JPH0368863A - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JPH0368863A
JPH0368863A JP20647589A JP20647589A JPH0368863A JP H0368863 A JPH0368863 A JP H0368863A JP 20647589 A JP20647589 A JP 20647589A JP 20647589 A JP20647589 A JP 20647589A JP H0368863 A JPH0368863 A JP H0368863A
Authority
JP
Japan
Prior art keywords
ultrasonic
probe
normal direction
control device
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20647589A
Other languages
Japanese (ja)
Inventor
Yoshio Nakajima
吉男 中島
Kazuo Honma
本間 和男
Yukio Sumiya
住谷 幸男
Takeshi Yamaguchi
武 山口
Hiroshi Inamitsu
稲満 広志
Eiji Minamiyama
南山 英司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP20647589A priority Critical patent/JPH0368863A/en
Publication of JPH0368863A publication Critical patent/JPH0368863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make it possible to detect the flaws in a body under test having the curved surface accurately by making the central axis of an ultrasonic beam agree with the normal direction to the surface of the body under test based on the detected signals of the normal-line components in the scanning direction and in the direction perpendicular to the scanning direction and the distance signal between a probe and the body under test. CONSTITUTION:A body under test 5 is assumed to have a flat surface. A control device 15 operates commands Xo, Yo and Zo for X, Y and Z axes for performing the main scanning in the X direction and the secondary scanning in the Y direction with an ultrasonic probe 1 from time to time. When the body under test 5 has the complicated shape, deviations DELTA1 and DELTA2 around shafts alpha and beta are on the outside of 0. Therefore, driving devices 6 and 7 for the shafts alpha and beta are driven so that the difference in strengths of the received waves of probes 2b and 2c and 4b and 4c becomes 0 all the time. In this way, the central axis of the ultrasonic wave beam from the probe 1 agrees with the normal direction to the surface of the body undert test 5. The deviation of the ultrasonic wave beam from the directions X, Y and Z is operated based on angle alpha and beta of the shafts alpha and beta, and the deviation is corrected. The defect distribution of the body under test 5 is recorded by using the position command signal based on the operations.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波探傷装置に係り、特に、複雑な表面形
状の被検体を自動超音波探傷するのに好適な超音波探傷
装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ultrasonic flaw detection device, and particularly to an ultrasonic flaw detection device suitable for automatic ultrasonic flaw detection of a specimen with a complex surface shape. It is.

〔従来の技術〕[Conventional technology]

鯖密な探傷を目的とする超音波探傷の一方法として、水
中に被検体を沈め、その水中で超音波探触子により被検
体の表面を走査して探傷する水浸自動探傷法がある。
As one method of ultrasonic flaw detection for the purpose of detailed flaw detection, there is an automatic water immersion flaw detection method in which a test object is submerged in water and the surface of the test object is scanned with an ultrasonic probe underwater for flaw detection.

水浸自動探傷法においては、傷(欠陥)の大きさおよび
位置を正確に知るために、超音波探触子と被検体との距
離を一定に保ち、しかも超音波ビームの中心軸の方向を
被検体の表面の法線方向に一致させておく必要がある。
In automatic water immersion flaw detection, in order to accurately determine the size and location of flaws (defects), the distance between the ultrasonic probe and the object to be inspected must be kept constant, and the direction of the central axis of the ultrasonic beam must be kept constant. It is necessary to match the normal direction to the surface of the object.

なお、この穐の装置として関連するものには、例えば、
日本機械学会誌vo12.90.4826゜p5〜9記
載の技術、特開昭61−240158号公報、特開昭5
5−18376号公報、時開n(+58−34781号
公報記載の技術が知られている。
Incidentally, related devices include, for example,
Technology described in Journal of Japan Society of Mechanical Engineers vol. 12.90.4826゜p5-9, JP-A-61-240158, JP-A-Sho. 5
The techniques described in Japanese Patent No. 5-18376 and Jikai n (+58-34781) are known.

〔発明が解決しようとする課題〕 上記第1の従来技術(日本機械学会誌)は1表面が平面
である被検体の探傷は可能であるが、表面が曲面である
被検体に対しては、超音波探触子が送信する超音波ビー
ムの中心軸の方向を被検体の表面の法線方向に一致させ
ることが困難なため、探傷が不可能であった。
[Problems to be Solved by the Invention] The above-mentioned first conventional technique (Journal of the Japan Society of Mechanical Engineers) is capable of detecting flaws on a specimen whose surface is flat, but it is difficult to detect defects on specimens whose surfaces are curved. Flaw detection was impossible because it was difficult to align the central axis of the ultrasonic beam transmitted by the ultrasonic probe with the normal direction of the surface of the object.

また、第2の従来技術(特開昭61−240158号公
報)の法線方向制御においては、探触子を被検体表面の
法線方向に一致させるだけの制御を行なっている。した
がって、法線方向制御のために探触子を振ると、超音波
ビームの当たっている位置がずれ、探傷しようとしてい
る位置に超音波ビームを正確に当てることができないと
いう問題があった。
Further, in the normal direction control of the second prior art (Japanese Patent Laid-Open No. 61-240158), control is performed only to align the probe with the normal direction of the surface of the object. Therefore, when the probe is swung to control the normal direction, the position of the ultrasonic beam is shifted, and there is a problem in that the ultrasonic beam cannot be accurately applied to the position to be detected.

この第2の従来技術では、法線方向制御用超音波発信探
触子と探傷用探触子とに同じ探触子を使用している。一
般に探触子の種類は非常に多く。
In this second conventional technique, the same probe is used as the ultrasonic transmission probe for normal direction control and the flaw detection probe. Generally, there are many types of probes.

それぞれの特性が異なっている。このため、探傷に適し
た探触子を用いると、この探触子に合わせて法線方向制
御に用いる4個の超音波受信探触子を選択する必要があ
り、高価な装置となってしまうという問題もあった。
Each has different characteristics. Therefore, if a probe suitable for flaw detection is used, it is necessary to select four ultrasonic receiving probes for normal direction control according to this probe, resulting in an expensive device. There was also the problem.

さらに、第3の従来技術(特開昭55−18376号公
報)においては、法線方向検出値に基づいて、自動作業
機械の各軸を動作させながら作業実施機構部を回動させ
、同一作業点を維持したまま作業実施機構部を所定の姿
勢に制御しており。
Furthermore, in the third prior art (Japanese Unexamined Patent Publication No. 55-18376), the work execution mechanism is rotated while operating each axis of the automatic working machine based on the detected normal direction value, and the same work is performed. The work execution mechanism is controlled to a predetermined posture while maintaining the same position.

第2の従来技術のような問題はない。ところが、作業点
回りの作業実施機構部と被作業対象物との相対位置から
法線方向を検出しており1作業点における正確な法線方
向を検出できないという問題があった。
There is no problem like the second prior art. However, since the normal direction is detected from the relative position of the work execution mechanism and the workpiece around the work point, there is a problem in that the accurate normal direction at one work point cannot be detected.

第4の従来技術(特開昭55−34781号公報)にお
いても、ワークと手首先端に取付けたセンサとの相対位
置情報から法線方向を演算するものであり、センサのね
らい点における正確な法線方向を検出できないという問
題があった。
In the fourth conventional technology (Japanese Patent Application Laid-Open No. 55-34781), the normal direction is calculated from the relative position information between the workpiece and the sensor attached to the tip of the wrist, and an accurate method at the target point of the sensor is calculated. There was a problem that the line direction could not be detected.

本発明の目的は、安価な装置構成で、曲面を有する被検
体の正確な探傷が可能な超音波探傷袋ytを提供するこ
とである。
An object of the present invention is to provide an ultrasonic flaw detection bag yt that allows accurate flaw detection of a curved object with an inexpensive device configuration.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成すねために、表面が必ずしも
平面でない被検体に超音波を発信し被検体からの反射波
を受信する超音波探触子とこの超音波探触子の位置決め
手段とを有する超音波探傷装置において、前記超音波探
触子の走査方向に対する被検体表面の法線方向の成分を
検出する第1法線方向検出装置と、前記超音波探触子の
走査方向に直角な方向に対する被検体表面の法線方向の
成分を検出する第2法線方向検出装置と、前記超音波探
触子と被検体との距離を検出する距離検出装置と、前記
超音波探触子の位置および姿勢を変える複数軸の軸駆動
装置と、前記第1法線方向制御装置と第2法線方向制御
装置と距離検出装置との検出信号に基づいて前記複数の
軸駆動装置を制御し超音波探触子の超音波ビームの中心
軸を被検体表面の法線方向に一致させる制御装置とを備
えた超音波探傷装置を提案するものである。
In order to achieve the above object, the present invention provides an ultrasonic probe that transmits ultrasonic waves to a subject whose surface is not necessarily flat and receives reflected waves from the subject, and a means for positioning the ultrasonic probe. an ultrasonic flaw detection device comprising: a first normal direction detection device for detecting a component in a direction normal to the surface of the object to be inspected with respect to the scanning direction of the ultrasonic probe; a second normal direction detection device that detects a component in the normal direction of the surface of the subject with respect to a direction; a distance detection device that detects the distance between the ultrasound probe and the subject; and the ultrasound probe a plurality of axis drive devices that change the position and orientation of the plurality of axis drive devices based on detection signals from the first normal direction control device, the second normal direction control device, and the distance detection device; The present invention proposes an ultrasonic flaw detection apparatus that includes a control device that aligns the central axis of an ultrasonic beam of an ultrasonic probe with the normal direction of the surface of an object to be inspected.

〔作用〕[Effect]

上記手段を備えた本発明の超音波探傷装置において、距
離検出装置は、距離検出センサの信号がら超音波探触子
と被検体表面との距離を演算し。
In the ultrasonic flaw detection apparatus of the present invention having the above means, the distance detection device calculates the distance between the ultrasonic probe and the surface of the object based on the signal from the distance detection sensor.

制御装置に出力する。制御装置は、入力装置から与えら
れた条件に基づいて、まず、被検体表面の法線方向変化
がなく、かつ上下動軸であるZ軸のアーム方向と同じで
あると想定して、探触子が所定の移動経路を通るように
、複数軸のうちx、y。
Output to control device. Based on the conditions given from the input device, the control device first assumes that there is no change in the normal direction of the object surface and that the arm direction is the same as the Z-axis, which is the vertical movement axis, and starts the probe. x, y among multiple axes so that the child passes through a predetermined movement path.

Z軸の指令値を時々刻々演算する。そして、第1の法線
方向検出装置で走査方向における超音波探触子の中心軸
と被検体表面の法線方向とのずれを検出し、このずれ量
がOになるように複数軸のひとつであるα軸を動作させ
る。
Calculate the Z-axis command value every moment. Then, the first normal direction detection device detects the deviation between the center axis of the ultrasound probe in the scanning direction and the normal direction of the surface of the subject, and selects one of the multiple axes so that the amount of deviation becomes O. Operate the α-axis.

また、超音波探触子の超音波ビームが当たっている被検
体表面からの情報により走査方向に直角の方向における
超音波探触子の中心軸と被検体表面の法線のずれ量を検
出し、このずれ量がOになるように複数軸のひとつであ
るβ軸を動作させる。
In addition, the amount of deviation between the central axis of the ultrasound probe and the normal to the surface of the specimen in the direction perpendicular to the scanning direction is detected based on information from the surface of the specimen that is hit by the ultrasound beam of the ultrasound probe. , one of the plural axes, the β-axis, is operated so that the amount of deviation becomes O.

そしてα、β軸が動作しても超音波探触子の超音波ビー
ムが被検体表面の同じ位置に当たるように、先に演算し
たx、y、z軸の指令値を補正する。
Then, the previously calculated command values for the x, y, and z axes are corrected so that the ultrasonic beam of the ultrasonic probe hits the same position on the surface of the object even if the α and β axes operate.

さらに、Z軸に関しては、設定した31′!離と距離検
出装置の出力値との差をとり、Z軸の指令値を補正する
。そして、これらの補正したX、Y、Z軸の指令値どお
りになるようにx、y、z軸の駆動装置を制御する。
Furthermore, regarding the Z axis, the set 31'! The difference between the distance and the output value of the distance detection device is taken to correct the Z-axis command value. Then, the drive devices for the x, y, and z axes are controlled so that the corrected command values for the x, y, and z axes are met.

本発明装置は、以上のように作動するので、複雑な曲面
をイfする被検体を正確に探傷でき、しかも安価である
Since the apparatus of the present invention operates as described above, it is possible to accurately detect defects on a test object having a complex curved surface, and it is also inexpensive.

〔実施例〕〔Example〕

次に、図面を参照して、本発明の各実施例を説明する。 Next, each embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明による超音波探傷装置の第1実施例の
全体構成を示すブロック図、第2図および第3図は第1
図装置の手首部の詳細を示す図、第4図は第1図装置の
各探触子等の配置を示す図、第5図は距離検出装置の構
成の一例を示すブロック図、第6図は第1図装置におけ
る第1法線方向検出装置の受信波の強度特性を示す図、
第7図は制御装置が想定した超音波探触子の移動経路の
一例を示す図、第8図は距離検出時における超音波探触
予算の位置関係を示す図である。なお、第1〜4図にお
いて、X、Y、Z軸の方向は実線矢印で示すとおりであ
り、第2図はX軸方向の側面図。
FIG. 1 is a block diagram showing the overall configuration of a first embodiment of an ultrasonic flaw detection device according to the present invention, and FIGS.
Figure 4 is a diagram showing the details of the wrist part of the device, Figure 1 is a diagram showing the arrangement of each probe etc. of the device, Figure 5 is a block diagram showing an example of the configuration of the distance detection device, and Figure 6 is a diagram showing details of the wrist part of the device. is a diagram showing the intensity characteristics of the received wave of the first normal direction detection device in the device shown in FIG.
FIG. 7 is a diagram showing an example of the movement path of the ultrasound probe assumed by the control device, and FIG. 8 is a diagram showing the positional relationship of the ultrasound probe budget at the time of distance detection. In addition, in FIGS. 1 to 4, the directions of the X, Y, and Z axes are as indicated by solid arrows, and FIG. 2 is a side view in the X-axis direction.

第3図はY軸方向の側面図である。FIG. 3 is a side view in the Y-axis direction.

第1図〜4図において、1は探傷するための超音波探触
子、2は超音波探触子1の走査方向(X方向)に対する
被検体5の表面の法線方向を検出する第1法線方向制御
装置である。第1法線方向制御装v12は、超音波探触
子lに対して角度δ。
1 to 4, 1 is an ultrasonic probe for flaw detection, and 2 is an ultrasonic probe for detecting the normal direction of the surface of the object 5 with respect to the scanning direction (X direction) of the ultrasonic probe 1. It is a normal direction control device. The first normal direction control device v12 is at an angle δ with respect to the ultrasound probe l.

傾いて第1ブラケツト3により結合された超音波発信探
触子2aと、この超音波発信探触子2aに対し角度δ2
傾いて第1ブラケツト3により結合された超音波受信探
触子2b、2cとからなる。
The ultrasonic transmitting probe 2a is tilted and connected by the first bracket 3, and the angle δ2 is set with respect to the ultrasonic transmitting probe 2a.
It consists of ultrasonic receiving probes 2b and 2c which are tilted and connected by a first bracket 3.

4は超音波探触子1の走査方向とは「(角な方向(Y方
向)に対する被検体5の表面の法線方向を検出する第2
法線方向検出装置であり、超音波探触子1に対し図示し
ない角度δ3傾いて第1ブラケツト3により結合された
超音波発受信探触子4aと、その超音波発受信探触子4
aに対して角度δ4傾いて第1ブラケツト3により結合
された超音波受信探触子4b、4cとからなる。
4 refers to the scanning direction of the ultrasonic probe 1 as "a second direction that detects the normal direction of the surface of the object 5 with respect to the angular direction (Y direction).
It is a normal direction detection device, and includes an ultrasonic transmitting/receiving probe 4a connected by a first bracket 3 at an angle δ3 (not shown) with respect to the ultrasonic probe 1, and the ultrasonic transmitting/receiving probe 4
It consists of ultrasonic receiving probes 4b and 4c connected by a first bracket 3 at an angle δ4 with respect to a.

5は複雑な表面形状をもつ被検体、6はα軸用の駆動装
置である。駆動装置6は、例えば電気モータで、この駆
動装置を動作させると、超音波探触子1と第1.第2法
線方向検出装置2,4とを取り付けた第1ブラケツト3
は、α軸回りに回転する。7はβ軸用の駆動装置であり
、駆動装置7を動作させると、第1ブラケツト3はF@
回りに回転する。8は駆動装[6を取り付けた第2ブラ
ケツト、9はZ軸子−11,10はZSt+用の駆動装
置であり、駆動装置S’? l Oを動作させると、Z
軸アーム9はZ軸方向すなわち上下方向に移動する。
Reference numeral 5 represents an object to be examined having a complicated surface shape, and reference numeral 6 represents an α-axis drive device. The drive device 6 is, for example, an electric motor, and when the drive device is operated, the ultrasound probe 1 and the first . A first bracket 3 with a second normal direction detection device 2 and 4 attached thereto.
rotates around the α axis. 7 is a drive device for the β axis, and when the drive device 7 is operated, the first bracket 3 is F@
rotate around. 8 is the second bracket to which the drive device [6 is attached; 9 is the drive device for the Z axis element -11, 10 is the drive device for ZSt+; and the drive device S'? When operating lO, Z
The shaft arm 9 moves in the Z-axis direction, that is, in the vertical direction.

11は第3ブラケツトである。第3ブラケツト11をX
、Y、Z軸方向に移動させる駆動装置も備えているが、
ここでは図示しない。
11 is the third bracket. X the third bracket 11
It is also equipped with a drive device that moves it in the , Y, and Z axis directions.
Not shown here.

工2は超音波探触子1の走査範囲を指定する入力装置、
13は記録装置、14は超音波探触子1と被検体5との
距離を検出する距離検出装置、15は制御装置、16〜
20はそれぞれ複数の各軸の駆動装置用の増幅器9例え
ばサーボ増幅器である。
2 is an input device for specifying the scanning range of the ultrasound probe 1;
13 is a recording device; 14 is a distance detection device that detects the distance between the ultrasound probe 1 and the subject 5; 15 is a control device; 16-
Reference numeral 20 designates amplifiers 9, such as servo amplifiers, for driving devices for each of a plurality of axes.

21〜25は各駆動装置に内蔵された泣訴または角度検
出器2例えばポテンショメータからの信号である。26
〜30は制御装置115からの指令値、31は超音波探
触子1の超音波信号、32は第1法線方向検出装置2か
らの信号であり、第2図および第3図の実施例において
は受信探触子2b〜2Cの超音波信号である。なお、発
信探触子2a用の発信器は図示していない、33は第2
法線方向検出装置14からの信号であり、第2図および
第3図の実施例においては超音波発受信探触子4aおよ
び超音波受信探触子4b、4cの超音波信号であり、超
音波発受信探触子4aの信号は距離検出装置14へ入力
されている。
Reference numerals 21 to 25 indicate signals from the angle detector 2, such as a potentiometer, built into each drive device. 26
30 is a command value from the control device 115, 31 is an ultrasonic signal from the ultrasonic probe 1, and 32 is a signal from the first normal direction detection device 2, and the embodiments shown in FIGS. 2 and 3 , ultrasonic signals from the receiving probes 2b to 2C are shown. Note that the transmitter for the transmitting probe 2a is not shown, and 33 is the second transmitter.
It is a signal from the normal direction detection device 14, and in the embodiments shown in FIGS. A signal from the sonic wave emitting/receiving probe 4a is input to a distance detecting device 14.

第5図は、距離検出装置]−4の構成の一例を示すブロ
ック図である。
FIG. 5 is a block diagram showing an example of the configuration of the distance detection device ]-4.

距離検出装置14は、超音波発受信探触子4aに超音波
信号を送信する送信器34と、被検体5から反射してく
る超音波信号を受信する受信器35と、計時回路36と
からなる。計時回路36は、送信器34からの送信信号
と被検体Sの表面からの超音波反射信号との時間間隔を
41つ定し、制御装置15に出力する。なお、この時間
間隔をt、とじ、水中の音速をVとすると、発受信探触
子4aと被検体5の表面との距離mは、vt、/2  
            ・・・・・・ (1)で求め
られる。
The distance detection device 14 includes a transmitter 34 that transmits an ultrasonic signal to the ultrasonic transmitter/receiver probe 4a, a receiver 35 that receives the ultrasonic signal reflected from the subject 5, and a timing circuit 36. Become. The clock circuit 36 determines 41 time intervals between the transmission signal from the transmitter 34 and the ultrasound reflected signal from the surface of the subject S, and outputs the time interval to the control device 15. Note that if this time interval is t and the speed of sound in water is V, then the distance m between the transmitting/receiving probe 4a and the surface of the subject 5 is vt, /2
・・・・・・ It is obtained by (1).

第6図は、第1法線方向検出装置2の受信波の強度特性
の一例を示したものである。横軸は超音波探触子1の超
音波ビームの中心軸と被検体5の法線方向のα軸回りの
ずれΔ1、縦軸は受信波の強度であり、Aが超音波受信
探触子2bの特性、B超音波受信探触子2cの特性であ
る。なお、第2法線方向装置4に関しても、超音波探触
子1の超音波ビームの中心軸と被検体5の法線方向のβ
軸回りのずれΔ2に対、して、超音波受信探触子4b、
4cの強度は第6図と同様の特性を示す。
FIG. 6 shows an example of the intensity characteristics of the received wave of the first normal direction detection device 2. In FIG. The horizontal axis is the deviation Δ1 around the α axis between the central axis of the ultrasound beam of the ultrasound probe 1 and the normal to the subject 5, the vertical axis is the intensity of the received wave, and A is the ultrasound receiving probe. 2b, and the characteristics of the B ultrasonic receiving probe 2c. Note that regarding the second normal direction device 4 as well, β between the central axis of the ultrasound beam of the ultrasound probe 1 and the normal direction of the subject 5 is
For the deviation Δ2 around the axis, the ultrasonic receiving probe 4b,
The intensity of 4c shows the same characteristics as in FIG.

次に、制御装置15の制御内容について説明する。まず
、制御装置!115では、第7図に示すように、被検体
5が平面でかつ法線方向が一定である物体と想定して、
超音波探触子1が第7図に示す経路を通るように、X、
Y、Z軸(距離)の指令値x、、 yo、 z、を時々
刻々と演算する。そして、実際の被検体5が、第7図の
ようにZ軸に直角な平面の被検体の場合は、超音波探触
子1の超音波ビームの中心軸と被検体の法線方向とのα
軸回りのずれΔ1およびβ軸回りのずれΔ2がOとなる
Next, the control contents of the control device 15 will be explained. First, the control device! In step 115, as shown in FIG. 7, assuming that the object 5 is a flat object with a constant normal direction,
X, so that the ultrasound probe 1 passes through the path shown in FIG.
The command values x, yo, z for the Y and Z axes (distance) are calculated moment by moment. If the actual object 5 is a flat object perpendicular to the Z-axis as shown in FIG. 7, the center axis of the ultrasound beam of the ultrasound probe 1 and the normal direction of the object α
The deviation Δ1 around the axis and the deviation Δ2 around the β axis are O.

これに対して、被検体5が仔意の法線方向を有する複雑
な形状の物体である場合は、ずれΔ、およびΔ2がO以
外となる。そこで、超音波受信探触子2b、2eの受信
波の強度差が常に0になるように、α軸用の駆動装置6
を駆動する。また、超音波受信探触子4b、4cの受信
波の強度差が常にOになるように、β軸用駆動装置7を
駆動する。
On the other hand, if the subject 5 is a complex-shaped object with an intended normal direction, the deviations Δ and Δ2 are other than O. Therefore, the α-axis drive device 6
to drive. Further, the β-axis drive device 7 is driven so that the difference in intensity between the received waves of the ultrasonic receiving probes 4b and 4c is always O.

このように制御すると、超音波探触子1の超音波ビーム
の中心軸と被検体5の表面の法線方向とが一致すること
になる。
By controlling in this way, the central axis of the ultrasound beam of the ultrasound probe 1 and the normal direction of the surface of the subject 5 will match.

ただし、このままでは、超音波ビームが被検体5の表面
に当たる軌跡が直線でなくなる。そこで、駆動装置6,
7により駆動されたα、β軸の角度α、βに基づき、α
、β軸の回転によって被検体5の表面に当たる超音波ビ
ームの位]〆tがX、Y。
However, if this continues, the trajectory of the ultrasonic beam hitting the surface of the subject 5 will no longer be a straight line. Therefore, the drive device 6,
Based on the angles α and β of the α and β axes driven by 7, α
, the position of the ultrasonic beam hitting the surface of the subject 5 due to the rotation of the β axis] where t is X, Y.

X軸方向にどの程度ずれたかを演算する。そのずれ量を
ΔX、ΔY、Δz1とすると、 ΔX=fよ(α、β)      ・・・(2)ΔY=
f、(α、β)        ・・・ (3)ΔZ1
=f3 (α、β)        ・・・ (4)の
関係があるので演算可能である。また、Z軸に関しては
、第7図の想定位置に対して被検体5の上下方向のずれ
も考慮に入れる。
The amount of deviation in the X-axis direction is calculated. If the amount of deviation is ΔX, ΔY, Δz1, then ΔX=f (α, β)...(2) ΔY=
f, (α, β) ... (3) ΔZ1
=f3 (α, β)... Since the relationship shown in (4) exists, calculation is possible. Regarding the Z-axis, vertical deviation of the subject 5 from the assumed position in FIG. 7 is also taken into consideration.

そのずれ量は次のようにして求める。第8図は、距離検
出時の超音波探触子1と、超音波発受信探触子4aと、
被検体5との位置関係を示したものである。点Pは、超
音波探触子1の超音波ビームと超音波発受信探触子4a
の超音波ビームとが交差する位置であり、超音波探触子
1と被検体5との距離は点Pが被検体表面上に位置する
ように制御される。距離検出装置14の出力値(超音波
発受信探触子4aと被検体5の間の距till)をQl
とすると、超音波探触子1と被検体5の間の距離Qは次
のように演算される。
The amount of deviation is determined as follows. FIG. 8 shows the ultrasonic probe 1 and the ultrasonic transmitter/receiver probe 4a during distance detection,
It shows the positional relationship with the subject 5. Point P is the point between the ultrasonic beam of the ultrasonic probe 1 and the ultrasonic transmitting/receiving probe 4a.
The distance between the ultrasound probe 1 and the subject 5 is controlled so that the point P is located on the surface of the subject. The output value of the distance detection device 14 (distance till between the ultrasonic transmitting/receiving probe 4a and the subject 5) is Ql.
Then, the distance Q between the ultrasound probe 1 and the subject 5 is calculated as follows.

Q = Q 、cosδ、+Qa        ”’
 (s)したがって、超音波探触子1の上下方向のずれ
量は、設定した超音波探触子1と被検体5の表面との距
離Q refと、式(5)により計算した値aとの差を
とり、その差の値をΔZ2とする。
Q = Q, cos δ, +Qa ”'
(s) Therefore, the amount of vertical deviation of the ultrasound probe 1 is determined by the set distance Q ref between the ultrasound probe 1 and the surface of the object 5, and the value a calculated by equation (5). , and let the value of the difference be ΔZ2.

そして。and.

X=X、+ΔX          ・・・(6)Y=
Y、+ΔY          ・・・(7)2=2.
+Δz、+Δz2     ・ (8)を演算し、得ら
れた値X、Y、Zを指令値として、各軸をサーボ制御す
る。
X=X, +ΔX ... (6) Y=
Y, +ΔY...(7)2=2.
+Δz, +Δz2 (8) is calculated, and each axis is servo controlled using the obtained values X, Y, and Z as command values.

記録装置13は超音波探触子1の受信波とX。A recording device 13 records the received waves of the ultrasound probe 1 and X.

Y軸の位置指令信号X。、Yoとを用いて被検体5の欠
陥分布を記録する。
Y-axis position command signal X. , Yo are used to record the defect distribution of the object 5.

なお、本実施例においては、超音波探触子の走査方向に
対する被検体表面の法線方向を検出する第1法線方向検
出装置2も超音波探触子1の超音波ビームが当たってい
る被検体5の表面からの情報を用いているが、超音波探
触子1と探触子4a〜4cの主軸を平行にして(δ3=
O)もよい。
In this embodiment, the ultrasonic beam of the ultrasonic probe 1 also hits the first normal direction detection device 2 that detects the normal direction of the surface of the subject with respect to the scanning direction of the ultrasonic probe. Although information from the surface of the object 5 is used, the main axes of the ultrasound probe 1 and the probes 4a to 4c are parallel to each other (δ3=
O) is also good.

次に、第9図〜第11図を参照して、本発明の第2実施
例を説明する。
Next, a second embodiment of the present invention will be described with reference to FIGS. 9 to 11.

第9図は1本発明の第2実施例における超音波探傷装置
の手首部のX軸方向の側面図、第10図は、そのY@力
方向側面図、第11図は、第9図の装置の各探触予算の
配置を示す図である。第2〜4図と同一符号のものは、
第1実施例と同等部分であるから1、その説明を省略す
る。また、図示以外の超音波探傷装置の構成は第1同と
同等である。
FIG. 9 is a side view in the X-axis direction of the wrist of the ultrasonic flaw detection device according to the second embodiment of the present invention, FIG. 10 is a side view in the Y@force direction, and FIG. It is a figure showing arrangement of each exploration budget of an apparatus. Items with the same numbers as in Figures 2 to 4 are
Since it is the same part as the first embodiment, the explanation thereof will be omitted. Further, the configuration of the ultrasonic flaw detection device other than those shown in the drawings is the same as that of the first one.

第9図および第10図において、40は法線方向検出装
置であり、超音波探触子1の走査方向(X方向)に対す
る被検体5の表面の法線方向を検出する第1法線方向検
出装置40aと、超音波探触子の走査方向と直角な方向
(Y方向)に対する被検体5の表面の法線方向を検出す
る第2法線方向検出装置40b、40cとからなる。な
お、40aは雨検出装置の一部を兼ねている。第1法線
方向検出装置40aは、超音波発受信探触子であり、超
音波探触子1に対して角度δ、傾いて第1ブラケツト3
Aにより結合されている。また。
In FIGS. 9 and 10, 40 is a normal direction detection device, and a first normal direction detects the normal direction of the surface of the subject 5 with respect to the scanning direction (X direction) of the ultrasound probe 1. It consists of a detection device 40a and second normal direction detection devices 40b and 40c that detect the normal direction of the surface of the subject 5 with respect to the direction (Y direction) perpendicular to the scanning direction of the ultrasound probe. Note that 40a also serves as a part of the rain detection device. The first normal direction detection device 40a is an ultrasonic transmitting/receiving probe, and is tilted at an angle δ with respect to the ultrasonic probe 1.
It is connected by A. Also.

超音波発受信探触子40aの信号は距離検出装置14に
導かれ、超音波発受信探触子40aと被検体5との間の
距離を測定し、制御装置15に出方され、受信波信号も
制御装置11715に出力される。
The signal of the ultrasonic transducer probe 40a is guided to the distance detection device 14, which measures the distance between the ultrasonic transducer probe 40a and the subject 5, and is sent to the control device 15, where the received wave A signal is also output to control device 11715.

さらに、第2法線方向検出装[40b、40cは、超音
波受信探触子であり、超音波発受信探触子40aに対し
て角度δ6傾いて第1ブラケツト3Aにより結合されて
いる。
Furthermore, the second normal direction detection devices [40b, 40c are ultrasonic receiving probes, and are coupled by the first bracket 3A at an angle δ6 with respect to the ultrasonic transmitting/receiving probe 40a.

次に、第1法線方向検出装置40aを用いて超音波探触
子1の走査方向(X方向)に対する被検体5の表面の法
線方向検出方法について説明する。
Next, a method for detecting the normal direction of the surface of the subject 5 with respect to the scanning direction (X direction) of the ultrasound probe 1 using the first normal direction detection device 40a will be described.

まず、ある時点において距離検出装614の出力値であ
る超音波発受信探触子40aと被検体5の表面との距離
から式(5)を用いて超音波探触子1と被検体5との距
離aを演算する。ただし、式(5)において、δ3をδ
、に置き換える。
First, from the distance between the ultrasonic transducer 40a, which is the output value of the distance detection device 614, and the surface of the object 5 at a certain point in time, the distance between the ultrasonic probe 1 and the object 5 is calculated using equation (5). Calculate the distance a. However, in equation (5), δ3 is δ
, replace it with

次に、X方向にある一定距離移動し、そのときの距IQ
を演算する。そして、前回の距1aQど今回のilt!
離およびx、y、z、α、β軸の変拉または角度の値か
ら被検体5の表面の接線方向を求める。この接線に対す
る垂線の方向が法線方向となる。
Next, move a certain distance in the X direction, and the distance IQ at that time
Calculate. And last time's distance 1aQ is this time's ilt!
The tangential direction of the surface of the subject 5 is determined from the distance and the deformation or angle values of the x, y, z, α, and β axes. The direction of the perpendicular line to this tangent line is the normal direction.

第2法線方向検出装置40a〜40cの検出原理は第1
実施例で述べたのと全く同じである。
The detection principle of the second normal direction detection devices 40a to 40c is the first
This is exactly the same as described in the embodiment.

以上述べた法線方向検出方法および先の第1実施例で示
した法線方向制御によるx、y、z軸のずれ補正等の制
御方法を用いることにより、複雑な曲面を有する物体の
超音波探傷が可能となる。
By using the normal direction detection method described above and the control method of x, y, and z axis deviation correction by normal direction control shown in the first embodiment, ultrasonic waves of an object having a complex curved surface can be detected. Flaw detection becomes possible.

第9図および第10図の実施例では、超音波探触子1の
走査方向に対する被検体表面の法線方向の検出精度は高
精度とならないが、走査方向に直角な方向に対する法線
方向の検出精度は高粘度であるので、良好な探傷結果が
得られる。
In the embodiments shown in FIGS. 9 and 10, the detection accuracy in the normal direction of the object surface to the scanning direction of the ultrasound probe 1 is not high, but the detection accuracy in the normal direction to the direction perpendicular to the scanning direction is not high. Since the detection accuracy is high, good flaw detection results can be obtained.

次に第12〜14図を参照して、本発明の第3実施例を
説明する。
Next, a third embodiment of the present invention will be described with reference to FIGS. 12 to 14.

第12図は1本発明の第3実施例における超音波探傷装
置の手首部のX軸方向側面図、第13図は、そのY軸方
向の側面図、第14図は、第12図装置の各探触子等の
配置説明図である。
FIG. 12 is a side view in the X-axis direction of the wrist part of the ultrasonic flaw detection device according to the third embodiment of the present invention, FIG. 13 is a side view in the Y-axis direction, and FIG. FIG. 3 is an explanatory diagram of the arrangement of each probe.

第12図および第13図で、第2〜4図と同一符号のも
のは先の実施例と同等部分であるから、その説明を省略
する。また、図示以外の超音波探傷装置の構成は第1図
と同等である。
In FIGS. 12 and 13, the same reference numerals as those in FIGS. 2 to 4 are the same parts as in the previous embodiment, so the explanation thereof will be omitted. Further, the configuration of the ultrasonic flaw detection device other than those shown in the drawings is the same as that shown in FIG.

第12図および第13図において、41は超音波探触子
lの走査方向と直角な方向(Y方向)に対する被検体5
の表面の法線方向を検出する第2法線方向検出装置で、
超音波発受信探触子41aと超音波受信探触子41b、
41.cとからなり、超音波発受信探触子41aは、超
音波探触子lに対して角度δ、傾いて第1ブラケツト3
Bにより結合されている。
In FIGS. 12 and 13, 41 indicates the object 5 in the direction (Y direction) perpendicular to the scanning direction of the ultrasound probe l.
a second normal direction detection device for detecting the normal direction of the surface of the
an ultrasonic transmitter/receiver probe 41a and an ultrasonic receiver probe 41b,
41. The ultrasonic transmitting/receiving probe 41a is tilted at an angle δ with respect to the ultrasonic probe l, and the first bracket 3
It is connected by B.

また、超音波受信探触子41b、41cは、超音波発受
信探触子41aに対して角度δ8傾いて第1ブラケツト
3Bにより結合されている。
Further, the ultrasonic receiving probes 41b and 41c are coupled by the first bracket 3B at an angle δ8 with respect to the ultrasonic transmitting/receiving probe 41a.

42は超音波発受信探触子であり、超音波発受信探触子
41aとともに第1法線方向検出装置を構成している。
Reference numeral 42 denotes an ultrasonic transmitting/receiving probe, which together with the ultrasonic transmitting/receiving probe 41a constitutes a first normal direction detection device.

超音波発受信探触子42は、超音波探触子1と平行に第
1ブラケツト3Bにより結合されている。
The ultrasonic transmitting/receiving probe 42 is connected in parallel to the ultrasonic probe 1 by a first bracket 3B.

また、超音波発受信探触子42の信号は、距離検出装置
14に導かれ、超音波発受信探触子42と被検体5の表
面との距離を測定し、制御装[15に出力される。
Further, the signal of the ultrasonic transducer 42 is guided to the distance detection device 14, which measures the distance between the ultrasonic transducer 42 and the surface of the subject 5, and is output to the control device [15]. Ru.

超音波発受信探触子41aの信号は、第9図の第2実施
例の40aの場合と同様に、距離検出装置14に導かれ
、超音波発受信探触子41aと被検体5の表面との距離
を測定し、制御装置15に出力され、受信波信号も制御
装置15に出力される。
The signal of the ultrasonic transmitter/receiver probe 41a is guided to the distance detecting device 14, as in the case of 40a of the second embodiment in FIG. The distance to the target is measured and output to the control device 15, and the received wave signal is also output to the control device 15.

超音波探触子1の走査方向(X方向)に対する被検体5
の表面の法線方向検出方法および制御方法について説明
する。距離検出装置14の出力値である超音波発受44
探触子41aと被検体5の表面との距離から式(5)を
用いて超音波探触子1と被検体5の表面との距離Qを演
算する。ただし。
Subject 5 in the scanning direction (X direction) of the ultrasound probe 1
A method for detecting and controlling the normal direction of the surface will be explained. Ultrasonic wave transmission/reception 44 which is the output value of the distance detection device 14
From the distance between the probe 41a and the surface of the subject 5, the distance Q between the ultrasound probe 1 and the surface of the subject 5 is calculated using equation (5). however.

式(5)においてδ、と57に置き換える。そして、こ
の演算した距離氾と、超音波発受信探触子42の信号か
ら得られる同探触子42と被検体5の表面との距離を比
較し、両距離信号の値が一致するようにα軸用の駆動装
置6を駆動する。
In equation (5), δ is replaced with 57. Then, this calculated distance value is compared with the distance between the ultrasonic transducer 42 and the surface of the object 5 obtained from the signal of the ultrasonic transmitter/receiver probe 42, and the distance signal is adjusted so that the values of both distance signals match. The α-axis drive device 6 is driven.

第2法線検出装置の各探触子41a〜41cの検出原理
は、第1実施例で述べたものと全く同じである。
The detection principle of each of the probes 41a to 41c of the second normal detection device is exactly the same as that described in the first embodiment.

以上述べた法線方向検出方法と制御方法および第1の実
施例で述べた法線方向制御によるX、Y。
X and Y by the normal direction detection method and control method described above and the normal direction control described in the first embodiment.

Z軸のずれ補正等の制御方法を用いることにより、曲面
を有する物体の超音波探傷が可能となる。
By using a control method such as Z-axis deviation correction, it becomes possible to perform ultrasonic flaw detection on objects having curved surfaces.

次に第15図〜第18図を参照して、本発明の第4実施
例を説明する。
Next, a fourth embodiment of the present invention will be described with reference to FIGS. 15 to 18.

第15図は、本発明の第4実施例における超音波探傷装
置の手首部のX軸方向の側面図、第16図は、そのY軸
方向の側面図、第17図は、第15図装置の各探触子等
の配置説明図、第18図は第15図装置における第2法
線方向検出装置の受信波の強度特性を示す線図である。
FIG. 15 is a side view in the X-axis direction of the wrist of the ultrasonic flaw detection device according to the fourth embodiment of the present invention, FIG. 16 is a side view in the Y-axis direction, and FIG. 17 is the device shown in FIG. FIG. 18 is a diagram showing the intensity characteristics of the received wave of the second normal direction detection device in the device shown in FIG. 15.

第15図で、第2図と同一符号のものは先の実施例と同
等部分であるから、その説明を省略する。また、図示以
外の超音波探傷装置の構成は第1図と同等である。
In FIG. 15, parts with the same reference numerals as in FIG. 2 are the same parts as in the previous embodiment, so a description thereof will be omitted. Further, the configuration of the ultrasonic flaw detection device other than those shown in the drawings is the same as that shown in FIG.

第15図および第16図において、4;3は超音波探触
子1の走査方向(X方向)に対する被検体5の表面の法
線方向を検出する第1法線方向検帛装置で、2個の超音
波発受信探触子43aと43bとからなり、この超音波
発受信探触子43a。
15 and 16, 4; 3 is a first normal direction detection device that detects the normal direction of the surface of the subject 5 with respect to the scanning direction (X direction) of the ultrasound probe 1; The ultrasonic transmitting/receiving probe 43a consists of two ultrasonic transmitting/receiving probes 43a and 43b.

43bは超音波探触子1と平行で、かつ超音波探触子1
から同距離n、だけ離れて第1ブラケツト3cにより結
合されている。
43b is parallel to the ultrasound probe 1 and
The first bracket 3c is connected to the first bracket 3c at the same distance n from the first bracket 3c.

また、超音波発受信探触子43a、43bの信号は、距
離検出装置14に導かれ、それぞれの超音波発受信探触
子43a、43bと被検体5の表面との距離を測定し、
制御装置15に出力される。
Further, the signals of the ultrasonic transmitting and receiving probes 43a and 43b are guided to the distance detecting device 14, which measures the distance between the respective ultrasonic transmitting and receiving probes 43a and 43b and the surface of the subject 5,
It is output to the control device 15.

44は超音波探触子1の走査方向と直角な方向(X方向
)に対する被検体5の表面の法線方向を検出する第2法
線検出装置で、超音波探触子1に対して角度δ、傾いて
第1ブラケツト3Cにより結合されている超音波発受信
探触子である。
44 is a second normal detection device that detects the normal direction of the surface of the subject 5 with respect to the direction (X direction) perpendicular to the scanning direction of the ultrasound probe 1; δ is an ultrasonic transmitting/receiving probe which is tilted and connected by the first bracket 3C.

その信号は、第9図の第2実施例の40aの場合と同様
に、距離検出装置14に導かれ、超音波発受信探触子4
4と被検体5の表面との距離を測定し、制御装置15に
出力され、受信波信号も制御装置15に出力される。
The signal is guided to the distance detection device 14, as in the case of 40a of the second embodiment in FIG.
4 and the surface of the subject 5 is measured and output to the control device 15, and a received wave signal is also output to the control device 15.

超音波探触子1の走査方向(X方向)に対する被検体5
の表面の法線方向検出と制御方法について説明する。超
音波発受信探触子43a、43bと被検体5の表面との
距離を比較し、両距離信号の値が一致するようにα軸用
のylA!!lI装置6を駆動する。
Subject 5 in the scanning direction (X direction) of the ultrasound probe 1
A method for detecting and controlling the normal direction of the surface will be explained. The distances between the ultrasonic transmitter/receiver probes 43a, 43b and the surface of the subject 5 are compared, and ylA! for the α-axis is adjusted so that the values of both distance signals match. ! The II device 6 is driven.

次に、超音波探触子lの走査方向に直角の方向(X方向
)に対する被検体5の表面の法線方向検出方法と制御方
法について述べる。第18図は、第2法線方向検出装置
44の受信波の強度を示したものである。横軸は超音波
探触子1の超音波ビームの中心軸と被検体5の法線方向
のβ軸回りのずれΔ2、縦軸は受信波の強度である。そ
こで。
Next, a method for detecting the normal direction of the surface of the subject 5 with respect to a direction (X direction) perpendicular to the scanning direction of the ultrasound probe 1 and a control method will be described. FIG. 18 shows the intensity of the received wave by the second normal direction detection device 44. The horizontal axis represents the deviation Δ2 around the β axis between the central axis of the ultrasound beam of the ultrasound probe 1 and the normal to the subject 5, and the vertical axis represents the intensity of the received wave. Therefore.

第2法線方向検出装置44の受信波の強度が常に第18
図のE、になるようにβ軸用の駆動装置7を駆動する。
The intensity of the received wave of the second normal direction detection device 44 is always at the 18th level.
The β-axis drive device 7 is driven as indicated by E in the figure.

以上述べた法線方向検出方法と制御方法および第1実施
例で述べた法線方向制御によって生じるX、Y、Z軸の
補正制御等の制御法を用いろことにより、複雑な曲面を
有する物体の超音波探傷が可能となる。
By using the normal direction detection method and control method described above and the control method such as correction control of the X, Y, and Z axes generated by the normal direction control described in the first embodiment, it is possible to detect objects with complex curved surfaces. Ultrasonic flaw detection becomes possible.

なお、第9図〜第11図の第2実施例においては、第1
法線方向検出装置40aを用いて超音波探触子1の走査
方向(X方向)に対する被検体5の表面の法線方向を検
出する際に、前記表面の接線方向を求め、この接線に対
する法線方向として求めていたが、これに代えて、第1
8図の考え方を採用することもできる。すなわち、第1
8図を第9図の第1法線方向検出装置40aの受信波の
強度を示したものと考えると、横軸は超音波探触子1の
超音波ビームの中心軸と被検体5の法線方向とのα軸間
りのずれΔ5、縦軸は受信波の強度となる。そこで、第
1法線方向検出装誼40aの受信波の強度が常に第18
図のElになるようにα軸用の駆動装置6を駆動すれば
よい。
In addition, in the second embodiment shown in FIGS. 9 to 11, the first
When detecting the normal direction of the surface of the subject 5 with respect to the scanning direction (X direction) of the ultrasound probe 1 using the normal direction detection device 40a, the tangential direction of the surface is determined, and the normal direction to this tangent is determined. I was looking for it as a line direction, but instead of this,
The idea shown in Figure 8 can also be adopted. That is, the first
If we consider that FIG. 8 shows the intensity of the received wave from the first normal direction detection device 40a in FIG. The deviation Δ5 between the α-axis and the linear direction, and the vertical axis is the intensity of the received wave. Therefore, the intensity of the received wave of the first normal direction detection device 40a is always at the 18th
What is necessary is to drive the α-axis drive device 6 so that El in the figure is achieved.

次に、第19図〜第21図を参照して、本発明の第5実
施例を説明する。
Next, a fifth embodiment of the present invention will be described with reference to FIGS. 19 to 21.

第19図は本発明の第5実施例における超音波探傷装置
の手首部のX軸方向の側面図、第20図はそのY軸方向
の側面図、第2工図は第19図装置の各探触子等の配置
説明図である0図示以外の超音波探傷装置の構成は第1
図と同等である。第19図および第20図で、第2図と
同一符号のものは先の実施例と同等部分であるから、そ
の説明を省略する。
19 is a side view in the X-axis direction of the wrist of the ultrasonic flaw detection device according to the fifth embodiment of the present invention, FIG. The configuration of the ultrasonic flaw detection device other than that shown in Figure 0, which is an explanatory diagram of the arrangement of probes, etc., is shown in the first diagram.
It is equivalent to the figure. In FIGS. 19 and 20, parts with the same reference numerals as in FIG. 2 are the same parts as in the previous embodiment, so a description thereof will be omitted.

第19図において、45は超音波探触子1の走査方向(
X方向)に対する被検体5の表面の法線方向を検出する
第1法線方向検出装置で、超音波探触子1に対して角度
δ1o傾いて第(ブラケット3Dにより結合されている
超音波発受信探触子である。
In FIG. 19, 45 is the scanning direction of the ultrasound probe 1 (
The first normal direction detection device detects the normal direction of the surface of the subject 5 with respect to the It is a receiving probe.

46は超音波探触子1の走査方向に直角の方向(Y方向
)に対する被検体5の表面を検出する第2法線方向検出
装置で、超音波探触子lに対して角度δttl’i1い
て第1ブラケツト3Dにより結合された超音波発受信探
触子である。その4g号は、第9図の第2実施例の40
aの場合と同様に距離検出装置14に導かれ、超音波発
受信探触子46と被検体5の表面との距離を測定し、制
御装置1−5に出力され、受信波信号も制御装置15に
出力される。
46 is a second normal direction detection device that detects the surface of the subject 5 in a direction (Y direction) perpendicular to the scanning direction of the ultrasound probe 1, and is set at an angle δttl'i1 with respect to the ultrasound probe l. This is an ultrasonic transmitting/receiving probe connected by a first bracket 3D. The number 4g is 40 of the second embodiment in Figure 9.
As in the case of a, the distance between the ultrasonic transducer 46 and the surface of the subject 5 is measured by the distance detection device 14, and the distance between the ultrasonic transducer 46 and the surface of the object 5 is outputted to the control device 1-5, and the received wave signal is also sent to the control device. 15.

本実施例における法線方向の検出方向は、第I6図の第
4実施例において、超音波探触子1の走査方向に直角の
方向(Y方向)に対する被検体5の表面の法線方向検出
方法と全く同じようにすることもできる。すなわち、第
1法線方向検出装置45の受信波の強度は常にある一定
値になるようにα軸用の駆動装置6を駆動し、第2法線
方向検出装置46の受信波の強度が常にある一定値にな
るようにβ軸用の駆動装置7を駆動するものである。
The detection direction of the normal direction in this embodiment is the detection direction of the normal to the surface of the subject 5 in the fourth embodiment shown in FIG. You can also do exactly the same method. That is, the α-axis drive device 6 is driven so that the intensity of the received wave from the first normal direction detection device 45 is always a certain constant value, and the intensity of the received wave from the second normal direction detection device 46 is always kept at a certain constant value. The β-axis drive device 7 is driven to a certain constant value.

以上述べた法線方向検出方法と制御方法および第1実施
例で述べた法線方向制御によって生じるx、y、z軸の
補正制御等の制御方法を用いることにより、複雑な■而
を有する物体の超音波探傷が可能となる。
By using the normal direction detection method and control method described above and the control method such as the correction control of the x, y, and z axes caused by the normal direction control described in the first embodiment, an object having a complicated Ultrasonic flaw detection becomes possible.

また、法線方向検出は超音波探触子1の超音波ビームが
当たっている表面の情報を用いているので精度がよい。
Furthermore, since the normal direction detection uses information about the surface on which the ultrasonic beam of the ultrasonic probe 1 hits, the accuracy is high.

さらに、法線方向検出装置および距離検出装置を2個の
超音波探触子で構成でき、安価な装置となる。
Furthermore, the normal direction detection device and the distance detection device can be configured with two ultrasonic probes, resulting in an inexpensive device.

次に第22図〜第24図を参照して、本発明の第6実施
例を説明する。
Next, a sixth embodiment of the present invention will be described with reference to FIGS. 22 to 24.

第22図は本発明の第6実施例における超音波探傷装置
の手首部のX軸方向の側面図、第23図はそのY軸方向
の側面図、第24図は第22同の装置の各探触子等の配
置説明図である。図示以外の超音波探傷装置の構成は第
1図と同等である。
FIG. 22 is a side view in the X-axis direction of the wrist part of the ultrasonic flaw detection device according to the sixth embodiment of the present invention, FIG. 23 is a side view in the Y-axis direction, and FIG. FIG. 3 is an explanatory diagram of the arrangement of probes and the like. The configuration of the ultrasonic flaw detection device other than those shown is the same as that shown in FIG. 1.

第22図および第23図で、第2図と同一符号のものは
先の実施例と同等の部分であるから、その説明を省略す
る。
In FIGS. 22 and 23, parts with the same reference numerals as in FIG. 2 are the same parts as in the previous embodiment, and therefore their explanation will be omitted.

第22図および第23図において、47は第■。In FIG. 22 and FIG. 23, 47 is number ■.

第2法線方向検出装置を兼ねた超音波発受信探触子で、
超音波探触子1に対し角度6.2傾いて第1ブラケツト
3Eにより結合されており、その信号は、第9図の第2
実施例の40aの場合と同様に距離検出装置14に導か
れ、超音波発受信探触子47と被検体5の表面との駈離
を8111定し、制御装置15に出力され、受信波信号
も制御装置15に出力される。
An ultrasonic transceiver probe that also serves as a second normal direction detection device.
It is coupled by the first bracket 3E at an angle of 6.2 with respect to the ultrasonic probe 1, and the signal is transmitted as shown in the second bracket in FIG.
As in the case of 40a in the embodiment, the distance detection device 14 determines the distance between the ultrasonic transducer 47 and the surface of the object 5, and outputs the received wave signal to the control device 15. is also output to the control device 15.

第22図の第6実施例における超音波探触子1の走査方
向(X方向)に対する被検体5の表面の法線方向検出と
制御は、探触子1を距離検出用素子として兼用し実行す
る。第22図のX方向で所定移動距離だけ離れた位置に
おける前回の距離検出値T、1と今回の距離検出値L2
との差により、両側定点を結ぶ「(線を近似的な接線と
して求め、この接線に対する重線を法線と定め、超音波
探触子1の方向を制御する。
Detection and control of the normal direction of the surface of the object 5 with respect to the scanning direction (X direction) of the ultrasonic probe 1 in the sixth embodiment shown in FIG. 22 is performed by using the probe 1 also as a distance detection element. do. The previous distance detection value T, 1 and the current distance detection value L2 at a position separated by a predetermined travel distance in the X direction in Fig. 22
The line connecting the fixed points on both sides is determined as an approximate tangent line, and the line parallel to this tangent line is determined as the normal line to control the direction of the ultrasound probe 1.

一方、第23図に示した走査方向と直角な方向(Y方向
)に対する被検体5の法線方向検出と制御には、第9図
または第16図の方法を採用する。
On the other hand, the method shown in FIG. 9 or 16 is employed to detect and control the normal direction of the subject 5 with respect to the direction (Y direction) perpendicular to the scanning direction shown in FIG. 23.

以上述べた法線方向検出方法と制御方法および第1の実
施例で述べた法線方向制御によって生じるx、y、z軸
の補正制御等の制御方法を用いることにより、複雑な曲
面を有する物体の超音波探傷が可能となる。
By using the normal direction detection method and control method described above and the control method such as correction control of the x, y, and z axes generated by the normal direction control described in the first embodiment, objects with complex curved surfaces can be Ultrasonic flaw detection becomes possible.

また、法線方向検出装置および距離検出装置を1個の超
音波探触子で構成でき、非常に安価な装置となる。
Furthermore, the normal direction detection device and the distance detection device can be configured with one ultrasonic probe, resulting in a very inexpensive device.

なお、上記各実施例では、距離のみ測定する装置も超音
波探触子を用いたが、距離が検出できればどのような装
置を用いてもよい。
In each of the above embodiments, an ultrasonic probe was used as a device for measuring only distance, but any device may be used as long as it can detect distance.

また、超音波探触子1のみを一ヒ下方向に駆動する駆動
装置を設け、超音波探触子1として焦点型探触子を用い
て、その焦点型探触子を少しずつ移動させて探傷すれば
、いわゆるBスコープ法の探傷や3次元の欠陥探傷が可
能となるが、これらの方法にも本発明は有効である。
In addition, a driving device is provided to drive only the ultrasound probe 1 in a downward direction, and a focusing probe is used as the ultrasound probe 1, and the focusing probe is moved little by little. Flaw detection enables so-called B-scope method flaw detection and three-dimensional flaw detection, and the present invention is also effective for these methods.

以上説明した本発明装置を用いることにより、法線方向
制御用の装置と探触用の探触子とを区別し、探傷に最適
な探触子を選択できる。
By using the device of the present invention as described above, it is possible to distinguish between a device for normal direction control and a probe for probing, and select the most suitable probe for flaw detection.

また、超音波探触子1の走査方向と直角な方向に対する
被検体の表面の法線方向検出は、超音波探触子の超音波
ビームが当たっている表面の情報によっているので、法
線方向検出精度が良く、被検体の探傷が正確になる。
In addition, since detection of the normal direction of the surface of the object in the direction perpendicular to the scanning direction of the ultrasound probe 1 is based on information about the surface that is hit by the ultrasound beam of the ultrasound probe, the normal direction Detection accuracy is good and flaw detection of the object is accurate.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複雑な曲面を有する被検体を正確に探
傷できる安価な超音波探傷装置が得られる。
According to the present invention, an inexpensive ultrasonic flaw detection device capable of accurately detecting flaws in a test object having a complicated curved surface can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による超音波探傷装置の第I実施例の全
体構成を示すブロック図、第2図および第3図はそれぞ
れ第1図の手首部の詳細を示す側面図、第4図は第1図
装置の各探触子等の配置を示す図、第5図は距離検出装
置の構成の一例を示すブロック図、第6図は第1図装置
における第1法線方向検出装置の受信波の強度特性の一
例を示す図、第7(3)は制御ViP!が患定した超音
波探触子の移動経路の一例を示す図、第8図は距離検出
時における超音波探触子等の位1d関係を示す図、第9
図および第10図は本発明による第2実施例における超
音波探傷装置の手首部の側面図、第I1図は第9図装置
の各探触子等の配置を示す図、第12図および第13図
は本発明による第3実施例における超音波探傷装置の手
首部の側面図、第14図は第12図装置の各探触子等の
配置αを示す図、第15図および第16図は本発明によ
る第4実施例における超音波探傷装置の手首部の側面図
、第17図は第15図装置の各探触子等の配置を示す図
、第18図は第15図装置における第2法線方向検出装
置の受信波の強度特性を示す図、第19図および第20
図は本発明による第5実施例における超音波探傷装置の
手首部の側面図、第21図は第19図装置の各探触子等
の配置を示す図、第22図および第23図は本発明によ
る第6実施例における超音波探傷装置の手首部の側面図
、第24図は第22図装置の各探触子等の配置を示す図
である。 1・・・超音波探触子、 2,40a、42,43゜4
5・・・第1法線方向検出装置、 4,40 b、40
c、41,44.46・・・第2法線方向検出装置、5
・・・被検体、 6・・・α軸用駆動装置、 7・・・
β軸用駆動装置、  10・・・Z軸周駆動装置、  
12・・・入力装置、  14・・・距離検出装置、 
15・・・制御装置。
FIG. 1 is a block diagram showing the overall configuration of the first embodiment of the ultrasonic flaw detection device according to the present invention, FIGS. 2 and 3 are side views showing details of the wrist portion in FIG. 1, and FIG. Fig. 1 is a diagram showing the arrangement of each probe, etc. of the device, Fig. 5 is a block diagram showing an example of the configuration of the distance detection device, and Fig. 6 is the reception of the first normal direction detection device in the device shown in Fig. 1. A diagram showing an example of wave intensity characteristics, No. 7 (3) is the control ViP! FIG. 8 is a diagram showing an example of the movement path of an ultrasound probe detected by a patient, FIG.
10 and 10 are side views of the wrist part of the ultrasonic flaw detection device according to the second embodiment of the present invention, FIG. I1 is a diagram showing the arrangement of each probe of the device in FIG. FIG. 13 is a side view of the wrist part of the ultrasonic flaw detection device according to the third embodiment of the present invention, FIG. 14 is a diagram showing the arrangement α of each probe, etc. of the device in FIG. 12, and FIGS. 15 and 16. 17 is a side view of the wrist part of the ultrasonic flaw detection device according to the fourth embodiment of the present invention, FIG. 17 is a diagram showing the arrangement of each probe etc. in the device shown in FIG. 15, and FIG. 2. Diagrams 19 and 20 showing the intensity characteristics of the received waves of the normal direction detection device.
The figure is a side view of the wrist part of the ultrasonic flaw detection device according to the fifth embodiment of the present invention, FIG. 21 is a diagram showing the arrangement of each probe etc. of the device in FIG. 19, and FIGS. FIG. 24 is a side view of the wrist part of the ultrasonic flaw detection apparatus according to the sixth embodiment of the invention, and FIG. 22 is a diagram showing the arrangement of each probe of the apparatus. 1... Ultrasonic probe, 2,40a, 42,43°4
5... first normal direction detection device, 4, 40 b, 40
c, 41, 44.46... second normal direction detection device, 5
...Object to be inspected, 6...α-axis drive device, 7...
β-axis drive device, 10... Z-axis circumferential drive device,
12... Input device, 14... Distance detection device,
15...control device.

Claims (1)

【特許請求の範囲】 1、表面が必ずしも平面でない被検体に超音波を発信し
被検体からの反射波を受信する超音波探触子と当該超音
波探触子の位置決め手段とを有する超音波探傷装置にお
いて、 前記超音波探触子の走査方向に対する被検体表面の法線
方向の成分を検出する第1法線方向検出装置と、 前記超音波探触子の走査方向に直角な方向に対する被検
体表面の法線方向の成分を検出する第2法線方向検出装
置と、 前記超音波探触子と被検体との距離を検出する距離検出
装置と、 前記超音波探触子の位置および姿勢を変える複数軸の軸
駆動装置と、 前記第1法線方向制御装置と第2法線方向制御装置と距
離検出装置との検出信号に基づいて前記複数の軸駆動装
置を制御し前記超音波探触子の超音波ビームの中心軸を
前記被検体表面の法線方向に一致させる制御装置とを備
えた ことを特徴とする超音波探傷装置。 2、前記第1法線方向制御装置および第2法線方向制御
装置の少なくともいずれか一方が、前記超音波探触子に
対して走査方向の面内において所定の角度(0度を含む
)をもって結合された超音波発信探触子と、当該超音波
発信探触子の両側に所定の角度傾いて結合された2つの
超音波受信探触子とからなり、 前記制御装置が、前記両側の2つの超音波受信探触子の
出力が一致する方向を前記被検体表面における法線方向
と定める手段を含む請求項1に記載の超音波探傷装置。 3、前記第1法線方向制御装置および第2法線方向制御
装置の少なくともいずれか一方が、前記超音波探触子に
対して走査方向の面内において所定の角度(0度を含む
)をもって結合された超音波発受信探触子からなり、 前記制御装置が、前記超音波発受信探触子の走査方向へ
の所定距離移動前後の2点における検出信号に基づき2
点間の接線を求め、当該接線に対する垂線の方向を法線
方向と定める手段を含む請求項1に記載の超音波探傷装
置。 4、前記第1法線方向制御装置および第2法線方向制御
装置の少なくともいずれか一方が、前記超音波探触子に
対して走査方向の面内において所定の角度(0度を含む
)をもって結合された超音波発受信探触子と、前記超音
波探触子を間に挟んで前記超音波発信探触子と反対側の
走査線上に前記超音波探触子と平行に結合された超音波
発受信探触子とからなり、 前記制御装置が、前記超音波発受信探触子の検出信号に
よる被検体の検出距離と前記平行に結合された超音波発
受信探触子から前記距離検出装置を介して得られる被検
体の検出距離とに基づき法線方向を定める手段を含む請
求項1に記載の超音波探傷装置。 5、前記第1法線方向制御装置および第2法線方向制御
装置の少なくともいずれか一方が、前記超音波探触子に
対して平行にかつ当該超音波探触子から同距離だけ走査
方向に離れて結合された2つの超音波発受信探触子から
なり、 前記制御装置が、前記2つの超音波発受信探触子から前
記距離検出装置を介して得られる被検体の2つの検出距
離が一致する方向を法線方向と定める手段を含む請求項
1に記載の超音波探傷装置。 6、前記第1法線方向制御装置および第2法線方向制御
装置の少なくともいずれか一方が、前記超音波探触子に
対して走査方向において所定の角度をもって結合された
超音波発受信探触子からなり、 前記制御装置が、前記超音波発受信探触子の受信波が所
定の一定強度となる方向を前記被検体表面の走査方向に
おける法線方向と定める手段を含む請求項1に記載の超
音波探傷装置。 7、前記第1法線方向制御装置および第2法線方向制御
装置の少なくともいずれか一方が、前記超音波探触子か
らなり、 前記制御装置が、前記超音波探触子が走査方向に所定距
離移動した前後の位置における当該超音波探触子から得
られる距離検出値の差により両位置の測定点を結ぶ直線
を近似的な接線として求め、この接線に対する垂線の方
向を法線方向と定める手段を含む請求項1に記載の超音
波探傷装置。 8、前記制御装置が、前記走査方向および当該走査方向
に直角な方向における法線制御によるX、Y、Z軸方向
のずれを求め、前記各軸駆動装置に補正させる手段を含
む請求項1〜7のいずれか一項に記載の超音波探傷装置
[Scope of Claims] 1. Ultrasonic waves having an ultrasonic probe that transmits ultrasonic waves to a subject whose surface is not necessarily flat and receives reflected waves from the subject, and means for positioning the ultrasonic probe. The flaw detection device includes: a first normal direction detection device that detects a component in a normal direction of the surface of the object to be inspected with respect to the scanning direction of the ultrasonic probe; a second normal direction detection device that detects a component in the normal direction of the specimen surface; a distance detection device that detects the distance between the ultrasound probe and the specimen; and a position and orientation of the ultrasound probe. an axial drive device for a plurality of axes that changes the direction of the ultrasonic probe; An ultrasonic flaw detection apparatus comprising: a control device that aligns the central axis of the ultrasonic beam of the probe with the normal direction of the surface of the object to be inspected. 2. At least one of the first normal direction control device and the second normal direction control device has a predetermined angle (including 0 degrees) with respect to the ultrasound probe in a plane in the scanning direction. It consists of a combined ultrasonic transmitting probe and two ultrasonic receiving probes connected at a predetermined angle to both sides of the ultrasonic transmitting probe, and the control device controls the two ultrasonic receiving probes on both sides of the ultrasonic transmitting probe. 2. The ultrasonic flaw detection apparatus according to claim 1, further comprising means for determining a direction in which the outputs of the two ultrasonic receiving probes coincide as a normal direction on the surface of the object. 3. At least one of the first normal direction control device and the second normal direction control device has a predetermined angle (including 0 degrees) with respect to the ultrasonic probe in a plane in the scanning direction. The controller comprises coupled ultrasonic transmitting and receiving probes, and the control device detects two points based on detection signals at two points before and after the ultrasonic transmitting and receiving probe has moved a predetermined distance in the scanning direction.
2. The ultrasonic flaw detection apparatus according to claim 1, further comprising means for determining a tangent line between points and determining a direction of a perpendicular line to the tangent line as a normal direction. 4. At least one of the first normal direction control device and the second normal direction control device has a predetermined angle (including 0 degrees) with respect to the ultrasonic probe in a plane in the scanning direction. a coupled ultrasonic transmitting and receiving probe, and an ultrasonic probe coupled parallel to the ultrasonic probe on the opposite side of the ultrasonic transmitting probe with the ultrasonic probe in between. a sonic wave emitting/receiving probe; The ultrasonic flaw detection apparatus according to claim 1, further comprising means for determining a normal direction based on a detection distance of the object obtained through the apparatus. 5. At least one of the first normal direction control device and the second normal direction control device is parallel to the ultrasound probe and the same distance from the ultrasound probe in the scanning direction. It consists of two ultrasonic transmitting and receiving probes that are coupled apart, and the control device determines two detection distances of the object obtained from the two ultrasonic transmitting and receiving probes via the distance detecting device. The ultrasonic flaw detection apparatus according to claim 1, further comprising means for determining a coincident direction as a normal direction. 6. An ultrasonic transmitting/receiving probe in which at least one of the first normal direction control device and the second normal direction control device is coupled to the ultrasonic probe at a predetermined angle in the scanning direction. 2. The control device includes means for determining a direction in which a received wave of the ultrasonic wave emitting/receiving probe has a predetermined constant intensity as a normal direction in a scanning direction of the surface of the subject. Ultrasonic flaw detection equipment. 7. At least one of the first normal direction control device and the second normal direction control device includes the ultrasonic probe, and the control device controls the ultrasonic probe in a predetermined direction in the scanning direction. A straight line connecting the measurement points at both positions is determined as an approximate tangent line based on the difference between the distance detection values obtained from the ultrasound probe at the positions before and after the distance has been moved, and the direction of the perpendicular line to this tangent line is determined as the normal direction. The ultrasonic flaw detection apparatus according to claim 1, further comprising means. 8. Claims 1 to 8, wherein the control device includes means for determining deviations in the X, Y, and Z axis directions by normal control in the scanning direction and a direction perpendicular to the scanning direction, and causing the respective axis driving devices to correct the deviations. 7. The ultrasonic flaw detection device according to any one of 7.
JP20647589A 1989-08-09 1989-08-09 Ultrasonic flaw detector Pending JPH0368863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20647589A JPH0368863A (en) 1989-08-09 1989-08-09 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20647589A JPH0368863A (en) 1989-08-09 1989-08-09 Ultrasonic flaw detector

Publications (1)

Publication Number Publication Date
JPH0368863A true JPH0368863A (en) 1991-03-25

Family

ID=16523994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20647589A Pending JPH0368863A (en) 1989-08-09 1989-08-09 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPH0368863A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040008987A (en) * 2002-07-20 2004-01-31 주식회사 서울테크놀로지 Apparatus for outputting some sounds as receiving signal in mobile terminal
KR100440232B1 (en) * 2002-08-08 2004-08-18 이영순 Hand-held type storage apparatus for private information and music file for bell sound
US20170212084A1 (en) * 2016-01-22 2017-07-27 Toshiba Tec Kabushiki Kaisha Deformation detecting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727691A (en) * 1980-07-24 1982-02-15 Mitsubishi Heavy Ind Ltd Holder for degree of parallelism of moving body
JPS61240158A (en) * 1985-04-17 1986-10-25 Kawasaki Steel Corp Ultrasonic flaw detection method and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727691A (en) * 1980-07-24 1982-02-15 Mitsubishi Heavy Ind Ltd Holder for degree of parallelism of moving body
JPS61240158A (en) * 1985-04-17 1986-10-25 Kawasaki Steel Corp Ultrasonic flaw detection method and apparatus therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040008987A (en) * 2002-07-20 2004-01-31 주식회사 서울테크놀로지 Apparatus for outputting some sounds as receiving signal in mobile terminal
KR100440232B1 (en) * 2002-08-08 2004-08-18 이영순 Hand-held type storage apparatus for private information and music file for bell sound
US20170212084A1 (en) * 2016-01-22 2017-07-27 Toshiba Tec Kabushiki Kaisha Deformation detecting device
US10234427B2 (en) * 2016-01-22 2019-03-19 Toshiba Tec Kabushiki Kaisha Noncontact deformation detecting device with inclination measurement

Similar Documents

Publication Publication Date Title
US8429973B2 (en) Ultrasonic inspection device and ultrasonic inspection method
US4444197A (en) Ultrasonic diagnostic probe scanner
EP0642015B1 (en) Method and apparatus for measuring and controlling refracted angle of ultrasonic waves
EP3931526B1 (en) Method of calibrating an ultrasound probe and corresponding inspection apparatus and method
WO1991002971A1 (en) Ultrasonic flaw detector
JP2007187593A (en) Inspection device for piping and inspection method for piping
JP3433427B2 (en) Method for processing hollow workpieces using ultrasonic measurements
EP3781937B1 (en) A robot system and method for non-destructive testing
US4709582A (en) Inspection device for rotor binding defects in electrical machines
JP2720077B2 (en) Ultrasonic flaw detector
JPH0368863A (en) Ultrasonic flaw detector
US4891986A (en) Apparatus for inspecting articles
CN105848835B (en) Using ultrasonic method to the method for tool center point position and acoustic probes Determination of Orientation in referential
JPH0584463B2 (en)
JPH06174703A (en) Curved surface shape-follow-up type ultrasonic flaw detector and control method for probe attitude
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP2005300363A (en) Ultrasonic flaw detecting system and ultrasonic flaw detecting test method
JPS63309853A (en) Ultrasonic flaw detecting method
JPH01299456A (en) Ultrasonic wave flaw detector
JP2859659B2 (en) Ultrasonic flaw detector
JPS6130762A (en) Ultrasonic flaw detection method and apparatus
JP2022188645A (en) Ultrasonic inspection device
JPH07286845A (en) Method and instrument for measuring three-dimensional shape
SU1293630A1 (en) Method of ultrasonic checking of articles
Malyy et al. Development of an Algorithm for the Movement and Adjusting Measuring Transducers of an Automated Non-Destructive Testing System