JPH02242678A - Novel beta-mannosidase and production thereof - Google Patents

Novel beta-mannosidase and production thereof

Info

Publication number
JPH02242678A
JPH02242678A JP13546889A JP13546889A JPH02242678A JP H02242678 A JPH02242678 A JP H02242678A JP 13546889 A JP13546889 A JP 13546889A JP 13546889 A JP13546889 A JP 13546889A JP H02242678 A JPH02242678 A JP H02242678A
Authority
JP
Japan
Prior art keywords
mannosidase
minutes
range
mannoside
mannose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13546889A
Other languages
Japanese (ja)
Other versions
JPH0517833B2 (en
Inventor
Toshiro Akino
秋野 利郎
Nobuyuki Nakamura
信之 中村
Koki Horikoshi
弘毅 掘越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP17958786A external-priority patent/JPS6336779A/en
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP13546889A priority Critical patent/JPH02242678A/en
Publication of JPH02242678A publication Critical patent/JPH02242678A/en
Publication of JPH0517833B2 publication Critical patent/JPH0517833B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To hydrolyze beta-D-mannan and enable efficient recovery and utilization of a hydrolyzate by culturing an AS-440 strain belonging to the genus Bacillus and using the resultant enzyme having specific physico-chemical characteristics. CONSTITUTION:A microorganism AS-440 (FERM P-8860) capable of producing intracellular beta-mannosidase is inoculated into a culture medium, containing a carbon source, such as 'KONJAK' (devil's-tongue) powder, a nitrogen source, such as peptone, inorganic salts and minor nutriments, regulated to pH 7.5-11.5 with 0.5% sodium hydrogencarbonate and aerobically cultured at 30-40 deg.C. Microbial cells in the culture solution are then collected by a well-known means, such as centrifugation or filtration. The resultant microbial cells can be directly used. Alternatively, the microbial cells can be crushed, extracted and then purified by a normal method for purifying the enzyme. Thereby, beta-D-mannan can be hydrolyzed in a simple and economical step with a high efficiency and the unnecessary mannan can be rapidly removed for the objective hydrolyzate can be mass-produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規なβ−マンノシダーゼと、その製造法に関
するものである。更に詳しくは、新規なバチルス属に属
するアルカリ側に生育の至適pHを有する好アルカリ性
の微生物を培養して得られる酵素反応の至適pHを中性
近傍に有する菌体内β−マンノシダーゼと、その製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel β-mannosidase and a method for producing the same. More specifically, the intracellular β-mannosidase, which has an optimum pH for enzymatic reaction in the vicinity of neutrality, obtained by culturing a new alkaliphilic microorganism belonging to the genus Bacillus and has an optimum pH for growth on the alkaline side; It concerns the manufacturing method.

従来の技術 β−マンノシダーゼは、分子内にβ−マンノシド結合を
有する低分子のβ−D−マンナン(マンナン、グルコマ
ンナン、ガラクトマンナン、ガラクトグルコマンナン)
に作用し、非還元末端部位から順次マンノシド結合を加
水分解し、マンノースを生成する酵素である。
Conventional technology β-mannosidase is a low-molecular β-D-mannan (mannan, glucomannan, galactomannan, galactoglucomannan) that has a β-mannosidic bond in the molecule.
It is an enzyme that hydrolyzes mannoside bonds sequentially from the non-reducing end site to produce mannose.

β−D−マンナンを含むものとして、アイポリ−ナツツ
(学名:フイテレファス・マクロカルバ)やコロゾがよ
く知られている。その池、β−1゜4−マンナン含有植
物としてはヤシ科のフオエニクス・カナリエンシス、オ
ーキス・マキュラタなどが知られている。
Aipori nuts (scientific name: Phytelephas macrocarba) and corozo are well known as those containing β-D-mannan. Plants containing β-1°4-mannan in this pond include Phoenicus canariensis and Orchis maculata, which belong to the palm family.

ガラクトマンナンはイナゴマメやグアーの種子に含まれ
る各粘質物、ローカストビーンガム及びグアーガムが代
表的なものであり、この二種のガラクトマンナンは、工
業的にそのままあるいは化学的な改質をほどこし、広く
使用されている。
Typical examples of galactomannan are the mucilages contained in carob and guar seeds, locust bean gum, and guar gum. It is used.

また、ガラクトマンナンは大豆、コーヒー豆、ムラサキ
ウマゴヤシ、アカツメフサ、コロハなどマメ科の植物に
も多く含まれている。その他のガラクトマンナン含有植
物としては、ゲニスタ・スコパリア、ブレデイラシャ・
フエロクス、レウカエナ・グラウカなどが知られている
Galactomannan is also found in large amounts in leguminous plants such as soybeans, coffee beans, alfalfa, red clover, and fenugreek. Other galactomannan-containing plants include Genista scoparia, Bredeirasha
Known examples include Fuerox and Leucaena glauca.

グルコマンナン含有物としてはコンニャク (学名ニア
モルフオファラス・コンニャク)が最も有名であるが、
サイトモ科のアルム根、マツ属のジャックパイン、ラン
科の球根、ニジマツやハリモミなどのトウヒ属の植物な
どが知られている。その他のグルコマンナン含有植物と
しては、アスパラガス・オフィシナリス、エレムラス・
ラスカス、エレムラス・レゲリー、エレムラス・スペク
タビリス、ファセオラス・アウレウスなどが知られてい
る。グルコマンナンはこれら植物などからアルカリ抽出
法等により得られている。また、これらβ−D−マンナ
ンは糊料あるいは増粘剤として食品工業や繊維産業で工
業的に大量に消費されている。
Konjac (scientific name: Nearmorphopharus konjac) is the most famous glucomannan-containing substance.
Known examples include arum roots of the Cytomaceae family, jackpines of the Pinus genus, bulbs of the Orchidaceae family, and plants of the spruce genus such as rainbow pine and harem. Other glucomannan-containing plants include Asparagus officinalis, Eremurus
Ruscus, Eremurus legeri, Eremurus spectabilis, Phaseolus aureus, etc. are known. Glucomannan is obtained from these plants by an alkali extraction method or the like. Further, these β-D-mannans are consumed in large quantities industrially in the food industry and the textile industry as thickeners or thickeners.

従来、これらβ−D−マンナンの非還元末端からマンノ
ース単位で加水分解する酵素として知られているβ−マ
ンノシダーゼは、動物〔バイオケミストリー(f3io
chemisむry)、  1972. 11. 14
93〜1501:バイオシミカ エ バイオフィジカ 
アクタ(Biochim、Biophys、Acta)
、 1973.268 、488〜496:バイオシミ
カ エ バイオフィジカ アクタ(Biochim、 
Biophys、 Acta)、1973,315.1
23〜127)、植物〔ジャーナル オブ バイオロジ
カルケミスト リ −(J、  Biol、  Che
m、)、 1964. 239 .990〜992) 
 、微生物〔バイオシミ力 エバイオフィジカアクタ 
(Biochim、 Biophys、Acta )、
1978,522.521〜530:特開昭51−38
486号)〕などの酵素が良く研究されている。
β-mannosidase, which has been known as an enzyme that hydrolyzes β-D-mannan into mannose units from the non-reducing end, has been developed in animals [biochemistry (f3io
Chemistry), 1972. 11. 14
93-1501: Biosimica e Biophysica
Acta (Biochim, Biophys, Acta)
, 1973.268, 488-496: Biochim,
Biophys, Acta), 1973, 315.1
23-127), plants [Journal of Biological Chemistry - (J, Biol, Che
m, ), 1964. 239. 990-992)
, microorganisms [biostain force
(Biochim, Biophys, Acta),
1978, 522.521-530: Japanese Patent Publication No. 51-38
No. 486)] and other enzymes have been well studied.

しかしながら、これらの酵素はいずれも生産性2が低く
、培養法・精製法が煩雑なものが多く、該酵素を工業的
に安価に使用する場合に難点を残していた。
However, all of these enzymes have low productivity 2 and many require complicated culture and purification methods, leaving difficulties in using the enzymes industrially at low cost.

発明が解決しようとする問題点 天然界に再生可能な資源として大量に存在するβ−D−
マンナンの有効利用、特に該物質の酵素的加水分解によ
るマンノオリゴ糖やマンノース、グルコース、ガラクト
ースなどの糖類を効率良く回収・利用するためには、安
定性に優れ、酵素の精製が容易であることが好ましい。
Problems to be solved by the invention β-D- exists in large quantities as a renewable resource in the natural world.
In order to effectively utilize mannan, especially to efficiently recover and utilize mannooligosaccharides and sugars such as mannose, glucose, and galactose through enzymatic hydrolysis of mannan, it is important that the enzyme has excellent stability and is easy to purify. preferable.

しかしながら、動物、植物、微生物などの各種の起源を
持つ従来提案されていたβ−マンノシダーゼは、既に述
べたように、該酵素の生産性の点で不十分であり、その
製法、精製法も複雑で実用化するには依然として不満足
なものであった。
However, as mentioned above, the previously proposed β-mannosidases, which have various origins such as animals, plants, and microorganisms, are insufficient in terms of productivity, and their production and purification methods are also complicated. It was still unsatisfactory for practical use.

従って、上記の如き製造・精製の容易な、しかも高い安
定性を有するこの種の酵素を新たに開発することは、デ
ンプンと共に天然界に大量に存在する再生利用可能なβ
−マンナンを分解し、あるいは分解生成物(マンノース
等)を回収・利用する上で極めて大きな意義をもつ。
Therefore, it is important to newly develop this type of enzyme that is easy to produce and purify and has high stability as described above.
-It is of great significance in decomposing mannan or recovering and utilizing decomposition products (mannose, etc.).

そこで、本発明の第1の目的は上記の各種要件を満足す
る新規な酵素、β−マンノシダーゼを提供することにあ
る。
Therefore, the first object of the present invention is to provide a novel enzyme, β-mannosidase, that satisfies the above various requirements.

本発明の第2の目的は、上記の新規なβ−マンノシダー
ゼを簡単かつ高い収率で該酵素を得ることのできる新規
な微生物を用いて製造する方法を提供することにある。
A second object of the present invention is to provide a method for producing the novel β-mannosidase described above using a novel microorganism that can produce the enzyme easily and in high yield.

問題点を解決するための手段 本発明者らは、工業的に使用するためのβ−マンノシダ
ーゼが具備すべき上記諸性質を有する酵素を生産する能
力を持つ微生物を得るべく広く天然界を検索した結果、
アルカリ性に生育の至適pHを有し、バチルス属に属す
る細菌が上記要件を備えたβ−マンノシダーゼ産生を有
し且つこれを生産性良く生成することを見出し、本発明
を完成したものである。
Means for Solving the Problems The present inventors extensively searched the natural world to obtain microorganisms capable of producing enzymes having the above-mentioned properties that β-mannosidase for industrial use should have. result,
The present invention was completed by discovering that bacteria belonging to the genus Bacillus, which has an alkaline optimum pH for growth, can produce β-mannosidase that meets the above requirements and can produce it with good productivity.

本発明の第1の観点によって提供される新規β−マンノ
シダーゼは、下記のような理化学的緒特性を有している
: (イ)作用: 非還元末端から順次β−マンノシド結合を加水分解し、
マンノースを生成する。
The novel β-mannosidase provided by the first aspect of the present invention has the following physical and chemical properties: (a) Action: Hydrolyzes β-mannosidic bonds sequentially from the non-reducing end,
Produces mannose.

(ロ)基質特異性: β−メチル(エチル)−D−マンノシドを完全に分解し
、又β−結合のマンノースを含むオリゴ糖に作用しマン
ノースを遊離する。
(b) Substrate specificity: Completely decomposes β-methyl(ethyl)-D-mannoside, and also acts on β-linked mannose-containing oligosaccharides to liberate mannose.

p−ニトロ−フェニル−グリコシドのβ−Dマンノシド
を基質となしうるが、α−Dマンノシド、α−D−クル
コシド、β−D−グルコシド、α−D−ガラクトシド、
β−Dガラクトシド、β−D−キシロシド、αL−フコ
シド、β−D−グルクロニドを基質となし得ない。
β-D mannoside of p-nitro-phenyl-glycoside can be used as a substrate, but α-D mannoside, α-D-curcoside, β-D-glucoside, α-D-galactoside,
β-D galactoside, β-D-xyloside, αL-fucoside, and β-D-glucuronide cannot be used as substrates.

(ハ)至適pHおよび安定pH範囲: 至適pHは6〜7であり、40℃、30分間の加熱条件
下ではpH6〜9の範囲内で安定である。
(c) Optimal pH and stable pH range: The optimal pH is 6 to 7, and is stable within the pH range of 6 to 9 under heating conditions at 40° C. for 30 minutes.

(ニ)温度に対する安定性: pH6,5,30分間の加熱条件下では45℃まで安定
である。
(d) Stability against temperature: Stable up to 45°C under conditions of pH 6, 5, and heating for 30 minutes.

(ホ)作用適温の範囲: 50℃近傍に至適作用温度を有する。(e) Range of suitable temperature for action: It has an optimum operating temperature around 50°C.

(へ)失活条件: 40℃、30分間の処理条件下ではpH5.0およびI
Oで完全に失活する。また、ρ■6.5.30分の処理
では、55℃で完全に失活する。
(f) Inactivation conditions: pH 5.0 and I under treatment conditions of 40°C and 30 minutes.
It is completely inactivated by O. Further, in the treatment of ρ■6.5.30 minutes, the activity is completely inactivated at 55°C.

(ト)ゲルろ過法による分子量 63、000±3.000 上記の新規β−マンノシダーゼは、本発明の第2の観点
によって提供されるその製造方法によって製造すること
ができる。本発明の方法は、バチルス属に属する上記β
−マンノシダーゼを菌体内生産する微生物を培養した後
、集菌して、これを分離・精製することを特徴とする方
法によって得ることができる。
(g) Molecular weight by gel filtration method: 63,000±3.000 The above novel β-mannosidase can be produced by the production method provided by the second aspect of the present invention. The method of the present invention provides the above-mentioned β belonging to the genus Bacillus.
- It can be obtained by a method characterized by culturing a microorganism that intracellularly produces mannosidase, collecting the microorganisms, and then isolating and purifying the microorganisms.

本発明の方法において使用する新規菌体内βマンノシダ
ーゼ生産菌株は、本発明者等により新たに天然界から検
索・単離されたものである。これらの菌株をバージニー
ズ マニュアル オブデターミナティブ バクテリオロ
ジー(Bergey’ sMannual of De
terminative Bacteriology)
、第8版およびザ・ジーナス・バチルス(The Ge
nusBacillus、米国、デパートメント オブ
 アグリカルチャー (Dept、 of Agric
ulture)版〕に従って同定すると、好気性有胞子
桿菌であり、運動性があり、周べん毛を有し、ダラム染
色陽性もしくはバリアブノペカタラーゼテスト陽性であ
ることから、バチルス(Bacillus)属に属する
ことは明らかであったが、pH7,5〜11.5のアル
カリ性で良く生育することから、既知のバチルス属菌と
は分類学上界なる新菌株と考えられた。
The novel intracellular β-mannosidase-producing bacterial strain used in the method of the present invention was newly searched for and isolated from nature by the present inventors. These strains were listed in Bergey's Manual of Determinative Bacteriology.
terminative Bacteriology)
, 8th edition and The Genus Bacillus (The Ge
nusBacillus, Department of Agriculture, USA
According to the Bacillus genus, it is an aerobic sporobacillus, is motile, has periflagella, and has a positive Durham stain or a positive variable bnopecatalase test. It was clear that the strain belonged to the genus Bacillus, but since it grows well in an alkaline pH range of 7.5 to 11.5, it was considered to be a new strain that is taxonomically superior to the known Bacillus genus bacteria.

以下の第1表に、単離菌体内β−マンノシダーゼ生産閑
の菌学的諸性質を示す。
Table 1 below shows various mycological properties of isolated intracellular β-mannosidase producing cells.

第1表(1) 第1表(2) 第1表(3) :生育しない又は陰性 尚、上記菌は工業技術院微生物工業技術研究所にFER
MP−8860(AS−440)として寄託している。
Table 1 (1) Table 1 (2) Table 1 (3): No growth or negative In addition, the above bacteria should be submitted to the Institute of Microbiology, Agency of Industrial Science and Technology by FER.
It has been deposited as MP-8860 (AS-440).

次に、本発明の新規な菌体内β−マンノシダーゼの製造
法につき更に詳しく説明する。
Next, the novel method for producing intracellular β-mannosidase of the present invention will be explained in more detail.

上記の菌体内β−マンノシダーゼ生産菌を適当な培地に
接種し、該菌体の生育温度の観点から30〜40℃にて
、48〜72時間、好気的に培養する。ここで、培地は
炭素源、窒素源の他、必要に応じて無機塩、微量栄養素
を含むものである。
The above-mentioned intracellular β-mannosidase producing microorganisms are inoculated into a suitable medium and cultured aerobically for 48 to 72 hours at 30 to 40° C. from the viewpoint of the growth temperature of the microbial cells. Here, the medium contains inorganic salts and micronutrients as necessary in addition to a carbon source and a nitrogen source.

まず、炭素源としては従来公知の各種材料を使用するこ
とができ、例えばコンニャク粉、ローカストビーンガム
、キャロブガム、グアーガムあるいはこれらを含有する
植物などを典型例として例示できる。
First, various conventionally known materials can be used as the carbon source, and typical examples include konjac flour, locust bean gum, carob gum, guar gum, and plants containing these.

また、窒素源としても特に制限はなく、酵母エキス、ペ
プトン、肉エキス、コーンステイー7’ IJカー、ア
ミノ酸液、大豆粕などの有機態窒素、あるいは硫安、尿
素、硝酸アンモニウム、塩化アンモニウムなどの無機態
窒素などが安価かつ人手容易なものとして例示できる。
There are also no particular restrictions on nitrogen sources; organic nitrogen such as yeast extract, peptone, meat extract, corn stay 7' IJ car, amino acid solution, soybean meal, or inorganic nitrogen such as ammonium sulfate, urea, ammonium nitrate, ammonium chloride, etc. For example, these methods are inexpensive and easy to handle.

尚、有機態窒素源は炭素源となることはいうまでもない
。更に、このような炭素源、窒素源の他、一般に使用さ
れている各種の塩、例えばマグネシウム塩、カリウム塩
、リン酸塩、鉄塩等の無機塩、ビタミンなどを添加する
ことも可能である。
It goes without saying that the organic nitrogen source serves as a carbon source. Furthermore, in addition to such carbon sources and nitrogen sources, it is also possible to add various commonly used salts, such as inorganic salts such as magnesium salts, potassium salts, phosphates, and iron salts, and vitamins. .

本発明の方法において使用するのに適した培地は、例え
ば1%のコンニャク粉、2%のポリペプトン、0.2%
の酵母エキス、0,1%のに2HPO。
Suitable media for use in the method of the invention include, for example, 1% konjac flour, 2% polypeptone, 0.2%
yeast extract, 0.1% 2HPO.

および0.2%のMg5O<・7H20を含有する液体
培地であり得る。
and 0.2% Mg5O<-7H20.

また、本発明の方法で使用する微生物の生育pliは塩
基性の範囲内であるので、適当なアルカリを用いて上記
培地のpH値を調整する必要がある。そのために0.5
%炭酸水素ナトリウムを典型例として上げることができ
るが、これに限定されず水酸化ナトリウム、水酸化カリ
ウム、炭酸ナトリウム、リン酸ナトリウム、水酸化カル
シウムなどのアルカリ試薬も使用できる。
Furthermore, since the growth pli of the microorganisms used in the method of the present invention is within the basic range, it is necessary to adjust the pH value of the medium using an appropriate alkali. 0.5 for that
% sodium bicarbonate can be cited as a typical example, but alkaline reagents such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium phosphate, calcium hydroxide can also be used, but are not limited thereto.

本発明の方法において使用する菌はβ−マンノシダーゼ
を菌体内に生産し、そこに蓄積する。これら菌の培養は
バッチ式、連続式のいずれによっても実施することがで
き、生成する酵素の分離・精製は例えば以下のようにし
て実施することができる。
The bacteria used in the method of the present invention produce β-mannosidase within their cells and accumulate it there. Cultivation of these bacteria can be carried out either batchwise or continuously, and the produced enzymes can be separated and purified, for example, as follows.

即ち、まず培養液中の菌体を遠心分離、濾過などの公知
の手段で集菌した後、得られた菌体をそのままマンノオ
リゴ糖の加水分解反応に使用することも可能であり、こ
れは経済的に有利である。
That is, it is possible to first collect the bacterial cells in the culture solution by known means such as centrifugation or filtration, and then use the obtained bacterial cells as they are for the hydrolysis reaction of mannooligosaccharides, which is economical. It is advantageous.

また、勿論これを更に精製して使用することもできる。Of course, it can also be used after further purification.

そのために、例えば、菌体破砕抽出後、硫安による塩析
、エタノーノベアセトン、イソプロパツール等による溶
媒沈殿法、限外濾過法、ゲル濾過法、イオン交換樹脂等
による一般的な酵素精製法により精製することができる
For this purpose, for example, after bacterial cell crushing and extraction, salting out with ammonium sulfate, solvent precipitation with ethanol noveacetone, isopropanol, etc., ultrafiltration, gel filtration, general enzyme purification using ion exchange resin, etc. Can be purified.

以下に、本発明のβマンノシダーゼの好ましい精製法の
1例を説明する。
Below, one example of a preferred purification method for β-mannosidase of the present invention will be explained.

好アルカリ性バチルス属に属する上記のAS−440菌
株を、例えば上記のような培地に植菌し、37℃にて4
8時間好気的に培養して得られる培養液を、12,0O
Or、p、m 、 0℃にて30分間遠心分離して菌体
を集め、湿重量10gの菌体を得る。次いで、該菌体を
氷水中で冷却しながら10mM燐酸緩衝液(pH7,0
)に懸濁して超音波破砕を数回に分け、計3分間程度行
う。次いで、12.00Or、p、m、 0℃にて30
分間遠心分離して残渣を除き、上澄液50m1を得る。
The above AS-440 strain belonging to the alkaliphilic Bacillus genus is inoculated into, for example, the above medium, and incubated at 37°C for 4 hours.
The culture solution obtained by culturing aerobically for 8 hours was heated to 12,00
Cells are collected by centrifugation at 0° C. for 30 minutes to obtain cells weighing 10 g wet. Next, the bacterial cells were cooled in ice water and added to 10 mM phosphate buffer (pH 7.0.
) and ultrasonic crushing is carried out several times for a total of about 3 minutes. Then, at 12.00 Or, p, m, 30 at 0°C.
Centrifuge for 1 minute to remove the residue and obtain 50 ml of supernatant.

次いで、この上澄液に硫酸アンモニウムを加えて75%
飽和とし、4℃で一夜放置する。生じた沈澱をろ別し、
10mM燐酸緩衝液(pH7,0)に溶解させ、−夜4
℃で同緩衝液に対して透析する。
Next, ammonium sulfate was added to this supernatant to give a concentration of 75%.
Bring to saturation and leave overnight at 4°C. Filter the resulting precipitate,
Dissolved in 10mM phosphate buffer (pH 7.0) - night 4
Dialyze against the same buffer at °C.

生じた沈殿を遠心分離して除き、得られた上澄液を同上
緩衝液で平衡化したDEAD−)ヨパール650Mに吸
着させ、0.1〜0.5MのNaClを含む同上緩衝液
の濃度勾配法によって酵素を溶出する。
The resulting precipitate was removed by centrifugation, and the resulting supernatant was adsorbed onto DEAD-)Yopal 650M equilibrated with the above buffer, followed by a concentration gradient of the above buffer containing 0.1 to 0.5 M NaCl. The enzyme is eluted by a method.

溶出した活性画分を集め、同上緩衝液に対して一夜、4
℃で透析した後、同上緩衝液で平衡化したハイドロオキ
シアパタイトに吸着させる。次いで、0.4M’Jン酸
緩衝液(pH8,0)で酵素を溶出させ、活性画分を集
めて、平均分画分子量10.000の限外濾過膜を用い
て濃縮する。濃縮酵素は、高速液体クロマトグラフ用蛋
白質分取精製用カラムショデックス プロティ:/(S
HODBX  protein)l!Is −2003
に充填し、10mM !Jン酸緩衝液(pH7,0)を
用いて溶出する。かくして得られた活性画分を濃縮した
後、同上刃ラムを用いて同一条件で再度クロマトグラフ
ィーにかけ、得られた活性画分を濃縮し、ポリアクリル
アミドゲルディスク電気泳動法〔アナルズ ニューヨー
ク アカデミツク サイエンス(^NN、 N、 Y、
Acad、 Sci、)、121.404 (1964
) 〕にかけると、均一な酵素標品15mgが得られる
。活性収率ば18%であった。
The eluted active fractions were collected and incubated against the same buffer overnight for 4 hours.
After dialysis at °C, it is adsorbed onto hydroxyapatite equilibrated with the same buffer. Next, the enzyme is eluted with 0.4 M'J acid buffer (pH 8,0), and the active fractions are collected and concentrated using an ultrafiltration membrane with an average molecular weight cutoff of 10.000. The concentrated enzyme is a column for high-performance liquid chromatography for protein separation and purification.
HODBX protein)l! Is-2003
Filled with 10mM! Elute using J acid buffer (pH 7,0). After concentrating the active fraction thus obtained, it was subjected to chromatography again under the same conditions using the same blade ram, and the obtained active fraction was concentrated and subjected to polyacrylamide gel disk electrophoresis [Annals New York Academic Science (^ NN, N, Y,
Acad, Sci.), 121.404 (1964
)] to obtain 15 mg of a homogeneous enzyme preparation. The activity yield was 18%.

なお、β−マンノシダーゼ活性の測定法と、活性表示法
は以下の通りである。
The method for measuring β-mannosidase activity and the method for displaying the activity are as follows.

即ち、0.2Mの燐酸緩衝液<pl(7,0) 0.2
mlと3mMのp−ニトロフェニル−β−D−マンノピ
ラノシド水溶液Q、2mlに酵素液Q、1mlを混合し
、40℃で10分間反応させた後、0.5Mの炭酸ナト
リウム水溶液1.0mlを添加して酵素を失活させた後
、水を加えて3mlにする。着色度を紫外光(波長42
011m)で1μmol /mlのp−ニトロフェノー
ルを標準として測定する。
i.e. 0.2M phosphate buffer <pl(7,0) 0.2
Mix 1 ml of enzyme solution Q with 2 ml of 3 mM p-nitrophenyl-β-D-mannopyranoside aqueous solution Q, react at 40°C for 10 minutes, and then add 1.0 ml of 0.5 M sodium carbonate aqueous solution. After inactivating the enzyme, add water to make 3 ml. The degree of coloring is measured using ultraviolet light (wavelength 42
011m) with 1 μmol/ml p-nitrophenol as a standard.

酵素活性の単位は、前述の条件下で1分間に1μmol
 のp−ニトロフェノールを遊離させる酵素量を1単位
として表示する。
The unit of enzyme activity is 1 μmol per minute under the above conditions.
The amount of enzyme that liberates p-nitrophenol is expressed as one unit.

本発明の方法によって得られるβ−マンノシダーゼの分
子量は63.000±3.000である。尚、この分子
量はゲル濾過法で求めたものである。
The molecular weight of β-mannosidase obtained by the method of the present invention is 63.000±3.000. Note that this molecular weight was determined by gel filtration method.

本発明のβ−マンノシダーゼおよび従来公知の微生物由
来のβ−マンノシダーゼの理化学的性質と酵素化学的性
質を比較して第2表に示す。
Table 2 shows a comparison of the physicochemical properties and enzymatic chemical properties of the β-mannosidase of the present invention and the conventionally known β-mannosidase derived from microorganisms.

昨月 β−D−マンナンは様々な植物中に比較的多量に含まれ
ており、種々の分野においてそのまま、または化学的改
質処理を施した後、糊料、増粘剤、食品材料として工業
的に利用されている。
β-D-mannan is contained in relatively large amounts in various plants, and is used industrially in various fields as a glue, thickener, and food material, either as it is or after chemical modification. It is used in many ways.

このβ−D−マンナンを例えば繊維産業において糊料な
どとして使用した場合には、所定の加工処理の終了後に
除去されるが、その場合、一般にその分解酵素、β−マ
ンノシダーゼ等が使用される。また、β−D−マンナン
を加水分解し、得られる分解生成物を利用する場合にも
この種の酵素が利用される。
When this β-D-mannan is used, for example, as a thickening agent in the textile industry, it is removed after a certain processing process is completed, and in that case, its degrading enzyme, β-mannosidase, etc. are generally used. This type of enzyme is also used when β-D-mannan is hydrolyzed and the resulting decomposition product is used.

しかしながら、従来知られているβ−マンノシダーゼは
いずれも生産性が低く、培養法・精製法の煩雑なものが
多かった。そのため高価であり、上記のような工業的な
大規模利用は困難であった。
However, all of the conventionally known β-mannosidases have low productivity and many require complicated culture and purification methods. Therefore, it is expensive and difficult to use on a large scale industrially as described above.

更に、β−D−マンナンの抽出工程は一般にアルカリ側
で実施されるが、このような場合にはアルカリ性で既知
の酵素よりも安定であり、至適pHも高い酵素を使用す
ることが有利である。即ち、酸性側に至適pHをもつ従
来の酵素では、分解反応を行う前に中和剤で抽出液の、
pH調節を行う必要があり、これは工程を複雑化するば
かりか、コスト高なものとしてしまう。
Furthermore, the extraction process of β-D-mannan is generally carried out in an alkaline environment, and in such cases it is advantageous to use an enzyme that is more stable than known enzymes in alkaline conditions and has a higher optimum pH. be. In other words, with conventional enzymes that have an optimum pH on the acidic side, the extract is treated with a neutralizer before the decomposition reaction.
It is necessary to adjust the pH, which not only complicates the process but also increases cost.

従って、最産可能な方法の開発が必要であり、また既知
の酵素よりも高い至適p++をもつ酵素の開発が必要で
ある。
Therefore, there is a need to develop highly productive methods, and there is a need to develop enzymes with a higher optimal p++ than known enzymes.

本発明者等の見出した特定の微生物によれば上記のβ−
D−マンナンの分解に係る要件をいずれも満足する酵素
を多量に得ることが可能であり、従来の諸問題点を一挙
に解決できる。
According to the specific microorganisms discovered by the present inventors, the above β-
It is possible to obtain a large amount of an enzyme that satisfies all the requirements related to the decomposition of D-mannan, and various conventional problems can be solved at once.

即ち、本発明により新たに見出された親菌株を用いるこ
とにより簡単な方法で大量且つ安価に得ることができる
ので、量産性およびコストの問題は克服できる。従って
、大規模な工業的利用が可能となる。
That is, by using the parent strain newly discovered according to the present invention, it can be obtained in large quantities and at low cost by a simple method, so that the problems of mass production and cost can be overcome. Therefore, large-scale industrial use becomes possible.

また、得られる酵素のマンナン分解反応における至適p
Hが中性近傍にあるので、マンナンの抽出処理後、わず
かなpH調節を施した後に即座に次の分解反応に移行す
ることができる。従って、分解操作が簡略化されると共
に経済的にも有利になる。
In addition, the optimal p in the mannan decomposition reaction of the obtained enzyme is
Since H is near neutrality, the next decomposition reaction can be started immediately after the mannan extraction process and slight pH adjustment. Therefore, the disassembly operation is simplified and economically advantageous.

以下、本発明を実施例によりさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 工業技術院微生物工業技術研究所にFERMP−886
0として寄託された好アルカリ性細菌バチルス^S−0
44株を500m1容の三角フラスコ中の、やし搾油カ
ス2%、大豆カス1%、KNO30,2%、Na2HP
O40,1%、MgS O,・7 )1200.02%
および炭酸ソーダ0.5%を含む培養液100m1 (
pl(10,O)に植菌し、40℃で50時間25Or
、21m、で振とう培養した。次いで、この菌体破砕液
を12.00Or、plm。
Example FERMP-886 to Institute of Microbial Technology, Agency of Industrial Science and Technology
Alkaliphilic bacterium Bacillus deposited as 0 ^S-0
44 strains were placed in a 500 m Erlenmeyer flask with 2% palm oil residue, 1% soybean residue, 30.2% KNO, and Na2HP.
O40.1%, MgSO,・7) 1200.02%
and 100ml of culture solution containing 0.5% soda carbonate (
Inoculated into pl (10, O) and incubated at 40℃ for 50 hours at 25Or
, 21 m, and cultured with shaking. Next, this cell suspension was heated to 12.00 Or, plm.

で0℃で30分間遠心分離し、得られた上澄液のβ−マ
ンノシダーゼ活性を測定した結果、38単位/m1であ
った。
After centrifugation at 0°C for 30 minutes, the β-mannosidase activity of the resulting supernatant was measured and found to be 38 units/ml.

発明の効果 以上詳しく述べたように、本発明によればアルカリ側に
酵素反応の至適pHを有するβ−D−マンナンの加水分
解酵素の1つ、即ちβ−マンノシダーゼが提供され、こ
のものを使用することによりβ−D−マンナンを高い効
率で、しかも簡単かつ経済的な工程で分解し、不用とな
ったマンナンを迅速に除去でき、あるいは目的とする分
解生成物を肇産することができる。
Effects of the Invention As described in detail above, the present invention provides one of the β-D-mannan hydrolyzing enzymes, namely β-mannosidase, which has an optimum pH for enzymatic reaction on the alkaline side. By using it, β-D-mannan can be decomposed with high efficiency in a simple and economical process, unnecessary mannan can be quickly removed, or the desired decomposition product can be produced. .

また、本発明のβ−マンノシダーゼの製造方法によれば
、該酵素を高い生産性で簡単に得ることができる。従っ
て、該酵素を安価に工業的規模で利用することが可能と
なる。
Moreover, according to the method for producing β-mannosidase of the present invention, the enzyme can be easily obtained with high productivity. Therefore, it becomes possible to utilize the enzyme at low cost on an industrial scale.

Claims (6)

【特許請求の範囲】[Claims] (1)下記の理化学的性質を有する新規β−マンノシダ
ーゼ: (イ)作用: 非還元末端から順次β−マンノシド結合を 加水分解し、マンノースを生成する。 (ロ)基質特異性: β−メチル(エチル)−D−マンノシドを 完全に分解し、又β−結合のマンノースを含むオリゴ糖
に作用しマンノースを遊離する。 p−ニトロ−フェニル−グリコシドのβ− D−マンノシドを基質となしうるが、α−D−マンノシ
ド、α−D−グルコシド、β−D−グルコシド、α−D
−ガラクトシド、β−D−ガラクトシド、β−D−キシ
ロシド、α−L−フコシド、β−D−グルクロニドを基
質となし得ない。 (ハ)至適pHおよび安定pH範囲: 至適pHは6〜7であり、40℃、30分間の加熱条件
下ではpH6〜9の範囲内で安定である。 (ニ)温度に対する安定性: pH6.5、30分間の加熱条件下では45℃まで安定
である。 (ホ)作用適温の範囲: 50℃近傍に至適作用温度を有する。 (ヘ)失活条件: 40℃、30分間の処理条件下ではpH5.0および1
0で完全に失活する。また、pH6.5、30分間の処
理では、55℃で完全に失活する。 (ト)ゲルろ過法による分子量: 63,000±3,000
(1) A novel β-mannosidase having the following physical and chemical properties: (a) Action: Hydrolyzes β-mannosidic bonds sequentially from the non-reducing end to generate mannose. (b) Substrate specificity: Completely decomposes β-methyl(ethyl)-D-mannoside, and also acts on β-linked mannose-containing oligosaccharides to liberate mannose. β-D-mannoside of p-nitro-phenyl-glycoside can be used as a substrate, but α-D-mannoside, α-D-glucoside, β-D-glucoside, α-D
- Galactoside, β-D-galactoside, β-D-xyloside, α-L-fucoside, and β-D-glucuronide cannot be used as substrates. (c) Optimal pH and stable pH range: The optimal pH is 6 to 7, and is stable within the pH range of 6 to 9 under heating conditions at 40° C. for 30 minutes. (d) Stability against temperature: Stable up to 45°C under conditions of pH 6.5 and heating for 30 minutes. (e) Range of optimum temperature for action: The optimum temperature for action is around 50°C. (f) Inactivation conditions: pH 5.0 and 1 under treatment conditions of 40°C and 30 minutes.
At 0, it is completely inactivated. Furthermore, when treated at pH 6.5 for 30 minutes, the activity is completely inactivated at 55°C. (g) Molecular weight by gel filtration method: 63,000±3,000
(2)工業技術院微生物工業技術研究所にFERMP−
8860(AS−440)として寄託された菌が生産し
たものであることを特徴とする特許請求の範囲第1項に
記載のβ−マンノシダーゼ。
(2) FERMP-
The β-mannosidase according to claim 1, which is produced by a bacterium deposited as 8860 (AS-440).
(3)下記の理化学的性質: (イ)作用: 非還元末端から順次β−マンノシド結合を 加水分解し、マンノースを生成する。 (ロ)基質特異性: β−メチル(エチル)−D−マンノシドを 完全に分解し、又β−結合のマンノースを含むオリゴ糖
に作用しマンノースを遊離する。 p−ニトロ−フェニル−グリコシドのβ−D−マンノシ
ドを基質となしうるが、α−D−マンノシド、α−D−
グルコシド、β−D−グルコシド、α−D−ガラクトシ
ド、β−D−ガラクトシド、β−D−キシロシド、α−
L−フコシド、β−D−グルクロニドを基質となし得な
い。 (ハ)至適pHおよび安定pH範囲: 至適pHは6〜7であり、40℃、30分間の加熱条件
下ではpH6〜9の範囲内で安定である。 (ニ)温度に対する安定性: pH6.5、30分間の加熱条件下では45℃まで安定
である。 (ホ)作用適温の範囲: 50℃近傍に至適作用温度を有する。 (ヘ)失活条件: 40℃、30分間の処理条件下ではpH5.0および1
0で完全に失活する。また、pH6.5、30分間の処
理では、55℃で完全に失活する。 (ト)ゲルろ過法による分子量: 63,000±3,000 を有するβ−マンノシダーゼ生産能を有するアルカリ側
に生育の至適pHを有するバチルス属に属する微生物を
培養し、該β−マンノシダーゼを菌体内に生成・蓄積さ
せ、これを採取することを特徴とする新規菌体内β−マ
ンノシダーゼの製造方法。
(3) The following physical and chemical properties: (a) Action: Hydrolyzes β-mannoside bonds sequentially from the non-reducing end to produce mannose. (b) Substrate specificity: Completely decomposes β-methyl(ethyl)-D-mannoside, and also acts on β-linked mannose-containing oligosaccharides to liberate mannose. β-D-mannoside of p-nitro-phenyl-glycoside can be used as a substrate, but α-D-mannoside, α-D-
glucoside, β-D-glucoside, α-D-galactoside, β-D-galactoside, β-D-xyloside, α-
L-fucoside and β-D-glucuronide cannot be used as substrates. (c) Optimal pH and stable pH range: The optimal pH is 6 to 7, and is stable within the pH range of 6 to 9 under heating conditions at 40° C. for 30 minutes. (d) Stability against temperature: Stable up to 45°C under conditions of pH 6.5 and heating for 30 minutes. (e) Range of optimum temperature for action: The optimum temperature for action is around 50°C. (f) Inactivation conditions: pH 5.0 and 1 under treatment conditions of 40°C and 30 minutes.
At 0, it is completely inactivated. Furthermore, when treated at pH 6.5 for 30 minutes, the activity is completely inactivated at 55°C. (g) A microorganism belonging to the genus Bacillus that has an optimum pH for growth on the alkaline side and has the ability to produce β-mannosidase with a molecular weight of 63,000 ± 3,000 by gel filtration method is cultured, and the β-mannosidase is A method for producing a novel intramicrobial β-mannosidase, which comprises producing and accumulating it in the body and collecting it.
(4)上記培養を30〜45℃の範囲内の温度下で好気
的に行うことを特徴とする特許請求の範囲第3項記載の
菌体内β−マンノシダーゼの製造方法。
(4) The method for producing intracellular β-mannosidase according to claim 3, wherein the culture is carried out aerobically at a temperature within the range of 30 to 45°C.
(5)上記培養液のpHが7.5〜11.5の範囲内に
あることを特徴とする特許請求の範囲第3項または第4
項記載の菌体内β−マンノシダーゼの製造方法。
(5) Claim 3 or 4, characterized in that the pH of the culture solution is within the range of 7.5 to 11.5.
A method for producing intracellular β-mannosidase as described in 2.
(6)上記微生物が工業技術院微生物工業技術研究所に
FERMP−8860(AS−440)として寄託され
た菌であることを特徴とする特許請求の範囲第3項から
5項のいずれか一項に記載のβ−マンノシダーゼの製造
方法。
(6) Any one of claims 3 to 5, wherein the microorganism is a microorganism deposited as FERMP-8860 (AS-440) with the Institute of Microbial Technology, Agency of Industrial Science and Technology. The method for producing β-mannosidase described in .
JP13546889A 1986-07-30 1989-05-29 Novel beta-mannosidase and production thereof Granted JPH02242678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13546889A JPH02242678A (en) 1986-07-30 1989-05-29 Novel beta-mannosidase and production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17958786A JPS6336779A (en) 1986-07-30 1986-07-30 Beta-mannosidase and production thereof
JP13546889A JPH02242678A (en) 1986-07-30 1989-05-29 Novel beta-mannosidase and production thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17958786A Division JPS6336779A (en) 1986-07-30 1986-07-30 Beta-mannosidase and production thereof

Publications (2)

Publication Number Publication Date
JPH02242678A true JPH02242678A (en) 1990-09-27
JPH0517833B2 JPH0517833B2 (en) 1993-03-10

Family

ID=26469314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13546889A Granted JPH02242678A (en) 1986-07-30 1989-05-29 Novel beta-mannosidase and production thereof

Country Status (1)

Country Link
JP (1) JPH02242678A (en)

Also Published As

Publication number Publication date
JPH0517833B2 (en) 1993-03-10

Similar Documents

Publication Publication Date Title
JPS6356289A (en) Beta-mannanase and production thereof
JPH0347076A (en) Beta-mannase and production thereof
JPH0412707B2 (en)
JP2626662B2 (en) Novel β-mannanase and method for producing the same
WO2005098014A1 (en) Microbe method for producing valienamine and validamine
JPH04349884A (en) Production of deacetylase
JPH02242678A (en) Novel beta-mannosidase and production thereof
JP2626663B2 (en) Method for producing novel β-mannosidase
JPH0379991B2 (en)
JPS6336779A (en) Beta-mannosidase and production thereof
JP2001069975A (en) Chitosanase
JP3014950B2 (en) Method for producing trehalose
JP3032817B2 (en) Mass production method of xyloglucan oligo 9 sugar
JPS6283897A (en) Production of novel heteropolysaccharides
EP0320685B1 (en) A process for the obtention of thermostable alpha-amylases by culturing superproductive microorganisms at high temperatures
JP2833081B2 (en) Method for producing inulotriose and / or inulotetraose
JP3055041B2 (en) α-1,2-mannosidase, method for producing the same, and bacteria producing the same
JPH0269183A (en) Beta-1,3-glucanase and production thereof
JPH04237496A (en) Production of cyclic inulo oligosaccharide
JPS6228678B2 (en)
JPH0391478A (en) Production of collagenase
JPH02227074A (en) Production of new exo-type hydrolase and inulotriose and/or inulotetraose
JPH05276970A (en) Production of saccharide solution having high content of xylosylfructoside by microorganism
JPH06263802A (en) Branched cyclic inulooligosaccharide and its production
JPH08242854A (en) Production of n-acetyl-d-glucosamine deacetylase

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees