JPH0370396B2 - - Google Patents

Info

Publication number
JPH0370396B2
JPH0370396B2 JP59224064A JP22406484A JPH0370396B2 JP H0370396 B2 JPH0370396 B2 JP H0370396B2 JP 59224064 A JP59224064 A JP 59224064A JP 22406484 A JP22406484 A JP 22406484A JP H0370396 B2 JPH0370396 B2 JP H0370396B2
Authority
JP
Japan
Prior art keywords
plating
insulating substrate
thermosetting resin
plating catalyst
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59224064A
Other languages
Japanese (ja)
Other versions
JPS61102796A (en
Inventor
Seiji Honma
Hiroyoshi Yokoyama
Nobuo Uozu
Yoichi Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP22406484A priority Critical patent/JPS61102796A/en
Publication of JPS61102796A publication Critical patent/JPS61102796A/en
Publication of JPH0370396B2 publication Critical patent/JPH0370396B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はアデイテイブ法による印刷配線板の製
造方法に関するものである。 (従来の技術) 従来、CC−4法等のような無電解めつきによ
り回路を形成して印刷配線板を製造する場合、絶
縁基板の表面に予めめつき触媒入りの接着剤層を
設ける。この場合、絶縁基板にスルーホール用の
孔が形成されているものにあつては、孔を形成し
た後、無電解めつき処理をする前に、めつき触媒
を孔に付着する処理を行なつている。 (発明が解決しようとする問題点) ところで、通常、孔にめつき触媒を付着した後
に、接着剤層と無電解めつき処理により形成され
ためつきの回路との接着力を向上するために、接
着剤層を粗化している。接着剤層の粗化は、絶縁
基板を硼弗化水素酸溶液や無水クロム酸硫酸系溶
液等の粗化液に浸漬することにより行なつている
が、この浸漬処理により孔に付着しためつき触媒
の大部分が洗い流されてしまう。従つて、後に無
電解めつき処理を行なつても孔の箇所に、めつき
が析出するのに時間が掛かり、析出しためつき膜
は薄く剥離強度が小さい。そのため、半田デイツ
プ等によりランドに半田処理をしたりさらに電子
部品を接続する場合等に、絶縁基板内のガスが孔
壁面のめつき膜を通して放出され、孔内に充填さ
れる半田に欠陥(以下ブローホールという)を生
じる欠点があつた。このような状態になると、電
子部品の接続不良が発生し易くなり、また、接着
力も低下し易くなる欠点があつた。 (目的) 本発明は、以上の欠点を改良し、スルーホール
用の孔壁面のめつき析出を容易にし、製造時間を
短縮しうるとともにブローホールを防止して信頼
性の高い印刷配線板の製造方法の提供を目的とす
るものである。 (問題点を解決するための手段) 本発明は、上記の目的を達成するために、スル
ーホール用の孔を有しめつき触媒入り接着剤が塗
布された絶縁基板に、粗化処理を行なつて前記接
着剤を粗化した後、無電解めつき法により所定の
回路を形成する印刷配線板の製造方法において、
絶縁基板をめつき触媒を含んだ熱硬化性樹脂液中
に浸漬し乾燥する処理を2回以上繰返して孔壁面
に前記めつき触媒を含む半硬化状態の熱硬化性樹
脂層を形成する工程と、該工程後に前記熱硬化性
樹脂層にめつき触媒を付着する工程と、該工程後
に前記熱硬化性樹脂層を熱硬化する工程とを施す
ことを特徴とする印刷配線板の製造方法を提供す
るものである。 (作用) すなわち、本発明によれば、絶縁基板に設けら
れたスルーホール用の孔の壁面に予め、めつき触
媒入りの半硬化状態の熱硬化性樹脂層を設け、こ
の樹脂層にさらにめつき触媒を付着しているため
に、無電解めつきにより孔内には充分な厚さのめ
つきが短時間に析出しめつき層が形成される。し
かも、絶縁基板内のガスが孔壁を通して放出され
るのを熱硬化性樹脂層により防止できるために、
半田処理をした場合のブローホール等の欠点が防
止される。また、絶縁基板をめつき触媒を含んだ
熱硬化性樹脂液中に浸漬し乾燥する処理を2回以
上繰返しているため、1回だけ処理した場合に比
べて、孔壁面にミスなく熱硬化性樹脂層を形成で
きる。 (実施例) 以下、本発明の実施例を図面に基づいて説明す
る。 先ず、第1図に示す通り、紙−フエノール樹脂
基材や紙−エポキシ樹脂基材からなる絶縁基板1
にパラジウム等のめつき触媒入り接着剤を塗布し
て接着剤層2を形成する。次に、第2図に示す通
り、この接着剤層2が形成された絶縁基板1をパ
ンチして所定の孔3を形成する。孔3形成後、絶
縁基板1の表面を整面し、高圧水洗をしてパンチ
による基板カスを除去する。次に、水洗機の絶縁
基板1を塩化第1パラジウム及び塩化第1錫のめ
つき触媒の含まれたエポキシ樹脂等の熱硬化性樹
脂のエマルジヨン中に浸漬する。絶縁基板1をエ
マルジヨン中に浸漬後、取り出して、絞りローラ
やバフにより表面のエマルジヨンを除去する。エ
マルジヨンを除去した後、加熱された空気が自然
対流している状態の熱風や扇風機等により強制的
に加熱された空気を循環している状態の熱風によ
り孔壁面に付着した熱硬化性樹脂を加熱乾燥して
半硬化状態にする。熱硬化性樹脂を加熱乾燥後、
絶縁基板1を再びエマルジヨン中に浸漬し、取り
出し加熱乾燥する工程を繰返す。この工程によ
り、第3図に示す通り、孔3の壁面に厚さ5〜
30μm程度の半硬化状態の熱硬化性樹脂層4を形
成する。熱硬化性樹脂としては、エポキシ樹脂の
他にウレタン樹脂やポリエステル樹脂等を用いる
が、特にフエノール樹脂系あるいはエポキシ樹脂
系の絶縁基板の場合にはエポキシ樹脂が基板との
密着がよく、好ましい。また、硬化剤としては、
アミン系のものが安定したエマルジヨンが得られ
るので好ましく、エマルジヨン中の固形分濃度と
しては0.3〜10wt%の範囲のものが特に好ましい。
すなわち、0.3wt%未満の濃度では皮膜としての
効果が低くなり、また10wt%より多いと孔を塞
ぐように樹脂が被覆されることがあり、除去作業
が必要となり作業上好ましくない。樹脂溶液とし
ては、通常の溶剤溶液でもよいが、エマルジヨン
や水溶液の方が乾燥による樹脂による皮張りもな
く、作業上も良好である。エマルジヨン中のめつ
き触媒の添加量は、樹脂分100重量部に対して、
0.005〜0.5重量部の範囲が良く0.005重量部未満で
は効果が低く、0.5重量部以上では高価になると
ともに触媒効果が飽和状態となる。孔壁面に半硬
化状態の熱硬化性樹脂層4を形成後、絶縁基板を
めつき触媒溶液中に浸漬して、第4図に示す通
り、めつき触媒5を付着し、取り出して熱硬化性
樹脂層4を加熱して硬化させる。熱硬化性樹脂層
4を硬化後、第5図に示す通り、接着剤層2表面
にめつきレジストインクを所定のパターンに塗
布・乾燥して、めつきレジスト層6を設ける。め
つきレジスト層6を形成後、硼弗化水素酸溶液や
無水クロム酸硫酸系溶液からなる粗化液に絶縁基
板1を浸漬して、第6図に示す通り、接着剤層2
のめつきレジスト層6から露出している部分を粗
化する。接着剤層2を粗化後絶縁基板1を無電解
銅めつき溶液中に浸漬し、所定のパターンにめつ
きを析出して、第7図に示す通り、回路7を形成
する。回路7を形成後、通常の方法で絶縁基板1
を処理し、印刷配線板を製造する。 次に、本発明と従来例とについて、スルーホー
ル用の孔内のめつき付着性、めつきのつかない孔
の比率、信頼性及びブローホール発生率を測定し
たところ表の通りの結果が得られた。 スルーホール用の孔内のめつき付着性は孔内壁
全面にめつきが析出するまでの時間、めつきの付
かない孔の比率は無電解めつき処理開始30分後の
値とし、信頼性はMIL−107D(−65℃、30分〜
125℃、30分のサイクルによる熱衝撃テスト)に
より抵抗値が10%増加するサイクル数、ブローホ
ール発生率は温度40℃、相対湿度95%の雰囲気中
に2日間放置後の絶縁基板を用い半田あげ条件を
240℃、5秒間とする。 製造条件は、実施例1)が、 a) 絶縁基板:エポキシ樹脂積層板(日立化成
工業社製LE−44)にめつき触媒入り接着剤
(日立化成工業社製HA−04)を塗布硬化した
もの。 b) 熱硬化性樹脂層形成工程:エポキシ樹脂エ
マルジヨン(カネボウNSC社製エポルジヨン
EA−1の固形分100重量部に対し硬化剤EB−
1を80重量部添加したもの)に、パラジウム液
PEC−8(日立化成工業社製めつき触媒)をパ
ラジウム濃度が樹脂分100重量部に対して0.03
重量部となるように添加した濃度5%の液中に
浸漬後、パフにより接着剤表面のエマルジヨン
を取り除き、さらに、100℃程度に加熱された
空気の自然対流で加熱乾燥する処理を2回繰返
す。 c) めつき触媒付着工程:めつき触媒(日立化
成工業社製HS−101B)を孔壁面のみに塗布す
る。 d) 熱硬化工程:温度150℃で30分間加熱乾燥
して、熱硬化性樹脂層を熱硬化する。 e) めつきレジスト工程:めつきレジストイン
ク(日立化成工業社製HGM−02BK−1)を
スクリーン印刷し、温度160℃で30分間加熱し
て硬化する。 f) 粗化工程:硼弗化水素酸系粗化液により接
着剤層表面を粗化し、洗浄して乾燥する。 g) 無電解めつき工程:無電解銅めつき処理に
より、厚さ25μmの銅層を形成する。 実施例2)は、実施例1)において、b)の浸
漬・加熱乾燥処理を3回繰返す。 実施例3)は、実施例1)において、a)の絶
縁基板としてめつき触媒入りのエポキシ樹脂系積
層板(日立化成工業社製LE−144)を用い、比較
例は、実施例1)において、b)において浸漬・
加熱乾燥処理を1回とし、 従来例は実施例1)において、b)の熱硬化性
樹脂層形成工程を省略したものとする。
(Industrial Application Field) The present invention relates to a method for manufacturing a printed wiring board by an additive method. (Prior Art) Conventionally, when manufacturing a printed wiring board by forming a circuit by electroless plating such as the CC-4 method, an adhesive layer containing a catalyst is provided in advance on the surface of an insulating substrate. In this case, if the insulating substrate has holes for through holes, after the holes are formed and before electroless plating, a plating catalyst is applied to the holes. ing. (Problem to be Solved by the Invention) By the way, usually after the plating catalyst is attached to the holes, an adhesive layer is applied to improve the adhesion between the adhesive layer and the plating circuit formed by electroless plating. The agent layer is roughened. The adhesive layer is roughened by dipping the insulating substrate in a roughening solution such as a borofluoric acid solution or an anhydrous chromic acid/sulfuric acid solution. Most of the catalyst will be washed away. Therefore, even if electroless plating is performed later, it takes time for the plating to precipitate at the hole locations, and the deposited plating film is thin and has low peel strength. Therefore, when soldering a land using a solder dip or connecting an electronic component, the gas inside the insulating substrate is released through the plating film on the hole wall, and the solder filled in the hole has defects (hereinafter referred to as "defects"). It had the disadvantage of causing blowholes (called blowholes). In such a state, there are disadvantages in that connection failures of electronic components are likely to occur and adhesive strength is also likely to decrease. (Objective) The present invention improves the above-mentioned drawbacks, facilitates plating deposition on the hole wall surface for through-holes, shortens manufacturing time, prevents blowholes, and manufactures highly reliable printed wiring boards. The purpose is to provide a method. (Means for Solving the Problems) In order to achieve the above object, the present invention roughens an insulating substrate having holes for through holes and coated with a plating catalyst-containing adhesive. In a method for manufacturing a printed wiring board, the method comprises roughening the adhesive and forming a predetermined circuit by electroless plating,
forming a semi-cured thermosetting resin layer containing the plating catalyst on the hole wall surface by repeating the process of immersing the insulating substrate in a thermosetting resin solution containing the plating catalyst and drying it two or more times; , provides a method for producing a printed wiring board, which comprises performing a step of attaching a plating catalyst to the thermosetting resin layer after the step, and a step of thermosetting the thermosetting resin layer after the step. It is something to do. (Function) That is, according to the present invention, a semi-cured thermosetting resin layer containing a plating catalyst is provided in advance on the wall surface of a through hole provided in an insulating substrate, and this resin layer is further coated with a plating catalyst. Since a plating catalyst is attached, a sufficient thickness of plating is deposited within the hole in a short time by electroless plating to form a plating layer. Moreover, since the thermosetting resin layer can prevent the gas in the insulating substrate from being released through the hole walls,
Defects such as blowholes caused by soldering are prevented. In addition, because the process of dipping the insulating substrate into a thermosetting resin solution containing a plating catalyst and drying it is repeated two or more times, the thermosetting process is smoother and more accurate on the hole wall surface than when the process is performed only once. A resin layer can be formed. (Example) Hereinafter, an example of the present invention will be described based on the drawings. First, as shown in FIG. 1, an insulating substrate 1 made of a paper-phenol resin base material or a paper-epoxy resin base material is prepared.
An adhesive containing a plating catalyst such as palladium is applied to the adhesive layer 2 to form an adhesive layer 2. Next, as shown in FIG. 2, predetermined holes 3 are formed by punching the insulating substrate 1 on which the adhesive layer 2 is formed. After forming the holes 3, the surface of the insulating substrate 1 is leveled and washed with high-pressure water to remove substrate debris caused by punching. Next, the insulating substrate 1 of the water washer is immersed in an emulsion of a thermosetting resin such as an epoxy resin containing a plating catalyst of palladium chloride and tin chloride. After the insulating substrate 1 is immersed in the emulsion, it is taken out and the emulsion on the surface is removed using a squeezing roller or a buff. After removing the emulsion, the thermosetting resin adhered to the hole wall is heated by hot air that causes natural convection of heated air or hot air that circulates forcibly heated air using an electric fan, etc. Dry to a semi-hardened state. After heating and drying the thermosetting resin,
The process of dipping the insulating substrate 1 into the emulsion again, taking it out, and heating and drying it is repeated. Through this process, as shown in FIG.
A semi-cured thermosetting resin layer 4 of about 30 μm is formed. As the thermosetting resin, in addition to epoxy resin, urethane resin, polyester resin, etc. are used, but especially in the case of a phenol resin-based or epoxy resin-based insulating substrate, epoxy resin is preferable because it has good adhesion to the substrate. In addition, as a hardening agent,
Amine-based emulsions are preferred because they yield stable emulsions, and solids concentration in the emulsion is particularly preferably in the range of 0.3 to 10 wt%.
That is, if the concentration is less than 0.3 wt%, the effect as a film will be low, and if it is more than 10 wt%, the resin may be coated so as to close the pores, making removal work necessary, which is not favorable for work. The resin solution may be a normal solvent solution, but an emulsion or an aqueous solution is easier to work with since it does not cause skin formation due to resin when drying. The amount of plating catalyst added in the emulsion is based on 100 parts by weight of resin.
The range of 0.005 to 0.5 parts by weight is good; if it is less than 0.005 parts by weight, the effect is low, and if it is more than 0.5 parts by weight, it becomes expensive and the catalytic effect becomes saturated. After forming a semi-cured thermosetting resin layer 4 on the hole wall surface, the insulating substrate is immersed in a plating catalyst solution to adhere a plating catalyst 5 as shown in FIG. The resin layer 4 is heated and hardened. After curing the thermosetting resin layer 4, as shown in FIG. 5, a plating resist ink is applied to the surface of the adhesive layer 2 in a predetermined pattern and dried to form a plating resist layer 6. After forming the plating resist layer 6, the insulating substrate 1 is immersed in a roughening solution consisting of a borohydrofluoric acid solution or an anhydrous chromic acid/sulfuric acid solution to form the adhesive layer 2, as shown in FIG.
The portions exposed from the plating resist layer 6 are roughened. After roughening the adhesive layer 2, the insulating substrate 1 is immersed in an electroless copper plating solution to deposit plating in a predetermined pattern to form a circuit 7 as shown in FIG. After forming the circuit 7, the insulating substrate 1 is
to produce printed wiring boards. Next, for the present invention and the conventional example, we measured the adhesion of plating inside the through-hole, the ratio of non-plated holes, the reliability, and the blowhole occurrence rate, and the results shown in the table were obtained. Ta. The adhesion of plating inside the hole for through holes is the time taken until plating is deposited on the entire surface of the inner wall of the hole, the ratio of holes without plating is the value 30 minutes after the start of electroless plating processing, and the reliability is MIL. -107D (-65℃, 30 minutes ~
The number of cycles at which the resistance value increases by 10% (thermal shock test at 125°C, 30 minutes cycle), the blowhole occurrence rate, is the number of cycles for soldering using an insulated substrate after being left in an atmosphere at a temperature of 40°C and relative humidity of 95% for 2 days. Conditions for raising
240℃ for 5 seconds. The manufacturing conditions were as follows in Example 1): a) Insulating substrate: An epoxy resin laminate (LE-44, manufactured by Hitachi Chemical Co., Ltd.) was coated with a plating catalyst-containing adhesive (HA-04, manufactured by Hitachi Chemical Co., Ltd.) and cured. thing. b) Thermosetting resin layer forming step: Epoxy resin emulsion (Epolsion manufactured by Kanebo NSC)
Hardening agent EB- for 100 parts by weight of solid content of EA-1
1) to which 80 parts by weight of 1) was added, palladium liquid
PEC-8 (Plating catalyst manufactured by Hitachi Chemical Co., Ltd.) with a palladium concentration of 0.03 per 100 parts by weight of resin
After immersing in a solution with a concentration of 5% by weight, the emulsion on the surface of the adhesive is removed using a puff, and the process of heating and drying using natural convection of air heated to about 100°C is repeated twice. . c) Plating catalyst adhesion step: A plating catalyst (HS-101B manufactured by Hitachi Chemical Co., Ltd.) is applied only to the hole wall surface. d) Thermosetting step: The thermosetting resin layer is thermally cured by heating and drying at a temperature of 150°C for 30 minutes. e) Plating resist step: Plating resist ink (HGM-02BK-1 manufactured by Hitachi Chemical Co., Ltd.) is screen printed and cured by heating at a temperature of 160° C. for 30 minutes. f) Roughening step: The surface of the adhesive layer is roughened with a borofluoric acid-based roughening liquid, washed and dried. g) Electroless plating process: A 25 μm thick copper layer is formed by electroless copper plating. In Example 2), the immersion and heating drying process of b) in Example 1) was repeated three times. Example 3) uses an epoxy resin laminate containing a plating catalyst (LE-144 manufactured by Hitachi Chemical Co., Ltd.) as the insulating substrate of a) in Example 1), and a comparative example uses Example 1). ,b) immersed in
The heat drying process is performed once, and the conventional example is the same as Example 1), but the thermosetting resin layer forming step b) is omitted.

【表】 表から明らかな通り、本発明によれば、めつ
き付着性は従来例に比べて7倍早く、めつきの
付かない孔の比率は0〔%〕であり、30分後に全
部の孔壁面の熱硬化性樹脂層にめつきが形成され
るのに対して、比較例は10%、従来例は100%の
孔に形成されめつきが形成されず、また、信頼
性は比較例よりも25%、従来例よりも約108%向
上し、ブローホール発生率は、比較例よりも約
88%減少し、従来例よりも約97%減少する。 (効果) 以上の通り、本発明によれば、絶縁基板をめつ
き触媒入りの熱硬化性樹脂液中に浸漬し取り出し
て乾燥する処理を2回以上繰り返すことにより孔
壁面に半硬化状態の樹脂層を形成するとともにこ
の樹脂層にめつき触媒を付着し、その後樹脂層を
熱硬化しているために、めつき析出が早くなり、
製造時間を短縮しうるとともに、信頼性が向上
し、ブローホールの発生率を大幅に低下しうる印
刷配線板の製造方法が得られる。
[Table] As is clear from the table, according to the present invention, the plating adhesion is 7 times faster than that of the conventional example, the ratio of holes with no plating is 0 [%], and after 30 minutes all the holes are While plating is formed on the thermosetting resin layer on the wall surface, plating is formed on 10% of the holes in the comparative example and 100% in the conventional example, and the reliability is lower than that of the comparative example. 25%, about 108% better than the conventional example, and the blowhole occurrence rate is about 25% better than the conventional example.
This is a reduction of 88%, which is approximately 97% less than the conventional example. (Effects) As described above, according to the present invention, by repeating the process of plating an insulating substrate by immersing it in a thermosetting resin solution containing a catalyst, taking it out, and drying it two or more times, a semi-hardened resin is formed on the hole wall surface. At the same time as forming a layer, a plating catalyst is attached to this resin layer, and then the resin layer is thermally cured, so plating precipitation is accelerated.
A method for manufacturing a printed wiring board can be obtained that can shorten manufacturing time, improve reliability, and significantly reduce the incidence of blowholes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第7図は本発明実施例の製造工程を示
し、第1図は接着剤層を設けた絶縁基板の断面
図、第2図は孔を形成した絶縁基板の断面図、第
3図は孔壁にめつき触媒入り熱硬化性樹脂層を設
けた絶縁基板の断面図、第4図は熱硬化性樹脂層
にめつき触媒を付着した絶縁基板の断面図、第5
図はめつきレジスト層を設けた絶縁基板の断面
図、第6図は接着剤層を粗化した絶縁基板の断面
図、第7図は回路を設けた絶縁基板の断面図を示
す。 1…絶縁基板、2…接着剤層、3…孔、4…熱
硬化性樹脂層、5…めつき触媒、6…めつきレジ
スト層、7…回路。
1 to 7 show the manufacturing process of an embodiment of the present invention, FIG. 1 is a cross-sectional view of an insulating substrate provided with an adhesive layer, FIG. 2 is a cross-sectional view of an insulating substrate with holes formed, and FIG. The figure is a sectional view of an insulating substrate in which a thermosetting resin layer containing a plating catalyst is provided on the hole wall, FIG. 4 is a sectional view of an insulating substrate in which a plating catalyst is attached to a thermosetting resin layer, and FIG.
The figures are a cross-sectional view of an insulating substrate provided with a plating resist layer, FIG. 6 is a cross-sectional view of an insulating substrate with a roughened adhesive layer, and FIG. 7 is a cross-sectional view of an insulating substrate provided with a circuit. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Adhesive layer, 3... Hole, 4... Thermosetting resin layer, 5... Plating catalyst, 6... Plating resist layer, 7... Circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 スルーホール用の孔を有しめつき触媒入り接
着剤が塗布された絶縁基板に、粗化処理を行なつ
て前記接着剤を粗化した後、無電解めつき法によ
り所定の回路を形成する印刷配線板の製造方法に
おいて、絶縁基板をめつき触媒を含んだ熱硬化性
樹脂液中に浸漬し乾燥する処理を2回以上繰返し
て孔壁面に前記めつき触媒を含む半硬化状態の熱
硬化性樹脂層を形成する工程と、該工程後に前記
熱硬化性樹脂層にめつき触媒を付着する工程と、
該工程後に前記熱硬化性樹脂層を熱硬化する工程
とを施すことを特徴とする印刷配線板の製造方
法。
1. An insulating substrate having holes for through holes and coated with a plating catalyst-containing adhesive is subjected to a roughening treatment to roughen the adhesive, and then a predetermined circuit is formed by electroless plating. In a method for manufacturing a printed wiring board, a process of immersing an insulating substrate in a thermosetting resin solution containing a plating catalyst and drying is repeated two or more times to form a semi-cured thermosetting state containing the plating catalyst on the hole wall surface. a step of forming a thermosetting resin layer; a step of attaching a plating catalyst to the thermosetting resin layer after the step;
A method for manufacturing a printed wiring board, which comprises performing a step of thermosetting the thermosetting resin layer after the step.
JP22406484A 1984-10-26 1984-10-26 Manufacture of printed wiring board Granted JPS61102796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22406484A JPS61102796A (en) 1984-10-26 1984-10-26 Manufacture of printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22406484A JPS61102796A (en) 1984-10-26 1984-10-26 Manufacture of printed wiring board

Publications (2)

Publication Number Publication Date
JPS61102796A JPS61102796A (en) 1986-05-21
JPH0370396B2 true JPH0370396B2 (en) 1991-11-07

Family

ID=16808001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22406484A Granted JPS61102796A (en) 1984-10-26 1984-10-26 Manufacture of printed wiring board

Country Status (1)

Country Link
JP (1) JPS61102796A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9398703B2 (en) * 2014-05-19 2016-07-19 Sierra Circuits, Inc. Via in a printed circuit board
JP6328575B2 (en) * 2015-02-23 2018-05-23 東京エレクトロン株式会社 Catalyst layer forming method, catalyst layer forming system, and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914977A (en) * 1972-05-22 1974-02-08
JPS5544476A (en) * 1978-09-25 1980-03-28 Shin Meiwa Ind Co Ltd Garbage galling preventing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914977A (en) * 1972-05-22 1974-02-08
JPS5544476A (en) * 1978-09-25 1980-03-28 Shin Meiwa Ind Co Ltd Garbage galling preventing device

Also Published As

Publication number Publication date
JPS61102796A (en) 1986-05-21

Similar Documents

Publication Publication Date Title
JPH028476B2 (en)
US3854973A (en) Method of making additive printed circuit boards
JPH0370396B2 (en)
JPH06260756A (en) Manufacture of printed wiring board
JP2885113B2 (en) Printed wiring board and manufacturing method thereof
JPH0964538A (en) Production of printed wiring board
JPS6114796A (en) Method of producing printed circuit board
JPS61102092A (en) Manufacture of printed wiring board
JPH0248155B2 (en) INSATSUHAISENBANNOSEIZOHOHO
JPS6110296A (en) Method of producing printed circuit board
JPS6140088A (en) Method of producing printed circuit board
JPS6140089A (en) Method of producing printed circuit board
JPS60235495A (en) Method of producing printed circuit board
JPS60233886A (en) Method of producing printed circuit board
JPH0248153B2 (en) INSATSUHAISENBANNOSEIZOHOHO
JPS60171789A (en) Method of producing printed circuit board
JPH0248152B2 (en) INSATSUHAISENBANNOSEIZOHOHO
JPS6396994A (en) Manufacture of printed wiring board
JPS5850040B2 (en) Manufacturing method of printed circuit board
JPS60229395A (en) Method of producing printed circuit board
JPS59175189A (en) Method of producing printed circuit board
JPS6034094A (en) Method of producing printed circuit board
JPS589398A (en) Method of producing board for printed circuit
JPS63182895A (en) Manufacture of printed wiring
JPS61163693A (en) Manufacture of printed wiring board