JPS6336779A - Beta-mannosidase and production thereof - Google Patents

Beta-mannosidase and production thereof

Info

Publication number
JPS6336779A
JPS6336779A JP17958786A JP17958786A JPS6336779A JP S6336779 A JPS6336779 A JP S6336779A JP 17958786 A JP17958786 A JP 17958786A JP 17958786 A JP17958786 A JP 17958786A JP S6336779 A JPS6336779 A JP S6336779A
Authority
JP
Japan
Prior art keywords
mannosidase
minutes
mannoside
range
stable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17958786A
Other languages
Japanese (ja)
Other versions
JPH0370471B2 (en
Inventor
Toshiro Akino
秋野 利郎
Nobuyuki Nakamura
信之 中村
Koki Horikoshi
弘毅 掘越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP17958786A priority Critical patent/JPS6336779A/en
Publication of JPS6336779A publication Critical patent/JPS6336779A/en
Priority to JP13546889A priority patent/JPH02242678A/en
Publication of JPH0370471B2 publication Critical patent/JPH0370471B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To produce novel beta-mannosidase having optimum pH of enzymatic reaction at alkaline side, by culturing a microorganism belonging to Bacillus genus. CONSTITUTION:A novel microbial strain belonging to Bacillus genus and capable of producing a novel beta-mannosidase having optimum pH of enzymatic reaction at alkaline side, e.g. AS-420 strain (FERM P-8859) is inoculated in a proper medium and cultured at 7.5-11.5pH and 30-45 deg.C for about 48-72hr under aerobic condition. The objective novel beta-mannosidase can be separated from the cultured cell.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規なβ−マンノシダーゼ並びにその製造法に
関する。更に詳しくは、新規なバチルス属に属し、アル
カリ側に生育の至適pHを有する好アルカリ性の微生物
を培養して得られ、酵素反応の至適pHを中性近傍に有
する菌体内β−マンノシダーゼおよびその製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a novel β-mannosidase and a method for producing the same. More specifically, it is obtained by culturing a new alkaliphilic microorganism that belongs to the genus Bacillus and has an optimum pH for growth on the alkaline side, and has an intracellular β-mannosidase and an optimum pH for enzyme reaction near neutrality. Regarding its manufacturing method.

従来の技術 β−マンノシダーゼは、分子内にβ−マンノシド結合を
有する低分子のβ−D−マンナン(マンナン、グルコマ
ンナン、ガラクトマンナン、ガラクトグルコマンナン)
に作用し、非還元末端部位から順次マンノシド結合を加
水分解し、マンノースを生成する酵素である。
Conventional technology β-mannosidase is a low-molecular β-D-mannan (mannan, glucomannan, galactomannan, galactoglucomannan) that has a β-mannosidic bond in the molecule.
It is an enzyme that hydrolyzes mannoside bonds sequentially from the non-reducing end site to produce mannose.

まず、β−D−マンナンを含むものとして、アイポリ−
ナツツ(学名:フイテレファス・マクロカルバ)やコロ
ゾがよく知られている。その他β−1,4−マンナン含
有植物としてはヤシ利のフオエニクス・カナリエンシス
、オーキス・マキュラタなどが知られている。
First, as a substance containing β-D-mannan, Ipoly-
Natsutsu (scientific name: Huiterephas macrocarba) and corozo are well known. Other plants containing β-1,4-mannan include palm trees Phoenicus canariensis and Orchis maculata.

ガラクトマンナンはイナゴマメおよび、グアーの種子に
含まれる各粘質物、ローカストビーンガム及びグアーガ
ムが代表的なものであり、この二種のガラクトマンナン
は、工業的にそのままあるいは化学的な改質をほどこし
、広く使用されている。また、ガラクトマンナンは大豆
、コーヒー豆、ムラサキウマゴヤシ、アカツメフサ、コ
ロハなどマメ科の植物にも多く含まれている。その他の
ガラクトマンナン含有植物としては、ゲニスタ・スコパ
リア、ダレデイラシャ・フエロラス、レウカエナ・グラ
ウカなどが知られている。
Typical examples of galactomannans are carob and guar seeds, locust bean gum, and guar gum. Widely used. Galactomannan is also found in large amounts in leguminous plants such as soybeans, coffee beans, alfalfa, red clover, and fenugreek. Other known galactomannan-containing plants include Genista scoparia, Daledeiracha fuerolas, and Leucaena glauca.

グルコマンナン含有物としてはコンニャク(学名ニアモ
ルフオファラス・コンニャク)が最も有名であるが、サ
イトモ科のアルム根、マツ属のジャックパイン、ラン科
の球根、ニジマツやハリモミなどのトウヒ属の植物など
が知られている。その他のグルコマンナン含有植物とし
ては、アスパラガス・オフィシナリス、エレムラス・フ
スカス、エレムラス・レゲリー、エレムラス・スペクク
ビリス、ファセオラス・アウレウスなどが知られている
。グルコマンナンはこれら植物などからアルカリ抽出法
等により得られている。また、これらβ−D−マンナン
は糊料あるいは増粘剤として食品工業や繊維産業で工業
的に大量に消費されている。
The most well-known glucomannan-containing substance is konjac (scientific name: Niamorphopharus konjac), but other substances include arum roots of the Cytomoaceae family, jackpines of the Pinus family, bulbs of the Orchidaceae family, and plants of the Spruce family, such as rainbow pine and holly fir. It has been known. Other known glucomannan-containing plants include Asparagus officinalis, Eremulus fuscus, Eremulus legeri, Eremulus spectabilis, and Phaseolus aureus. Glucomannan is obtained from these plants by an alkali extraction method or the like. Further, these β-D-mannans are consumed in large quantities industrially in the food industry and the textile industry as thickeners or thickeners.

従来、これらβ−D−マンナンの非還元末端からマンノ
ース単位で加水分解する酵素として知られているβ−マ
ンノシダーゼは、動物〔バイオケミストリー(Bio’
chemistry)、 1972.11 、1493
〜1501:バイオシミカ エ バイオフィジカ アク
タ(Biochim、Biophys、Acta)、 
1973.268 、488〜496:バイオシミカ 
エ バイオフィジカ アクタ(Biochim、 Bi
ophys、 Acta)、1973,315.12:
3〜127)、植物〔ジャーナル オブ バイオロジカ
ルケミスト リ −(J、  Biol、  Chem
、)、1964. 239 .990−9921  、
微生物〔バイオシミカエバイオフィジカアクタ (Bi
ochim、Biophys、Acta )、1978
,522.521〜530;特開昭51−38486号
)〕などの酵素が良く研究されている。
β-mannosidase, which has been known as an enzyme that hydrolyzes β-D-mannan into mannose units from the non-reducing end, has been developed in animals [Biochemistry (Bio'
chemistry), 1972.11, 1493
~1501: Biochim, Biophys, Acta,
1973.268, 488-496: Biosimica
Biophysics Acta (Biochim, Bi
phys, Acta), 1973, 315.12:
3-127), plants [Journal of Biological Chemistry - (J, Biol, Chem
), 1964. 239. 990-9921,
Microorganisms [Biosimichae biophysicaacta (Bi
ochim, Biophys, Acta), 1978
, 522.521-530; JP-A No. 51-38486)] have been well studied.

、しかしながら、これらの酵素はいずれも生産性が低く
、培養法・精製法が煩雑なものが多く、該酵素を工業的
に安価に使用する場合に難点を残していた。
However, all of these enzymes have low productivity and many require complicated culture and purification methods, leaving difficulties in using the enzymes industrially at low cost.

発明が解決しようとする問題点 天然界に再生可能な資源として大量に存在するβ−D−
マンナンの有効利用、特に該物質の酵素的加水分解によ
るマンノオリゴ糖やマンノース、グルコース、ガラクト
ースなどの糖類を効率良く回収・利用するためには、安
定性に侵れ、酵素の精製が容易であることが好ましい。
Problems to be solved by the invention β-D- exists in large quantities as a renewable resource in the natural world.
In order to effectively utilize mannan, especially to efficiently recover and utilize mannooligosaccharides and sugars such as mannose, glucose, and galactose through enzymatic hydrolysis of mannan, stability must be compromised and enzyme purification must be easy. is preferred.

しかしながら、動物、植物、微生物などの各種の起源を
持つ従来提案されていたβ−マンノシダーゼは、既に述
べたように、該酵素の生産性の点で不十分であり、その
製法、精製法も複雑で実用化するには依然として不満足
なものであった。
However, as mentioned above, the previously proposed β-mannosidases, which have various origins such as animals, plants, and microorganisms, are insufficient in terms of productivity, and their production and purification methods are also complicated. It was still unsatisfactory for practical use.

従って、上記の如き製造・精製の容易な、しかも高い安
定性を有するこの種の酵素を新たに開発することは、デ
ンプンと共に天然界に大量に存在する再生利用可能なβ
−マンナンを分解し、あるいは分解生成物(マンノース
等)を回収・利用する上で極めて大きな意義をもつ。
Therefore, it is important to newly develop this type of enzyme that is easy to produce and purify and has high stability as described above.
-It is of great significance in decomposing mannan or recovering and utilizing decomposition products (mannose, etc.).

そこで、本発明の第1の目的は上記の各種要件を満足す
る新規な酵素、β−マンノシダーゼ、を提供することに
ある。また、簡単かつ高い収率で該酵素を得ることので
きる、新規な微生物を用いたβ−マンノシダーゼの製造
方法は本発明のもう一つの目的を構成する。
Therefore, the first object of the present invention is to provide a novel enzyme, β-mannosidase, that satisfies the above various requirements. Another object of the present invention is a method for producing β-mannosidase using a novel microorganism, which allows the enzyme to be obtained easily and in high yield.

問題点を解決するための手段 本発明者らは、工業的に使用するためのβ−マンノシダ
ーゼが具備すべき上記諸性質を有する酵素を生産する能
力を持つ微生物を得るべく広く天然界を検索した結果、
アルカリ性に生育の至適pHを有し、バチルス属に属す
るいくつかの細菌が上記要件を備えたβ−マンノシダー
ゼ産生を有し、かつこれを生産性良く生成することを見
出し、本発明を完成したものである。
Means for Solving the Problems The present inventors extensively searched the natural world to obtain microorganisms capable of producing enzymes having the above-mentioned properties that β-mannosidase for industrial use should have. result,
The present invention was completed based on the discovery that some bacteria belonging to the genus Bacillus, which have an alkaline optimum pH for growth, can produce β-mannosidase that meets the above requirements and can produce it with good productivity. It is something.

即ち、本発明は、まず新規β−マンノシダーゼを提供す
るものであり、これは以下のような理化学的緒特性を有
している。
That is, the present invention first provides a novel β-mannosidase, which has the following physical and chemical properties.

(イ)作用: 非還元末端から順次β−マンノシド結合を加水分解し、
マンノースを生成する。
(a) Action: Hydrolyzes β-mannoside bonds sequentially from the non-reducing end,
Produces mannose.

(ロ)基質特異性: β−メチル(エチル)−D−マンノシドヲ完全に分解し
、又β−結合のマンノースを含むオリゴ糖に作用しマン
ノースを遊離する。p−ニトロ−フェニル−グリコシド
のβ−D−マンノシドを基質となしうるが、α−D−マ
ンノシド、α−D−グルコシド、β−D−グルコシド、
α−D−ガラクトシド、β−D−ガラクトシド、β−D
−キシロシド、α−Lニフコシド、β−D−グルクロニ
ドを基質となし得ない。
(b) Substrate specificity: Completely decomposes β-methyl(ethyl)-D-mannoside, and also acts on β-linked mannose-containing oligosaccharides to liberate mannose. β-D-mannoside of p-nitro-phenyl-glycoside can be used as a substrate, but α-D-mannoside, α-D-glucoside, β-D-glucoside,
α-D-galactoside, β-D-galactoside, β-D
-xyloside, α-L nifcoside, and β-D-glucuronide cannot be used as substrates.

(ハ)至適pHおよび安定pH範囲: 至適pHは6〜7てあり、40℃、30分間の加熱条件
下ではpH6〜9の範囲内で安定である。
(c) Optimal pH and stable pH range: The optimal pH is 6 to 7, and is stable within the pH range of 6 to 9 under heating conditions at 40° C. for 30 minutes.

(ニ)温度に対する安定性: pH6,5,30分間の加熱条件下では45℃まで安定
である。
(d) Stability against temperature: Stable up to 45°C under conditions of pH 6, 5, and heating for 30 minutes.

(ホ)作用適温の範囲: 50℃近傍に至適作用温度を有する。(e) Range of suitable temperature for action: It has an optimum operating temperature around 50°C.

(へ)失活条件: 40℃、30分間の処理条件下ではpH5,0および1
0で完全に失活する。また、pH6,5,30分の処理
では、55℃で完全に失活する。
(f) Inactivation conditions: pH 5.0 and 1 under treatment conditions of 40°C and 30 minutes.
At 0, it is completely inactivated. Further, in the treatment at pH 6, 5, and 30 minutes, the activity is completely inactivated at 55°C.

(ト)ゲルろ過法による分子潰: 63、000〜68.000 また、本発明は上記の新規β−マンノシダーゼの製法に
も関り、該β−マンノシダーゼはバチルス属に属し、上
記β−マンノシダーゼを菌体内生産する微生物を培養後
、集菌して、これを分離・精製することを特徴とする方
法によって得Zことができる。
(g) Molecule destruction by gel filtration method: 63,000 to 68,000 The present invention also relates to a method for producing the above-mentioned novel β-mannosidase, wherein the β-mannosidase belongs to the genus Bacillus and the β-mannosidase is Z can be obtained by a method characterized by culturing microorganisms produced within cells, collecting them, and separating and purifying them.

本発明の方法において使用する新規菌体内β−マンノシ
ダーゼ生産菌株は本発明者等により新たに天然界から検
索・単離されたものである。これらの菌株をバージニー
ズ マニュアル オブ デターミナティブ バクテリオ
ロジー(Bergey’ sMannual of D
eterminative Bacteriology
)、第8版およびザ・ジーナス・バチルス[:The 
GenusBacillus  米国、デパートメント
 オブ アグリカルチャー (Dept、 of Ag
ricalture)版〕に従って同定すると、いずれ
も好気性有胞子桿菌であり、運動性があり、周べん毛を
有し、ダラム染色陽性もしくはバリアプル、カタラーゼ
テスト陽性であることから、バチルス(Bacillu
s)属に属することは明らかであったが、pH7,5〜
11.5のアルカリ性で良く生育することから、既知の
バチルス属菌どは分類学上異なる新菌株と考えられた。
The novel intracellular β-mannosidase producing strain used in the method of the present invention was newly searched for and isolated from the natural world by the present inventors. These strains were listed in Bergey's Manual of Determinative Bacteriology.
eterminative Bacteriology
), 8th edition and The Genus Bacillus [:The
GenusBacillus United States, Department of Agriculture (Dept, of Ag)
When identified according to the Bacillus (Ricalture) version, they are all aerobic sporobacilli, are motile, have periflagella, and are positive for Durham staining or positive for barrier pull and catalase tests.
It was clear that it belonged to the genus s), but the pH was 7.5~
Since it grows well in alkaline conditions of 11.5, it was considered to be a new strain that is taxonomically different from known Bacillus bacteria.

以下の第1表に、単離した二種の菌体内β−マンノシダ
ーゼ生産菌の菌学的諸性質を示す。
Table 1 below shows various mycological properties of the two isolated intracellular β-mannosidase producing bacteria.

尚、上記菌は工業技術院微生物工業技術研究所に、夫々
、F E RM P −8859(A S−420)お
よびF E RM P −8860(A S−440)
として寄託している。
The above bacteria were sent to the Institute of Microbial Technology, Agency of Industrial Science and Technology as FERMP-8859 (AS-420) and FERMP-8860 (AS-440), respectively.
It has been deposited as.

本発明の新規な菌体内β−マンノシダーゼの製造法につ
き更に詳しく説明する。上記のような菌体内β−マンノ
シダーゼ生産菌を適当な培地に接種し、該菌体の生育温
度の観点から30〜40℃にて、48〜72時間、好気
的に培養する。ここで、培地は炭素源、窒素源の他、必
要に応じて無機塩、微量栄養素を含むものである。
The novel method for producing intracellular β-mannosidase of the present invention will be explained in more detail. The above-mentioned intracellular β-mannosidase producing bacteria are inoculated into a suitable medium and cultured aerobically for 48 to 72 hours at 30 to 40°C from the viewpoint of the growth temperature of the bacteria. Here, the medium contains inorganic salts and micronutrients as necessary in addition to a carbon source and a nitrogen source.

まず、炭素源としては従来公知の各種材料を使用するこ
とができ、例えばコンニャク粉、ローカストビーンガム
、キャロブガム、グアーガムあるいはこれらを含有する
植物などを典型例として例示できる。
First, various conventionally known materials can be used as the carbon source, and typical examples include konjac flour, locust bean gum, carob gum, guar gum, and plants containing these.

また、窒素源としても特に制限はなく、酵母エキス、ペ
プトン、肉エキス、コーンステイープリカー、アミノ酸
液、大豆粕などの有機態窒素、あるいは硫安、尿素、硝
酸アンモニウム、塩化アンモニウムなどの無機態窒素な
どが安価かつ人手容易なものとして例示できる。
There are also no particular restrictions on nitrogen sources, including organic nitrogen such as yeast extract, peptone, meat extract, cornstarch liquor, amino acid solution, and soybean meal, or inorganic nitrogen such as ammonium sulfate, urea, ammonium nitrate, and ammonium chloride. can be exemplified as something that is inexpensive and easy to handle.

尚、有機態窒素源は炭素源となることはいうまでもない
。更に、このような炭素源、窒素源の他、一般に使用さ
れている各種の塩、例えばマグネシウム塩、カリウム塩
、リン酸塩、鉄塩等の無機塩、ビタミンなどを添加する
ことも可能である。
It goes without saying that the organic nitrogen source serves as a carbon source. Furthermore, in addition to such carbon sources and nitrogen sources, it is also possible to add various commonly used salts, such as inorganic salts such as magnesium salts, potassium salts, phosphates, and iron salts, and vitamins. .

本発明の方法において使用するのに適した培地は、例え
ば1%のコンニャク粉、2%のポリペプトン、0.2%
の酵母エキス、0.1%のに28P04および0.2%
のMg5O<・7H20を含有する液体培地でありi尋
る。
Suitable media for use in the method of the invention include, for example, 1% konjac flour, 2% polypeptone, 0.2%
yeast extract, 0.1% of 28P04 and 0.2%
It is a liquid medium containing Mg5O<・7H20.

また、本発明の方法で使用する微生物の生育pHは塩基
性の範囲内であるので、適当なアルカリを用いて上記培
地のpH値を調整する必要がある。そのために0.5%
炭酸水素ナトリウムを典型例として上げることができる
が、これに限定されず水酸化ナトリウム、水酸化カリウ
ム、炭酸ナトリウム、リン酸ナトリウム、水酸化カルシ
ウムなどのアルカリ試薬も使用できる。
Furthermore, since the growth pH of the microorganisms used in the method of the present invention is within the basic range, it is necessary to adjust the pH value of the medium using an appropriate alkali. 0.5% for that
Sodium hydrogen carbonate can be mentioned as a typical example, but alkaline reagents such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium phosphate, and calcium hydroxide can also be used without being limited thereto.

本発明の方法において使用する菌はいずれもβ−マンノ
シダーゼを菌体内に生産し、そこに蓄積する。これら菌
の培養はバッチ式、連続式のいずれによっても実施する
ことができ、生成する酵素の分離・精製は例えば以下の
ようにして実施することができる。
All of the bacteria used in the method of the present invention produce β-mannosidase within their cells and accumulate it there. Cultivation of these bacteria can be carried out either batchwise or continuously, and the produced enzymes can be separated and purified, for example, as follows.

即ち、まず培養液中の菌体を遠心分離、濾過などの公知
の手段で集菌した後、得られた菌体をそのままマンノオ
リゴ糖の加水分解反応に使用することも可能であり、こ
れは経済的に有利である。
That is, it is possible to first collect the bacterial cells in the culture solution by known means such as centrifugation or filtration, and then use the obtained bacterial cells as they are for the hydrolysis reaction of mannooligosaccharides, which is economical. It is advantageous.

また、勿論これを更に精製して使用することもできる。Of course, it can also be further purified and used.

そのために、例えば菌体破砕抽出後、硫安による塩析、
エタノール、アセトン、イソプロパツール等による溶媒
沈殿法、限外濾過法、ゲル濾過法、イオン交換樹脂等に
よる一般的な酵素精製法により精製することができる。
For this purpose, for example, after crushing and extracting the bacterial cells, salting out with ammonium sulfate,
It can be purified by a solvent precipitation method using ethanol, acetone, isopropanol, etc., an ultrafiltration method, a gel filtration method, a general enzyme purification method using an ion exchange resin, etc.

以下に、本発明のβマンノシダーゼの好ましい精製法の
1例につき説明する。好アルカリ性バチルス属に属する
例えばAS−440菌株を、例えば上記のような培地に
植菌し、37℃にて48時間好気的に培養して得られる
培養液を、12.00Or、p、m 、 0℃にて30
分間遠心分離して菌体を集め、湿重量10gの菌体を得
る。次いで該菌体を氷水中で冷却しなからl Q m 
IA燐酸緩衝液(pH7,0)に懸濁して超音波破砕を
数回に分け、計3分間程度行う。次いて、12.00O
r、p、m、 0℃にて30分間遠心分離して残渣を除
き、上澄液50m1を得る。次いで該上澄液に硫酸アン
モニウムを加えて75%飽和とし、4℃で一夜放置する
。生じた沈澱をろ別し、10mM燐酸緩衝液(pH7,
0)に溶解させ、−夜4℃で同緩衝液に対して透析する
Below, one example of a preferred purification method for β-mannosidase of the present invention will be explained. For example, an AS-440 strain belonging to the alkaliphilic Bacillus genus is inoculated into a medium such as the one described above, and the culture solution obtained by culturing it aerobically at 37°C for 48 hours is 12.00 Or, p, m , 30 at 0℃
The bacterial cells were collected by centrifugation for a minute to obtain bacterial cells with a wet weight of 10 g. Then, the bacterial cells were cooled in ice water.
It is suspended in IA phosphate buffer (pH 7,0) and subjected to ultrasonic disruption several times for a total of about 3 minutes. Then, 12.00O
r, p, m Centrifuge at 0°C for 30 minutes to remove the residue to obtain 50 ml of supernatant. Ammonium sulfate was then added to the supernatant to achieve 75% saturation, and the mixture was allowed to stand overnight at 4°C. The resulting precipitate was filtered and added to 10mM phosphate buffer (pH 7,
0) and dialyzed against the same buffer at 4°C overnight.

生じた沈殿を遠心分離して除き、得られた上澄液を同上
緩衝液で平衡化したDEAD−)ヨパール650Mに吸
着させ、0.1〜0.5MのNaClを含む同上緩衝液
の濃度勾配法によって酵素を溶出する。
The resulting precipitate was removed by centrifugation, and the resulting supernatant was adsorbed onto DEAD-)Yopal 650M equilibrated with the above buffer, followed by a concentration gradient of the above buffer containing 0.1 to 0.5 M NaCl. The enzyme is eluted by a method.

溶出した活性画分を集め、同上緩衝液に対して一夜、4
℃で透析した後、同上緩衝液で平衡化したハイドロオキ
シアパタイトに吸着させる。ついで、0.4M’Jン酸
緩衝波緩衝液18.0)で酵素を溶出させ、活性画分を
集めて、平均分画分子量10.000の限外濾過膜を用
いて濃縮する。濃縮酵素は、高速液体クロマトグラフ用
蛋白質分取精製用力うムジョデックス プロティン(S
tlOD[EX  protein)WS −2003
に充填し、10mM’lン酸緩衝液(pH7,O)を用
いて溶出する。かくして得られた活性画分は濃縮した後
、同上刃ラムを用いて同一条件で再度クロマトグラフィ
ーにかけ、得られる活性画分を濃縮し、ポリアクリルア
ミドゲルディスク電気泳動法〔アナルズ ニューヨーク
 アカデミツク サイエンス(ANN、  N、  Y
、   Acad、   Sci、)、121.  4
04  (1964)   :l  fごおいて均一な
酵素標品15mgが得られ活性収率は18%であった。
The eluted active fractions were collected and incubated against the same buffer overnight for 4 hours.
After dialysis at °C, it is adsorbed onto hydroxyapatite equilibrated with the same buffer. Then, the enzyme is eluted with 0.4 M'J acid buffer (18.0), and the active fractions are collected and concentrated using an ultrafiltration membrane with an average molecular weight cutoff of 10.000. The concentrated enzyme is Mujodex Protein (S) for high performance liquid chromatography.
tlOD[EX protein)WS-2003
and elute using 10mM phosphate buffer (pH 7,0). The active fraction thus obtained was concentrated and then subjected to chromatography again under the same conditions using the same blade ram. N, Y
, Acad, Sci.), 121. 4
04 (1964): 15 mg of a homogeneous enzyme preparation was obtained with an activity yield of 18%.

なお、本発明の方法において有用なA S−420菌株
についても上記方法と同様にして精製することができる
Note that the AS-420 strain useful in the method of the present invention can also be purified in the same manner as the above method.

なお、β−マンノシダーゼ活性の測定法並びに活性表示
法は以下の通りである。
The method for measuring β-mannosidase activity and the method for displaying the activity are as follows.

即ち、0.2Mの燐酸緩衝液(pH7,0) 0.2m
lと3m!、1のp−ニトロフェニル−β−D−マンノ
ピラノシド水溶液0.2mlに酵素液0.1mlを混合
し、40℃で10分間反応させた後、0.5Mの炭酸ナ
トリウム水溶液1.Omlを添加して酵素を失活させた
後、水を加えて3mlにする。着色度を紫外光(波長4
20nm)で1μmol /mlのp−ニトロフェノー
ルを標準として測定する。
That is, 0.2M phosphate buffer (pH 7.0)
l and 3m! , 0.1 ml of the enzyme solution was mixed with 0.2 ml of p-nitrophenyl-β-D-mannopyranoside aqueous solution of 1. After adding Oml to inactivate the enzyme, add water to make up to 3ml. The degree of coloration is measured using ultraviolet light (wavelength 4
20 nm) with 1 μmol/ml p-nitrophenol as a standard.

酵素活性のm位は前述の条件下で1分間に1μmolの
p−ニトロフェノールを遊離させる酵素量を1単位とし
て表示する。
The m-position of enzyme activity is expressed as one unit, which is the amount of enzyme that liberates 1 μmol of p-nitrophenol per minute under the above-mentioned conditions.

本発明の方法によって得られるβ−マンノシダーゼの理
化学的、酵素化学的性質は上記の他、各菌株A S−4
20およびA S−440から得られる酵素の分子量は
夫々68.000±3.000、および63.000±
3.000である。尚、これらの分子量はゲル濾過法で
求めたものである。
In addition to the above, the physicochemical and enzymatic properties of β-mannosidase obtained by the method of the present invention are as follows:
The molecular weights of the enzymes obtained from 20 and AS-440 are 68.000±3.000 and 63.000±, respectively.
It is 3.000. Incidentally, these molecular weights were determined by gel filtration method.

本発明のβ−マンノシダーゼおよび従来公知の微生物由
来のβ−マンノシダーゼの理化学的性質および酵素化学
的性質を比較して第2表に示す。
Table 2 shows a comparison of the physicochemical and enzymatic properties of the β-mannosidase of the present invention and the conventionally known β-mannosidase derived from microorganisms.

第2表 β−マンノシダーゼ 作用 β−D−マンナンは様々な植物中に比較的多量に含まれ
ており、種々の分野においてそのまま、または化学的改
質処理を施した後、糊料、増粘剤、食品材料として工業
的に利用されている。ところで、このβ−D−マンナン
を例えば繊維産業において糊料などとして使用した場合
、所定の加工処理の終了後除去されるが、その場合一般
にその分解酵素、β−マンノシダーゼ等が使用される。
Table 2 β-mannosidase action β-D-mannan is contained in relatively large amounts in various plants, and is used in various fields as a thickener and thickener, either as is or after chemical modification. is used industrially as a food material. By the way, when this β-D-mannan is used, for example, as a thickening agent in the textile industry, it is removed after a predetermined processing process, and in that case, its degrading enzyme, β-mannosidase, etc. are generally used.

また、β−D−マンナンを加水分解し、得られる分解生
成物を利用する場合にもこの種の酵素が利用される。
This type of enzyme is also used when β-D-mannan is hydrolyzed and the resulting decomposition product is used.

しかしながら、従来知られているβ−マンノシダーゼは
いずれも生産性が低く、培養法・精製法の煩雑なものが
多かった。そのため高価であり、上記のような工業的な
大規模利用は困難であった。
However, all of the conventionally known β-mannosidases have low productivity and many require complicated culture and purification methods. Therefore, it is expensive and difficult to use on a large scale industrially as described above.

更に、β−D−マンナンの抽出工程は一般にアルカリ側
で実施されるが、このような場合にはアルカリ性で既知
の酵素よりも安定であり、至適pHも高い酵素を使用す
ることが有利である。即ち、酸性側に至適pHをもつ従
来の酵素では、分解反応を行う前に中和剤で抽出液のp
H調節を行う必要があり、これは工程を複雑化するばか
りか、コスト高なものとしてしまう。
Furthermore, the extraction process of β-D-mannan is generally carried out in an alkaline environment, and in such cases it is advantageous to use an enzyme that is more stable than known enzymes in alkaline conditions and has a higher optimum pH. be. In other words, with conventional enzymes that have an optimum pH on the acidic side, the pH of the extract is reduced using a neutralizing agent before the decomposition reaction.
It is necessary to perform H adjustment, which not only complicates the process but also increases cost.

従って、遺産可能な方法の開発が必要であり、また既知
の酵素よりも高い至適pHをもつ酵素の開発が必要であ
る。
Therefore, there is a need to develop legacy methods, and there is a need to develop enzymes with a higher pH optimum than known enzymes.

本発明者等の見出した特定の微生物によれば上記のβ−
D−マンナンの分解に係る要件をいずれも満足する酵素
を多量に得ることが可能であり、従来の諸問題点を一挙
に解決できる。
According to the specific microorganisms discovered by the present inventors, the above β-
It is possible to obtain a large amount of an enzyme that satisfies all the requirements related to the decomposition of D-mannan, and various conventional problems can be solved at once.

即ち、量産性並びにコストの問題は本発明により新たに
見出された親菌株を用いることにより克服でき、簡単な
方法で大量に得ることができ、しかも安価である。従っ
て、大規模な工業的利用が可能となる。
That is, the problems of mass production and cost can be overcome by using the parent strain newly discovered according to the present invention, which can be obtained in large quantities by a simple method and is inexpensive. Therefore, large-scale industrial use becomes possible.

また、得られる酵素のマンナン分解反応における至適p
Hが中性近傍にあるので、マンナンの抽出処理後わずか
なpH調節を施した後即座に次の分解反応に移行するこ
とができる。従って、分解操作が簡略化されると共に経
済的にも有利になる。
In addition, the optimal p in the mannan decomposition reaction of the obtained enzyme is
Since H is near neutrality, it is possible to immediately proceed to the next decomposition reaction after performing a slight pH adjustment after the mannan extraction process. Therefore, the disassembly operation is simplified and economically advantageous.

実施例 以下、本発明を実施例によりさらに詳しく説明する。Example Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 好アルカリ性細菌バチルスAS−420株(F[ERM
 P−8859)を500m1容の三角フラスコ中の、
グアーガム0.5%、コーンステイープリカー5%、硫
安0.1%、K2HP0,0.1%、んIgsO<・7
8200.02%および炭酸ソーダ肌25%を含む培養
液100m1 (pH9,5)に植菌し、37℃で48
時間、20Or、 p、 m、 で振とう培養した。つ
いで、該培養液を12. ooor、 p、ml、0℃
にて30分間遠心分離して菌体を回収し、5mlの10
+t+M燐酸緩衝液に懸濁後、超音波破砕機にて菌体を
破砕した。づいで、この菌体破砕液を12.0OOr、
 p、 m。
Example 1 Alkaliphilic bacterium Bacillus AS-420 strain (F[ERM
P-8859) in a 500ml Erlenmeyer flask,
Guar gum 0.5%, cornstarch liquor 5%, ammonium sulfate 0.1%, K2HP 0.0.1%, IgsO<・7
Inoculate 100ml of culture solution (pH 9.5) containing 0.02% 8200.02% and 25% soda skin, and incubate at 37℃ for 48 hours.
The cells were cultured with shaking for 20 hours, p, m, and 20 hours. Then, the culture solution was subjected to 12. ooor, p, ml, 0℃
Collect the bacterial cells by centrifugation for 30 minutes at
After suspending in +t+M phosphate buffer, the bacterial cells were disrupted using an ultrasonic disruptor. Next, this bacterial cell disruption solution was heated to 12.0OOr,
p, m.

にて0℃で30分間遠心分離し、得られた上澄液のβ−
マンノシダーゼ活性を測定した結果、16単位/mlで
あった。
Centrifugation was performed at 0°C for 30 minutes, and the resulting supernatant was β-
Mannosidase activity was measured and found to be 16 units/ml.

実施例2 好アルカリ性細菌バチルスへS−044株(旺RIJ 
P−8860)を500m1容の三角フラスコ中の、や
し搾油カス2%、大豆カス1%、KNO30,2%、N
a2 HP 040.1%、MgSO3・7H200,
02%および炭酸ソーダ0.5%を含む培養液100m
1 (pH10,0)に植菌し、40℃で50時間25
0r、 pom、で振とう培養した。ついで、この菌体
破砕液を12.0OOr、 p、 m、にて0℃で30
分間遠心分離し、得られた上澄液のβ−マンノシダーゼ
活性を測定した結果、38単位/mlであった。
Example 2 To alkalophilic bacterium Bacillus strain S-044 (ORIJ
P-8860) in a 500ml Erlenmeyer flask, 2% palm oil residue, 1% soybean residue, 30.2% KNO, 2% N
a2 HP 040.1%, MgSO3・7H200,
100ml of culture solution containing 0.02% and 0.5% soda
1 (pH 10,0) and incubated at 40°C for 50 hours 25
The cells were cultured with shaking at 0r, pom. Next, this cell suspension was incubated at 12.0 OOr, p, m, at 0°C for 30 minutes.
The β-mannosidase activity of the supernatant obtained after centrifugation for one minute was measured and found to be 38 units/ml.

発明の効果 以上詳しく述べたように、本発明によればアルカリ側に
酵素反応の至適pHを有するβ−D−マンナンの加水分
解酵素の1つ、即ちβ−マンノシダーゼが提供され、こ
のものを使用することによりβ−D−マンナンを高い効
率で、しかも簡単かつ経済的な工程で分解し、不用とな
ったマンナンを迅速に除去でき、あるいは目的とする分
解生成物を量産することができる。
Effects of the Invention As described in detail above, the present invention provides one of the β-D-mannan hydrolyzing enzymes, namely β-mannosidase, which has an optimum pH for enzymatic reaction on the alkaline side. By using it, β-D-mannan can be decomposed with high efficiency in a simple and economical process, unnecessary mannan can be quickly removed, or the target decomposition product can be mass-produced.

また、本発明のβ−マンノシダーゼの製造方法によれば
、該酵素を高い生産性で簡単に得ることができる。従っ
て、該酵素を安価に工業的規模で利用することが可能と
なる。
Moreover, according to the method for producing β-mannosidase of the present invention, the enzyme can be easily obtained with high productivity. Therefore, it becomes possible to utilize the enzyme at low cost on an industrial scale.

Claims (4)

【特許請求の範囲】[Claims] (1)以下の理化学的性質を有する新規β−マンノシダ
ーゼ。 (イ)作用: 非還元末端から順次β−マンノシド結合を加水分解し、
マンノースを生成する。 (ロ)基質特異性: β−メチル(エチル)−D−マンノシドを完全に分解し
、又β−結合のマンノースを含むオリゴ糖に作用しマン
ノースを遊離する。p−ニトロ−フェニル−グリコシド
のβ−D−マンノシドを基質となしうるが、α−D−マ
ンノシド、α−D−グルコシド、β−D−グルコシド、
α−D−ガラクトシド、β−D−ガラクトシド、β−D
−キシロシド、α−L−フコシド、β−D−グルクロニ
ドを基質となし得ない。 (ハ)至適pHおよび安定pH範囲: 至適pHは6〜7であり、40℃、30分間の加熱条件
下ではpH6〜9の範囲内で安定である。 (ニ)温度に対する安定性: pH6.5、30分間の加熱条件下では45℃まで安定
である。 (ホ)作用適温の範囲: 50℃近傍に至適作用温度を有する。 (ヘ)失活条件: 40℃、30分間の処理条件下ではpH5.0および1
0で完全に失活する。また、pH6.5、30分間の処
理では、55℃で完全に失活する。 (ト)ゲルろ過法による分子量: 63,000〜68,000
(1) A novel β-mannosidase having the following physical and chemical properties. (a) Action: Hydrolyzes β-mannoside bonds sequentially from the non-reducing end,
Produces mannose. (b) Substrate specificity: Completely decomposes β-methyl(ethyl)-D-mannoside, and also acts on β-linked mannose-containing oligosaccharides to liberate mannose. β-D-mannoside of p-nitro-phenyl-glycoside can be used as a substrate, but α-D-mannoside, α-D-glucoside, β-D-glucoside,
α-D-galactoside, β-D-galactoside, β-D
-xyloside, α-L-fucoside, and β-D-glucuronide cannot be used as substrates. (c) Optimal pH and stable pH range: The optimal pH is 6 to 7, and is stable within the pH range of 6 to 9 under heating conditions at 40° C. for 30 minutes. (d) Stability against temperature: Stable up to 45°C under conditions of pH 6.5 and heating for 30 minutes. (e) Range of optimum temperature for action: The optimum temperature for action is around 50°C. (f) Inactivation conditions: pH 5.0 and 1 under treatment conditions of 40°C and 30 minutes.
At 0, it is completely inactivated. Furthermore, when treated at pH 6.5 for 30 minutes, the activity is completely inactivated at 55°C. (g) Molecular weight by gel filtration method: 63,000 to 68,000
(2)以下の理化学的性質: (イ)作用: 非還元末端から順次β−マンノシド結合を加水分解し、
マンノースを生成する。 (ロ)基質特異性: β−メチル(エチル)−D−マンノシドを完全に分解し
、又β−結合のマンノースを含むオリゴ糖に作用しマン
ノースを遊離する。p−ニトロ−フェニル−グリコシド
のβ−D−マンノシドを基質となしうるが、α−D−マ
ンノシド、α−D−グルコシド、β−D−グルコシド、
α−D−ガラクトシド、β−D−ガラクトシド、β−D
−キシロシド、α−L−フコシド、β−D−グルクロニ
ドを基質となし得ない。 (ハ)至適pHおよび安定pH範囲: 至適pHは6〜7であり、40℃、30分間の加熱条件
下ではpH6〜9の範囲内で安定である。 (ニ)温度に対する安定性: pH6.5、30分間の加熱条件下では45℃まで安定
である。 (ホ)作用適温の範囲: 50℃近傍に至適作用温度を有する。 (ヘ)失活条件: 40℃、30分間の処理条件下ではpH5.0および1
0で完全に失活する。また、pH6.5、30分間の処
理では、55℃で完全に失活する。 (ト)ゲルろ過法による分子量: 63,000〜68,000 を有するβ−マンノシダーゼ生産能を有し、アルカリ側
に生育の至適pHを有するバチルス属に属する微生物を
培養し、該β−マンノシダーゼを菌体内に生成・蓄積さ
せ、これを採取することを特徴とする上記新規菌体内β
−マンノシダーゼの製造方法。
(2) The following physical and chemical properties: (a) Action: Hydrolyzes β-mannoside bonds sequentially from the non-reducing end,
Produces mannose. (b) Substrate specificity: Completely decomposes β-methyl(ethyl)-D-mannoside, and also acts on β-linked mannose-containing oligosaccharides to liberate mannose. β-D-mannoside of p-nitro-phenyl-glycoside can be used as a substrate, but α-D-mannoside, α-D-glucoside, β-D-glucoside,
α-D-galactoside, β-D-galactoside, β-D
-xyloside, α-L-fucoside, and β-D-glucuronide cannot be used as substrates. (c) Optimal pH and stable pH range: The optimal pH is 6 to 7, and is stable within the pH range of 6 to 9 under heating conditions at 40° C. for 30 minutes. (d) Stability against temperature: Stable up to 45°C under conditions of pH 6.5 and heating for 30 minutes. (e) Range of optimum temperature for action: The optimum temperature for action is around 50°C. (f) Inactivation conditions: pH 5.0 and 1 under treatment conditions of 40°C and 30 minutes.
At 0, it is completely inactivated. Furthermore, when treated at pH 6.5 for 30 minutes, the activity is completely inactivated at 55°C. (G) A microorganism belonging to the genus Bacillus that has the ability to produce β-mannosidase with a molecular weight of 63,000 to 68,000 by gel filtration method and has an optimum pH for growth on the alkaline side is cultured, and the β-mannosidase is The above-described novel intracellular β
- A method for producing mannosidase.
(3)上記培養を30〜45℃の範囲内の温度下で好気
的に行うことを特徴とする特許請求の範囲第2項記載の
菌体内β−マンノシダーゼの製造方法。
(3) The method for producing intracellular β-mannosidase according to claim 2, wherein the culturing is carried out aerobically at a temperature within the range of 30 to 45°C.
(4)上記培養液のpHが7.5〜11.5の範囲内に
あることを特徴とする特許請求の範囲第2項または第3
項記載の菌体内β−マンノシダーゼの製造方法。
(4) Claim 2 or 3, characterized in that the pH of the culture solution is within the range of 7.5 to 11.5.
A method for producing intracellular β-mannosidase as described in 2.
JP17958786A 1986-07-30 1986-07-30 Beta-mannosidase and production thereof Granted JPS6336779A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17958786A JPS6336779A (en) 1986-07-30 1986-07-30 Beta-mannosidase and production thereof
JP13546889A JPH02242678A (en) 1986-07-30 1989-05-29 Novel beta-mannosidase and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17958786A JPS6336779A (en) 1986-07-30 1986-07-30 Beta-mannosidase and production thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13546889A Division JPH02242678A (en) 1986-07-30 1989-05-29 Novel beta-mannosidase and production thereof

Publications (2)

Publication Number Publication Date
JPS6336779A true JPS6336779A (en) 1988-02-17
JPH0370471B2 JPH0370471B2 (en) 1991-11-07

Family

ID=16068336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17958786A Granted JPS6336779A (en) 1986-07-30 1986-07-30 Beta-mannosidase and production thereof

Country Status (1)

Country Link
JP (1) JPS6336779A (en)

Also Published As

Publication number Publication date
JPH0370471B2 (en) 1991-11-07

Similar Documents

Publication Publication Date Title
JPS6356289A (en) Beta-mannanase and production thereof
JPH0347076A (en) Beta-mannase and production thereof
JPH0412707B2 (en)
JP2626662B2 (en) Novel β-mannanase and method for producing the same
JPH04278087A (en) New heparitinases, their production and microorganism producing the same
JPS6336779A (en) Beta-mannosidase and production thereof
JP2626663B2 (en) Method for producing novel β-mannosidase
JPH0379991B2 (en)
JP3014950B2 (en) Method for producing trehalose
JPH02242678A (en) Novel beta-mannosidase and production thereof
JPH0761265B2 (en) New strain belonging to the genus Thomas, new β-galactosidase and method for producing the same
JP3040976B2 (en) Method for producing saccharified solution containing trehalose
JPH0523183A (en) New alpha-galactosidase and production of sugar using the same
JP3642095B2 (en) Novel neutral xylanase and production method thereof
JP2615443B2 (en) Method for producing N-acetyl-D-glucosamine deacetylase
EP0320685B1 (en) A process for the obtention of thermostable alpha-amylases by culturing superproductive microorganisms at high temperatures
JPS63301788A (en) Production of alpha-1,3-glucanase
JPH04237496A (en) Production of cyclic inulo oligosaccharide
JP2833081B2 (en) Method for producing inulotriose and / or inulotetraose
JPH0391478A (en) Production of collagenase
JPH0269183A (en) Beta-1,3-glucanase and production thereof
JP4439153B2 (en) Thermostable mannose isomerase and method for producing mannose using the enzyme
JPH0257183A (en) Novel heparan sulfate degradation enzyme and microorganism producing same and method for producing same enzyme
JPH0523175A (en) Bacillus stearothermophilus jd-72 strain and production of alpha-galactosidase using the strain
JPH01252281A (en) Novel exsoxylnase ii, production thereof and production of xylose by said enzyme

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term