遠心分離して菌体を除き、
3の上澄液を得る。次いで、該上澄液に硫酸ア
ンモニウムを加えて75%飽和とし、4℃で一夜放
置する。生じた沈澱を濾別し、10mM燐酸緩衝液
(PH7.0)に溶解させ、一夜4℃で同緩衝液に対し
て透析する。 生じた沈殿を遠心分離して除き、得られた上澄
液を同上緩衝液で平衡化したDEAE−トヨパール
650Mに吸着させ、0.1〜0.5MのNaClを含む同上
緩衝液の濃度勾配法によつて酵素を溶出する。溶
出した活性画分を集め、同上緩衝液に対して一
度、4℃で透析した後、同上緩衝液で平衡化した
ハイドロキシアパタイトに吸着させる。ついで
0.01〜0.4Mリン酸緩衝液(PH7.0)の濃度勾配法
によつて酵素を溶出させると、β−マンナナーゼ
活性を持つた2つの画分(F−A、F−B)が得
られ、2つの画分を合わせた活性収率は29%であ
つた。 ついで、各フラクシヨンを各々平均分画分子量
10000の限外濾過膜を用いて濃縮し、該濃縮酵素
を高速液体クロマトグラフ用蛋白質分取精製用カ
ラムシヨデツクス プロテイン(SHODEX
protein)WS−2003に充填し、10mMリン酸緩衝
液(PH7.0)を用いて溶出する。かくして得られ
た活性画分は濃縮した後、同上カラムを用いて同
一条件で再度クロマトグラフイーにかけ、得られ
る活性画分を濃縮し、精製酵素を得る。ついで、
これらの精製酵素をSDS−ポリアクリルアミドデ
イスク電気泳動法〔バイオケミカル&バイオフイ
ジカル リサーチ コミユニケーシヨンズ
(Biochem.Biophys.Res.Commun.)、1967、28
815〕およびポリアクリルアミドデイスク電気泳
動法〔アナルズ ニユーヨーク アカデミツク
サイエンス(ANN.N.Y.Acad.Sci.)、121、404
1964)〕において、それらの均一性を検討した結
果、SDS−ポリアクリルアミドデイスク電気泳動
法ではF−AおよびF−B画分でのいずれにおい
ても各々、分子量57000±3000および43000±3000
の均一のバンドが検出されたが、ポリアクリルア
ミドデイスク電気泳動法では、F−A画分につい
ては、β−マンナナーゼ活性を有する2本のバン
ドが検出され、一方、F−B画分については、該
電気泳動法によつても均一のバンドが検出され
た。 尚、これらの3つのβ−マンナナーゼは、分子
量を異にする以外は、それらの酵素化学的諸性質
はほぼ同一であつた。 なお、β−マンナナーゼ活性の測定法並びに活
性表示法は以下の通りである。即ち、0.1Mのグ
リシン−NaOH−NaCl緩衝液(PH9.0)0.4mlと
1%(w/v)のコンニヤクマンナン水溶液0.5
mlに酵素液0.1mlを混合し、50℃で10分間反応さ
せた後、ソモギー〔Somogyi;ジヤーナル オ
ブ バイオロジカル ケミストリー(J.Biol.
Chem.)、1952、195、19〕液1.0mlを添加して酵
素を失活させた後、沸騰水浴中で加熱する。10分
後、氷浴中で急冷し、ネルソン〔Nelson、ジヤ
ーナル オブ バイオロジカル ケミストリー
(J.Biol.Shem.)、1944、153、375〕液1.0mlを加
えよく撹拌した後、水を加えて10mlにする。着色
度を紫外光(波長:660nm)で100μg/mlのマ
ンノースを標準として測定する。酵素活性の単位
は前述の条件下で1分間に1μmolのマンノースに
相当する還元糖を生成するのに要する酵素量を1
単位として表示する。 作 用 天然界に比較的多量に存在するβ−D−マンナ
ンはデンプンと同様にそのまま、または化学的改
質処理を施した後、糊料、増粘剤、食品材料等と
して繊維、化粧品、食品、農薬等の各種分野にお
いて広く利用されている。ところで、このβ−D
−マンナンを有効利用するこめにはこれを効率良
く加水分解する酵素(βマンナナーゼ、β−マン
ノシダーゼなど)を得る必要がある。即ち、β−
D−マンナンを高効率で加水分解し得る酵素を得
ることは、これを分解して有用なマンノオリゴ
糖、マンノース、グルコース、ガラクトースなど
の糖類として、これを回収、利用したり、あるい
はβ−D−マンナン自体として使用した後にこれ
を分解・除去するなどの目的のために極めて重要
である。 このような用途において、β−マンナナーゼお
よびβ−マンノシダーゼは高温安定性を有し、し
かも中性〜アルカリ性領域に酵素反応の至適PHを
有するものであることが、工業的応用という観点
から極めて望ましい。 しかしながら、このような目的で従来から様々
な起源のマンナン分解酵素が見出され、利用され
てきたが、例えばβ−マンナナーゼでは高温安定
性に劣るものであつたり、酵素産生微生物の培養
時間が著しく長いものであり、経済性、β−D−
マンナンの分解効率の観点から望ましいものとは
いえなかつた。また、β−マンノシダーゼにおい
ても、生産性が低く、培養法・精製法の煩雑なも
のが多く、高価であり、工業的な大規模利用な困
難であつた。 そこで、本発明者等は種々検索し、好アルカリ
性バチルス属に属するある種の微生物が有用なβ
−マンナナーゼおよびβ−マンノシダーゼを高い
生産率で同時に生産することを見出した。これら
の酵素はいずれも上記β−D−マンナンの加水分
解反応における諸要件を満足するものであり、従
来知られていた各酵素の諸問題点をいずれも解決
するものであることがわかつた。 即ち、まず本発明の新規微生物はβ−マンナナ
ーゼを菌体外生産するので、酵素の分離・精製は
極めて容易であり、労力、製造コストの点で大巾
な改善が期待できる。更に、この酵素は高温安定
性に優れ、しかもアルカリ側(PH8〜10)に酵素
反応の至適PHを有しているので、アルカリ条件下
で行われる各種植物からのβ−マンナンの抽出操
作後、従来のように酸性条件とするための操作を
施すことなくそのまま酵素分解反応に移行するこ
とが可能であり、作業性、経済性の点で大巾な改
善が望める。 更に、本発明の上記微生物はβ−マンノシダー
ゼを菌体内生産する。このβ−マンノシダーゼは
はほぼ中性領域に酵素反応の至適PHを有するの
で、上記のような抽出操作後わずかなPH調節を施
した後、次の分解反応に移行することができる。
また、この酵素はβ−マンナナーゼを含む培養上
澄の分離の際に得られる菌体をそのままあるいは
簡単な分離・精製操作を施した後使用でき、労
力、量産性、経済性の点で有利である。 かくして、本発明の新規微生物によれば、β−
D−マンナンを加水分解し、分解生成物を有効利
用したり、β−D−マンナン自体を糊料等として
使用した後分解・除去するのに有用なβ−マンナ
ナーゼおよびβ−マンノシダーゼを効率良く生産
し、しかもこれら酵素がPH安定性、高温安定性等
において優れているので、これら酵素の工業的な
大規模利用が可能となる。 実施例 以下、本発明を実施例によりさらに詳しく説明
する。 実施例 1 好アルカリ性細菌バチルスAM−001菌株
(FERM P−8856)を500ml容の三角フラスコ中
の、グアーガム0.5%、コーンステイープリカー
5%、硫安0.1%、K2HPO40,1%、MgSO4
7H2O0.02%および炭酸ソーダ0.25%を含む培養
液100ml(PH9.5)に植菌し、37度で48時間、200r.
p.m.で振とう培養した。ついで、該培養液を
12000r.p.m.、0℃にて30分間遠心分離して菌体
と培養上澄とを回収した。まず、回収した菌体を
5mlの10mM燐酸緩衝液に懸濁後、超音波破砕機
にて菌体を破砕した。ついで、この菌体破砕液を
12000r.p.m.にて0℃で30分間遠心分離し、得ら
れた上澄み液のβ−マンノシダーゼ活性を測定し
た結果、14単位/mlであつた。ついで、上記培養
液上澄中のβ−マンナナーゼ活性を上記のように
測定した結果、53単位/mlであつた。 発明の効果 以上詳しく述べたように、本発明によればβ−
D−マンナンを効率良く加水分解するβ−マンナ
ナーゼおよびβ−マンノシダーゼを同時に生産す
る、好アルカリ性バチルス属に属する新規な微生
物が提供される。この新規微生物の生産する両酵
素はβ−D−マンナンの加水分解反応に要求され
る諸条件をいずれも満足し、高い効率でこれを分
解し、使用後の分解・除去並びに分解生成物の有
効利用を著しく容易にすると共に経済的にも大巾
な改善を保証し得るものである。
[Table] Furthermore, since the above-mentioned bacterial strain of the present invention produces β-mannanase extracellularly, the produced β-mannanase is released into the culture solution and accumulated there. Cultivation of this bacterium can be carried out in the same manner as described above, and separation and purification of the purified enzyme can be carried out, for example, as follows. That is, it is possible to first remove the bacterial cells in the culture solution by centrifugation, filtration, etc., and then apply the resulting supernatant (crude enzyme solution) as it is to the hydrolysis reaction of β-mannan. Economically advantageous.
It can also be used after further purification. The purification method can be carried out in the same manner as for β-mannosidase. Below, one example of a preferred purification method for β-mannanase of the present invention will be explained. The AM-001 strain of the present invention, which belongs to the alkaliphilic Bacillus genus, is inoculated into, for example, the above-mentioned medium and cultured aerobically at 37°C for 72 hours.
Add cetabron (cetyltrimethylammonium bromide) from v) and leave it for 30 minutes, then add 7000r.
pm, centrifuge for 20 minutes at 0°C to remove bacterial cells.
Obtain the supernatant liquid of 3. Then, ammonium sulfate was added to the supernatant to make it 75% saturated, and the mixture was left overnight at 4°C. The resulting precipitate is filtered off, dissolved in 10 mM phosphate buffer (PH7.0), and dialyzed against the same buffer overnight at 4°C. The resulting precipitate was removed by centrifugation, and the resulting supernatant was equilibrated with the same buffer as DEAE-Toyopearl.
The enzyme is adsorbed to 650M and eluted by a concentration gradient method using the same buffer containing 0.1-0.5M NaCl. The eluted active fractions are collected, dialyzed once against the above buffer at 4°C, and then adsorbed onto hydroxyapatite equilibrated with the above buffer. Then
When the enzyme was eluted using a concentration gradient method of 0.01-0.4M phosphate buffer (PH7.0), two fractions (F-A and F-B) with β-mannanase activity were obtained. The combined activity yield of the two fractions was 29%. Next, each fraction was determined to have an average molecular weight cutoff.
Concentrate the enzyme using a 10,000 ultrafiltration membrane, and convert the concentrated enzyme into a column system for protein preparative purification for high performance liquid chromatography (SHODEX).
Protein) WS-2003 and elute using 10mM phosphate buffer (PH7.0). After the active fraction thus obtained is concentrated, it is subjected to chromatography again under the same conditions using the same column as above, and the obtained active fraction is concentrated to obtain a purified enzyme. Then,
These purified enzymes were subjected to SDS-polyacrylamide disc electrophoresis [Biochem.Biophys.Res.Commun., 1967 , 28 ,
815] and polyacrylamide disc electrophoresis [Annals New York Academy]
Science (ANN.NYAcad.Sci.), 121 , 404
1964)], as a result of examining their homogeneity, the molecular weights of both the FA and FB fractions were 57,000 ± 3,000 and 43,000 ± 3,000, respectively, using SDS-polyacrylamide disc electrophoresis.
However, in polyacrylamide disc electrophoresis, two bands with β-mannanase activity were detected in the F-A fraction, while in the F-B fraction, a uniform band was detected. Uniform bands were also detected by this electrophoresis method. These three β-mannanases had almost the same enzymatic chemical properties except for their different molecular weights. The method for measuring β-mannanase activity and the method for displaying the activity are as follows. That is, 0.4 ml of 0.1 M glycine-NaOH-NaCl buffer (PH9.0) and 0.5 ml of 1% (w/v) konjac mannan aqueous solution.
ml and 0.1 ml of enzyme solution, reacted at 50°C for 10 minutes, and then added to the Somogyi Journal of Biological Chemistry (J.Biol.
Chem.), 1952, 195, 19] to inactivate the enzyme, and then heat in a boiling water bath. After 10 minutes, rapidly cool in an ice bath, add 1.0 ml of Nelson's solution, stir well , and then add 10 ml of water. Make it. The degree of coloration is measured using ultraviolet light (wavelength: 660 nm) using 100 μg/ml mannose as a standard. The unit of enzyme activity is the amount of enzyme required to produce reducing sugar equivalent to 1 μmol of mannose per minute under the above conditions.
Display as a unit. Effects β-D-mannan, which exists in relatively large amounts in nature, can be used as it is, like starch, or after chemical modification, as a paste, thickener, food material, etc. in fibers, cosmetics, and foods. It is widely used in various fields such as agricultural chemicals. By the way, this β-D
- To utilize mannan effectively, it is necessary to obtain enzymes (β-mannanase, β-mannosidase, etc.) that can efficiently hydrolyze it. That is, β−
To obtain an enzyme that can hydrolyze D-mannan with high efficiency, it is necessary to decompose it and recover and use it as useful saccharides such as mannooligosaccharides, mannose, glucose, and galactose. It is extremely important for purposes such as decomposing and removing mannan after its use. In such applications, it is extremely desirable from the viewpoint of industrial application that β-mannanase and β-mannosidase have high temperature stability and have an optimal pH for enzyme reaction in the neutral to alkaline range. . However, although mannan-degrading enzymes of various origins have been discovered and used for this purpose, for example, β-mannanase has poor high-temperature stability, and the culture time of enzyme-producing microorganisms is extremely long. long, economical, β-D-
This was not desirable from the viewpoint of mannan decomposition efficiency. Furthermore, β-mannosidase has low productivity, requires complicated culture and purification methods, is expensive, and is difficult to use on a large scale industrially. Therefore, the present inventors conducted various searches and found that certain microorganisms belonging to the alkaliphilic Bacillus genus were found to have useful β-β properties.
- It has been found that mannanase and β-mannosidase can be simultaneously produced at a high production rate. It has been found that all of these enzymes satisfy the various requirements for the above-mentioned β-D-mannan hydrolysis reaction, and that they solve all of the problems of the conventionally known enzymes. That is, first, since the novel microorganism of the present invention produces β-mannanase extracellularly, it is extremely easy to separate and purify the enzyme, and a significant improvement can be expected in terms of labor and production costs. Furthermore, this enzyme has excellent high-temperature stability and has an optimal pH for enzyme reaction on the alkaline side (PH8-10), so it can be used after extracting β-mannan from various plants under alkaline conditions. , it is possible to directly proceed to the enzymatic decomposition reaction without performing operations to make acidic conditions as in the past, and a significant improvement can be expected in terms of workability and economic efficiency. Furthermore, the microorganism of the present invention intracellularly produces β-mannosidase. Since this β-mannosidase has an optimum pH for enzymatic reaction in a nearly neutral region, it is possible to proceed to the next decomposition reaction after performing a slight pH adjustment after the extraction operation as described above.
In addition, this enzyme can be used as it is or after simple separation and purification of the bacterial cells obtained during the separation of the culture supernatant containing β-mannanase, which is advantageous in terms of labor, mass production, and economy. be. Thus, according to the novel microorganism of the present invention, β-
Efficient production of β-mannanase and β-mannosidase that are useful for hydrolyzing D-mannan and effectively utilizing the decomposition products, or for decomposing and removing β-D-mannan itself after use as a thickening agent, etc. However, since these enzymes are excellent in PH stability, high temperature stability, etc., industrial large-scale utilization of these enzymes becomes possible. Examples Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Alkaliphilic bacterium Bacillus AM-001 strain (FERM P-8856) was mixed with 0.5% guar gum, 5% corn staple liquor, 0.1% ammonium sulfate, 0.1% K 2 HPO 4 , in a 500 ml Erlenmeyer flask. MgSO4
Inoculate 100 ml of culture solution (PH9.5) containing 0.02% 7H 2 O and 0.25% soda carbonate, and incubate at 37 degrees for 48 hours at 200 rpm.
Cultured with shaking at pm. Then, the culture solution
The cells and culture supernatant were collected by centrifugation at 12,000 rpm and 0° C. for 30 minutes. First, the collected cells were suspended in 5 ml of 10 mM phosphate buffer, and then the cells were disrupted using an ultrasonic disruptor. Next, this bacterial cell disruption solution was
After centrifugation at 12000 rpm for 30 minutes at 0°C, the β-mannosidase activity of the resulting supernatant was measured and found to be 14 units/ml. Then, the β-mannanase activity in the culture supernatant was measured as described above, and the result was 53 units/ml. Effects of the Invention As described in detail above, according to the present invention, β-
A novel microorganism belonging to the alkalophilic Bacillus genus is provided that simultaneously produces β-mannanase and β-mannosidase that efficiently hydrolyze D-mannan. Both enzymes produced by this new microorganism satisfy all the conditions required for the hydrolysis reaction of β-D-mannan, decompose it with high efficiency, and effectively decompose and remove it after use, as well as effectively decompose the decomposed products. This greatly facilitates the use and can also guarantee significant economic improvements.

Claims (1)

【特許請求の範囲】[Claims] 1 微工研菌寄第8856号で寄託された、β−マン
ナナーゼおよびβ−マンノシダーゼ生産能を有
し、生育の至適PHをアルカリ性に有するバチルス
属に属する微生物。
1. A microorganism belonging to the genus Bacillus that has the ability to produce β-mannanase and β-mannosidase and has an alkaline optimum pH for growth, deposited in Microtechnical Research Institute No. 8856.
JP18065186A 1986-07-31 1986-07-31 Novel alkalophilic strain of bacillus genus capable of producing beta-mannanase and beta-mannosidase and use thereof Granted JPS6336775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18065186A JPS6336775A (en) 1986-07-31 1986-07-31 Novel alkalophilic strain of bacillus genus capable of producing beta-mannanase and beta-mannosidase and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18065186A JPS6336775A (en) 1986-07-31 1986-07-31 Novel alkalophilic strain of bacillus genus capable of producing beta-mannanase and beta-mannosidase and use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3290519A Division JP2626663B2 (en) 1991-10-09 1991-10-09 Method for producing novel β-mannosidase

Publications (2)

Publication Number Publication Date
JPS6336775A JPS6336775A (en) 1988-02-17
JPH0412707B2 true JPH0412707B2 (en) 1992-03-05

Family

ID=16086925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18065186A Granted JPS6336775A (en) 1986-07-31 1986-07-31 Novel alkalophilic strain of bacillus genus capable of producing beta-mannanase and beta-mannosidase and use thereof

Country Status (1)

Country Link
JP (1) JPS6336775A (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2261359B1 (en) 1998-06-10 2014-08-20 Novozymes A/S Mannanases
US6420331B1 (en) 1998-06-10 2002-07-16 Procter & Gamble Company Detergent compositions comprising a mannanase and a bleach system
US6060299A (en) * 1998-06-10 2000-05-09 Novo Nordisk A/S Enzyme exhibiting mannase activity, cleaning compositions, and methods of use
US8383097B2 (en) 2006-08-11 2013-02-26 Novozymes Biologicals, Inc Bacteria cultures and compositions comprising bacteria cultures
CA2680370C (en) 2007-03-23 2017-03-14 Sarah Mchatton Preventing and reducing biofilm formation and planktonic proliferation
GB0810881D0 (en) 2008-06-16 2008-07-23 Unilever Plc Improvements relating to fabric cleaning
EP2149786A1 (en) 2008-08-01 2010-02-03 Unilever PLC Improvements relating to detergent analysis
ES1076140Y (en) 2008-09-12 2012-05-08 Unilever Nv DISPENSER AND PRETREATER FOR VISCOSE LIQUIDS
EP2202290A1 (en) 2008-12-23 2010-06-30 Unilever PLC A flowable laundry composition and packaging therefor
CN103025856B (en) 2010-07-22 2017-04-12 荷兰联合利华有限公司 Detergent compositions comprising biosurfactant and enzyme
GB201015672D0 (en) 2010-09-20 2010-10-27 Unilever Plc Improvements relating to fabric treatment compositions comprising targeted benefit agents
WO2012047430A1 (en) 2010-10-07 2012-04-12 Danisco Us Inc. Processing of palm kernel waste using mannanase and pectinase
EP2630224B1 (en) 2010-10-22 2016-06-29 Unilever PLC Externally structured aqueous detergent liquid
WO2012084225A1 (en) 2010-12-22 2012-06-28 Direvo Industrial Biotechnology Gmbh Improving fermentation processes and by-products
MY163351A (en) 2011-01-31 2017-09-15 Unilever Plc Alkaline liquid detergent compositions
CN107815817A (en) 2011-02-15 2018-03-20 诺维信生物股份有限公司 The mitigation of smell in cleaning machine and clean method
ES2421162T3 (en) 2011-04-04 2013-08-29 Unilever Nv Fabric washing procedure
EP2522714A1 (en) 2011-05-13 2012-11-14 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Aqueous concentrated laundry detergent compositions
EP2522715A1 (en) 2011-05-13 2012-11-14 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Aqueous concentrated laundry detergent compositions
EP2707472B1 (en) 2011-05-13 2015-07-08 Unilever PLC Aqueous concentrated laundry detergent compositions
BR112013032861A2 (en) 2011-07-22 2017-01-24 Novozymes North America Inc methods for increasing cellulolytic enzyme activity during hydrolysis of cellulosic material, for hydrolyzing a pretreated cellulosic material, for producing a fermentation product, and for fermenting a pretreated cellulosic material
BR112014005687A2 (en) 2011-09-15 2017-04-04 Unilever Nv enzymatic detergent composition and substrate treatment process
WO2013092052A1 (en) 2011-12-20 2013-06-27 Unilever Plc Isotropic liquid detergents comprising soil release polymer
WO2013160025A1 (en) 2012-04-23 2013-10-31 Unilever Plc Structured aqueous liquid detergent
EP2958438B1 (en) 2013-02-21 2018-12-19 Direvo Industrial Biotechnology GmbH Mycotoxin-binders
DK2958437T3 (en) 2013-02-21 2020-03-30 Direvo Ind Biotechnology Gmbh PREBIOTIC ANIMAL FEED PRODUCTS
AU2014280111B2 (en) 2013-06-12 2018-04-05 Earth Alive Clean Technologies Inc. Dust suppressant
BR112017019942A2 (en) 2015-04-02 2018-06-12 Unilever Nv liquid laundry detergent composition and polymer release for dirt release
TR201900475T4 (en) 2015-08-28 2019-02-21 Unilever Nv Liquid Detergent Composition Containing Lipase and Protease
WO2017133879A1 (en) 2016-02-04 2017-08-10 Unilever Plc Detergent liquid
WO2019038187A1 (en) 2017-08-24 2019-02-28 Unilever Plc Improvements relating to fabric cleaning
WO2019038186A1 (en) 2017-08-24 2019-02-28 Unilever Plc Improvements relating to fabric cleaning
WO2023227356A1 (en) 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Composition containing enzyme

Also Published As

Publication number Publication date
JPS6336775A (en) 1988-02-17

Similar Documents

Publication Publication Date Title
JPH0412707B2 (en)
JP2626662B2 (en) Novel β-mannanase and method for producing the same
JPH0365754B2 (en)
JPH0518554B2 (en)
JPH04278087A (en) New heparitinases, their production and microorganism producing the same
JPH0379991B2 (en)
JP2894293B2 (en) Galactanase S-39 and Bacillus sp. S-39 producing the same
JP2626663B2 (en) Method for producing novel β-mannosidase
JPH0523183A (en) New alpha-galactosidase and production of sugar using the same
JPH0517833B2 (en)
JPS6336779A (en) Beta-mannosidase and production thereof
JPS63209595A (en) Production of beta-1,4-mannobiose
JPH089972A (en) New deaminoneuraminidase and its production
EP0320685B1 (en) A process for the obtention of thermostable alpha-amylases by culturing superproductive microorganisms at high temperatures
JP3642095B2 (en) Novel neutral xylanase and production method thereof
JP3032817B2 (en) Mass production method of xyloglucan oligo 9 sugar
JP2591956B2 (en) Method for producing β-1,4-mannnotriose
JPH0523175A (en) Bacillus stearothermophilus jd-72 strain and production of alpha-galactosidase using the strain
JP2615236B2 (en) Galactanase S-1 and Bacillus sp. S-1 producing the same
JPH0269183A (en) Beta-1,3-glucanase and production thereof
KR790000804B1 (en) Process for producing l(+)-tartaric acid
JP2894292B2 (en) Galactanase S-2 and Bacillus sp. S-2 producing the same
JPH04237496A (en) Production of cyclic inulo oligosaccharide
JPH0412951B2 (en)
JPH0464675B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees