JPS61240158A - Ultrasonic flaw detection method and apparatus therefor - Google Patents

Ultrasonic flaw detection method and apparatus therefor

Info

Publication number
JPS61240158A
JPS61240158A JP60081960A JP8196085A JPS61240158A JP S61240158 A JPS61240158 A JP S61240158A JP 60081960 A JP60081960 A JP 60081960A JP 8196085 A JP8196085 A JP 8196085A JP S61240158 A JPS61240158 A JP S61240158A
Authority
JP
Japan
Prior art keywords
ultrasonic
probe
transmitting
receiving
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60081960A
Other languages
Japanese (ja)
Inventor
Hideo Maruyama
丸山 英雄
Hajime Takada
一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60081960A priority Critical patent/JPS61240158A/en
Publication of JPS61240158A publication Critical patent/JPS61240158A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform the flaw detection of an object to be inspected having a complicated surface configuration and difficult to mechanically follow, by performing scanning in such a state that the distance between the surface of the object to be inspected and an ultrasonic probe is kept constant and the probe is allowed to coincide with the normal line direction of the surface of the object to be inspected. CONSTITUTION:A transmitter 22 repeatedly applies a pulse to an ultrasonic probe 12 while the probe 12 emits an ultrasonic wave to an object 10 to be inspected and receives the reflected wave therefrom. This receiving signal is sent to a distance detection circuit 26 through a receiver 24 and an up-and-down drive apparatus 28 is controlled by the detection output corresponding to the time from the transmission of the ultrasonic wave to the reception thereof to keep the distance between the probe 12 and the surface of the object 10 to be inspected. The reflected wave from the object 10 to be inspected is sent to an angle comparator 32 through receivers 20A, 20B and amplifiers 30A, 30B and the shift between the normal line direction of the object 10 to be inspected and the transmitting/receiving direction of the probe 12 is detected and an angle control apparatus 34 is driven by the detected output and, by this method, the normal line direction of the surface of the object 10 to be inspected is allowed to coincide with the ultrasonic wave transmitting/receiving direction of the probe 12 to perform automatic ultrasonic flaw detection.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野] 本発明は、超音波探傷方法及び装置に係り、特に複雑な
表面形状であって機械的に倣うことの困難な被検体、例
えば、タービンブレード等の自動超音波探傷に用いるの
に好適な、超音波探傷方法及び装置の改良に関する。
(Industrial Application Field) The present invention relates to an ultrasonic flaw detection method and apparatus, and is particularly applicable to automatic ultrasonic flaw detection of objects with complex surface shapes that are difficult to mechanically copy, such as turbine blades. This invention relates to improvements in ultrasonic flaw detection methods and devices suitable for use.

【従来の技術】[Conventional technology]

従来より精密な超音波探傷を目的として、第5図に示す
如く、水中に被検体10を没し、その水中で水浸型の超
音波探触子12が該被検体10表面上を走査して探傷を
行う水浸自動探傷法が丘われている。なお前記超音波探
触子12は、前記被検体10表面上を走査装置16によ
り、走査される。 超音波探傷を水浸で行う理由は、水14が超音波探触子
12から送信された超音波を安定して被検体10に入射
し、又、該被検体10から反射された超音波エコーを前
記超音波探触子12で受信するための音響結合体として
安定しているからである。又、水14は超音波の吸収率
が小さいため高周波の超音波が使用できる。更に、水1
4中においては、超音波の屈折の法則を利用した音響レ
ンズの利用が容重で、これより超音波ビームを小さくし
ぼることが可能である等のためである。従って、水浸自
動探傷法は、直接接触法では得ることのできない高い精
度と、再現性が良く信頼性の高い探傷結果を得ることが
できる。 一方、前記水浸自動探傷法は、送信した超音波ビームを
音響レンズで集束し、その集束された超音波ビームの焦
点を利用して探傷するため、超音波探触子12と被検体
10との距離を保ち、且つ、超音波ビームの中心軸の方
向を該被検体10の表面の法線方向に一致させておくこ
とが必要である。 従って、前記水浸自動探傷法を適用した水浸自動探傷装
置により、被検体10の欠陥を精度良く検出するために
は、該被検体10表面に対する超音波探触子12の位置
及び姿勢を常に確保する必要があり、該超音波探触子1
2の走査を行う走査装置16は高い精度と安定性が要求
される。
For the purpose of more precise ultrasonic flaw detection than in the past, as shown in FIG. The water immersion automatic flaw detection method, which performs flaw detection using water, is currently being used. Note that the ultrasonic probe 12 is scanned over the surface of the subject 10 by a scanning device 16. The reason why ultrasonic flaw detection is performed by water immersion is that the water 14 allows the ultrasonic waves transmitted from the ultrasonic probe 12 to enter the object 10 stably, and the ultrasonic echoes reflected from the object 10. This is because it is stable as an acoustic coupler for receiving by the ultrasonic probe 12. Further, since the water 14 has a low absorption rate of ultrasonic waves, high-frequency ultrasonic waves can be used. Furthermore, water 1
4, it is difficult to use an acoustic lens that utilizes the law of refraction of ultrasound, and it is possible to narrow down the ultrasound beam to a smaller size. Therefore, the water immersion automatic flaw detection method can provide high accuracy that cannot be obtained with the direct contact method, as well as highly reproducible and reliable flaw detection results. On the other hand, in the water immersion automatic flaw detection method, the transmitted ultrasonic beam is focused by an acoustic lens, and the focus of the focused ultrasonic beam is used for flaw detection. It is necessary to maintain the distance , and to align the direction of the central axis of the ultrasound beam with the normal direction of the surface of the subject 10 . Therefore, in order to accurately detect defects in the object 10 using the water immersion automatic flaw detection apparatus applying the water immersion automatic flaw detection method, it is necessary to constantly monitor the position and orientation of the ultrasonic probe 12 relative to the surface of the object 10. It is necessary to ensure that the ultrasound probe 1
The scanning device 16 that performs the second scan is required to have high accuracy and stability.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、前記従来の水浸自動探傷方法では、被検
体10表面に対する超音波探触子12の距離及び角度を
幾何学的即ち機械的に割り出しているのが普通であり、
被検体10の表面形状が平面でなく不定形である場合に
、該被検体10を一定の条件、距離、角度を保ちつつ探
(馬を行うには、複雑な倣い装置を必要とし汎用性のあ
る探傷装置を作ることは困難である。 又、被検体10を探傷中において、機械的撮動等の不可
避なトラブルによって超音波探触子12の位置及び姿勢
等が崩れた場合、該超音波探触子12には自己復帰機能
がないため、信頼性のある探傷結果を得るには、探傷が
正常に行われているか否かを常時監視する必要がある等
の問題点を有していた。
However, in the conventional water immersion automatic flaw detection method, the distance and angle of the ultrasonic probe 12 with respect to the surface of the object 10 are usually determined geometrically, that is, mechanically.
When the surface shape of the object 10 is not flat but irregular, searching the object 10 while maintaining constant conditions, distances, and angles requires a complex tracing device and requires a general-purpose method. It is difficult to make a certain flaw detection device.Furthermore, if the position and posture of the ultrasonic probe 12 collapses due to unavoidable troubles such as mechanical imaging during flaw detection of the object 10, the ultrasonic probe 12 Since the probe 12 does not have a self-reset function, it has had problems such as the need to constantly monitor whether flaw detection is being performed normally in order to obtain reliable flaw detection results. .

【発明の目的] 本発明は、上記従来の問題点に鑑みてなされたものであ
って、複雑な表面形状で機械的に倣うことの困難な被検
体であっても精度良く超音波探傷本発明は、超音波探傷
方法において超音波を送信し、受信する手段である超音
波探触子から超音波を被検体に送信し、該被検体で反射
された超音波を第1超音波受信手段である前記超音波探
触子と、該探触子以外の第2超音波受信手段である少な
くとも2箇所の受信子とで、受信し、前記超音波探触子
で受信された超音波信号から、被検体表面と該超音波探
触子との距離を求め、他の少なくとも2箇所の受信子で
受信された超音波信号の強度の差から、被検体表面の法
線方向と前記超音波探触子の送、受信方向との角度のず
れを検出し、これらの測定結果に基づく調整により、被
検体表面と超音波探触子との距離を一定に保ち、且つ、
超音波探触子の送、受信方向を前記被検体表面の法線方
向と一致させながら走査を行うことにより、上記目的を
達成したものである。 又、本発明は、超音波探傷装置において超音波を被検体
に送信する超音波送信手段と被検体表面の略法線方向で
超音波を受信する第1超音波受信手段とである超音波探
触子と、該超音波送信手段に電気パルスを送信する電気
パルス送信手段と、前記第1超音波受信手段である超音
波探触子で受信した超音波信号を増幅するM1増幅手段
と、前記第1超音波受信手段と一体的に保持され、前記
第1超音波受信手段の超音波受信方向とは興なる方向で
少なくとも2箇所で超音波を受信する第2超音波受信手
段と、該第2超音波受信手段で受信′li した超音波信号を増幅する第2増幅手段と、前記第1増
幅手段の出力信号から前・2被検体表面と前記第1超音
波受信手段である超音波探触子との距離を求める距離検
出手段と、前記距離検出手段の出力信号により前記被検
体表面と前記超音波送信手段及び第1超音波受信手段で
ある超音波探触子との距離を一定に制−するための距離
調整手段と、前記第2増幅手段の出力信号から被検体表
面の法線方向と超音波探触子の送、受信方向とのずれを
検出する角度比較手段と、前記角度比較手段の出力信号
により被検体表面の法線方向と超音波探触子の送、受信
方向とを一致させるための角度調整手段と、から成る装
置により前記目的を達成したものである。 【作用】 本発明の作用について以下詳細に説明する。 本発明による超音波探傷の原理的な構成を第1図に示す
。第1図に示す如く、第1超音波受信手段である超音波
探触子12は、被検体10に対向させて配設され、第2
超音波受信手段である一対の受信子2OA、20Bは前
記超音波探触子12の回りに該超音波探触子12と一体
として動作するように配設されている。本発明は該超音
波探触子12が別の位置に移動したとき、該超音波探触
子12と被検体10との距離、及び、超音波ビームの方
向と該被検体10の法線との角度を一定に保ちつつ探傷
を行うことを特徴とする。 本発明においては、電気パルス送信手段である送信器2
2が、超音波送信手段である超音波探触子12に電気パ
ルスを一定の繰り返しで送信し、該電気パルスにより前
記超音波探触子12は超音波を被検体10に向は送信す
る。該被検体10で反射された超音波を第1超音波受信
手段である前記超音波探触子12で受信し、該超音波探
触子12で受信した受信信号を第1増幅手段である受信
器24で増幅し、距離検出手段である計時回路26が、
前記受信器24の出力信号の一部から超音波を送信して
受信するまでの時間を計測し、前記計時回路26で計測
された時間、即ち、前記超音波探触子12と被検体1o
との距離を保つように距離調整手段である上下駆動装置
28が前記超音波探触子12を上下駆動する。前記被検
体10で反射された超音波を第2超音波受信手段である
一対の受信子2OA、20Bで受信し、該受信子20A
、20Bで受信した受信信号を第2増幅手段である増幅
器30A、30Bで増幅し、前記増幅器30A130B
の出力信号を比較することにより、角度比較手段である
比較器32は、被検体10の表面の法線方向と超音波探
触子の送、受信方向とのずれを検出する。そして、前記
比較器32の出力信号から角度調整手段である角度側t
Ili装置34は、前記被検体1oの表面の法線方向と
前記超音波探触子12の超音波送、受信方向とを一致さ
せることにより、自動超音波探傷を行う。 なお、記録系36は、受信器24と共に前記被検体1o
中の欠陥の分布図を描き出し記録する。 前記送信器22は、前記被検体10中の欠陥部を検出す
るため前記超音波探触子12へ電気パルスを一定の繰り
返しで送信する。又、受信器24は、送信器22と共に
一つの超音波探触子12に接続される場合が多く、従っ
て、該超音波探触子12は送信と受信を兼用するものが
多く用いられる。 ここで、本発明の原理を第2図及び第3図に基づいて説
明する。第2図に示す如く、音響結合体、例えば水14
中において、超音波探触子12の回りに該超音波探触子
12と一体として動作する受信子2OA、20Bが配設
されている。該超音波探触子12は被検体10に向かい
超音波を送信し、該被検体10で反射された超音波を前
記一対の受信子2OA、20Bが受信する。前記被検体
1゜で反射される超音波の反射強度分布は第3図(A)
(B)に示す如くであり、入射波40の中心軸の方向が
被検体10の法線46と一致する場合には、超音波の被
検体への入射波40は、該被検体10上の点42におい
て散乱を起し、第3図(A)の如く被検体10法線46
に対称な反射強度分布を持つ散乱波44が生ずるが、入
射波の中心軸の方向が被検体10の法線46と一致しな
い場合には、第3図(8)のように、被検体10の法線
46に対称な反射強度分布をもたない。従って、該散乱
波44を前記受信子2OA、20Bで受信してその受信
信号の出力強度を同一になる様前記角度制WJ装置34
で前記超音波探触子12を動作させれば、該超音波探触
子12の送信及び受信方向を被検体10表面に垂直に対
向させることができる。 よって、表面形状が不定形の被検体1oであっても、安
定した探傷結果を得ることが可能となる。 なお、12図における一対の受信子2OA、20Sによ
り検出できる前記法線46の軸は、紙面上を動く方向、
即ち、X方向のみである。しかし、該紙面に対し垂直に
他の受信子21A、21Bを設置すれば、該紙面の垂直
方向、即ち、Y方向の法線46の軸も検出可能である。
[Object of the Invention] The present invention has been made in view of the above-mentioned conventional problems, and the present invention provides ultrasonic flaw detection with high precision even for objects with complex surface shapes that are difficult to mechanically copy. In the ultrasonic flaw detection method, an ultrasonic probe, which is a means for transmitting and receiving ultrasonic waves, transmits ultrasonic waves to an object to be inspected, and the ultrasonic waves reflected by the object are received by a first ultrasonic receiving means. From an ultrasound signal received by the ultrasound probe and at least two receivers that are second ultrasound reception means other than the ultrasound probe, The distance between the surface of the object and the ultrasonic probe is determined, and the distance between the normal direction of the surface of the object and the ultrasonic probe is determined from the difference in the intensity of the ultrasonic signals received by at least two other receivers. By detecting the angular deviation between the transmitting and receiving directions of the ultrasonic probe and making adjustments based on these measurement results, the distance between the object surface and the ultrasonic probe can be kept constant, and
The above object is achieved by performing scanning while aligning the sending and receiving directions of the ultrasonic probe with the normal direction of the surface of the subject. Further, the present invention provides an ultrasonic flaw detection device that includes an ultrasonic transmitting means for transmitting ultrasonic waves to a subject and a first ultrasonic receiving means for receiving ultrasonic waves in a substantially normal direction of the surface of the subject. a tentacle, an electric pulse transmitting means for transmitting an electric pulse to the ultrasonic transmitting means, an M1 amplifying means for amplifying the ultrasonic signal received by the ultrasonic probe which is the first ultrasonic receiving means; a second ultrasonic receiving means that is held integrally with the first ultrasonic receiving means and receives ultrasonic waves at at least two locations in a direction different from the ultrasonic receiving direction of the first ultrasonic receiving means; a second amplifying means for amplifying the ultrasonic signal received by the two ultrasonic receiving means; and a second amplifying means for amplifying the ultrasonic signal received by the first ultrasonic receiving means; distance detection means for determining the distance to the probe; and an output signal of the distance detection means to maintain a constant distance between the surface of the object and the ultrasonic probe which is the ultrasonic transmitting means and the first ultrasonic receiving means. distance adjusting means for controlling the distance, angle comparing means for detecting a deviation between the normal direction of the object surface and the transmitting and receiving directions of the ultrasonic probe from the output signal of the second amplifying means; The above object has been achieved by a device comprising an angle adjusting means for aligning the normal direction of the surface of the subject with the transmitting and receiving directions of the ultrasonic probe using the output signal of the comparing means. [Operation] The operation of the present invention will be explained in detail below. FIG. 1 shows the basic configuration of ultrasonic flaw detection according to the present invention. As shown in FIG. 1, an ultrasonic probe 12, which is a first ultrasonic receiving means, is disposed facing a subject 10, and a second
A pair of receivers 2OA and 20B, which are ultrasound receiving means, are arranged around the ultrasound probe 12 so as to operate integrally with the ultrasound probe 12. In the present invention, when the ultrasonic probe 12 moves to another position, the distance between the ultrasonic probe 12 and the subject 10, the direction of the ultrasonic beam, and the normal line of the subject 10 are determined. It is characterized by performing flaw detection while keeping the angle constant. In the present invention, a transmitter 2 which is an electric pulse transmitting means is used.
2 transmits electric pulses to an ultrasonic probe 12, which is an ultrasonic wave transmitting means, at a fixed repetition rate, and the electric pulses cause the ultrasonic probe 12 to transmit ultrasonic waves toward the subject 10. The ultrasonic wave reflected by the subject 10 is received by the ultrasonic probe 12 which is a first ultrasonic receiving means, and the received signal received by the ultrasonic probe 12 is received by a first amplifying means. A time measuring circuit 26 serving as a distance detecting means
The time from transmitting to receiving the ultrasound from a part of the output signal of the receiver 24 is measured, and the time measured by the clock circuit 26, that is, the time between the ultrasound probe 12 and the subject 1o.
A vertical drive device 28, which is a distance adjustment means, drives the ultrasonic probe 12 vertically so as to maintain a distance from the ultrasonic probe 12. The ultrasound reflected by the subject 10 is received by a pair of receivers 2OA and 20B, which are second ultrasound receivers, and the receiver 20A
, 20B is amplified by amplifiers 30A and 30B, which are second amplification means, and the amplifier 30A and 30B
By comparing the output signals, the comparator 32, which is an angle comparing means, detects the deviation between the normal direction of the surface of the subject 10 and the transmission and reception directions of the ultrasound probe. Then, from the output signal of the comparator 32, the angle side t, which is the angle adjustment means, is
The Ili device 34 performs automatic ultrasonic flaw detection by matching the normal direction of the surface of the object 1o with the ultrasonic transmission and reception directions of the ultrasonic probe 12. Note that the recording system 36 is connected to the subject 1o together with the receiver 24.
Draw and record the distribution map of defects inside. The transmitter 22 repeatedly transmits electric pulses to the ultrasound probe 12 in order to detect a defective part in the subject 10 . Further, the receiver 24 is often connected to one ultrasound probe 12 together with the transmitter 22, and therefore, the ultrasound probe 12 is often used for both transmission and reception. Here, the principle of the present invention will be explained based on FIGS. 2 and 3. As shown in FIG.
Inside, receivers 2OA and 20B that operate integrally with the ultrasound probe 12 are arranged around the ultrasound probe 12. The ultrasonic probe 12 transmits ultrasonic waves toward the subject 10, and the pair of receivers 2OA and 20B receive the ultrasonic waves reflected by the subject 10. The reflection intensity distribution of the ultrasonic waves reflected by the object 1° is shown in Figure 3 (A).
As shown in (B), when the direction of the central axis of the incident wave 40 coincides with the normal line 46 of the subject 10, the incident ultrasonic wave 40 to the subject 10 is Scattering occurs at the point 42, and the normal line 46 of the object 10 as shown in FIG.
A scattered wave 44 having a symmetrical reflection intensity distribution is generated, but if the direction of the central axis of the incident wave does not coincide with the normal 46 of the subject 10, as shown in FIG. does not have a reflection intensity distribution that is symmetrical about the normal 46. Therefore, the angle control WJ device 34 receives the scattered waves 44 at the receivers 2OA and 20B so that the output intensities of the received signals are the same.
If the ultrasound probe 12 is operated in this manner, the transmission and reception directions of the ultrasound probe 12 can be made to face perpendicularly to the surface of the subject 10. Therefore, even if the test object 1o has an irregular surface shape, stable flaw detection results can be obtained. Note that the axis of the normal line 46 that can be detected by the pair of receivers 2OA and 20S in FIG. 12 is the direction of movement on the paper surface;
That is, only in the X direction. However, if the other receivers 21A and 21B are installed perpendicularly to the plane of the paper, the axis of the normal 46 in the direction perpendicular to the plane of the paper, that is, the Y direction, can also be detected.

【実施例】【Example】

本発明の適用された実施例について以下詳細に説明する
。 本実施例は、第4図に示す如く、図示を略した適当な走
査機構に取付けられたホルダ50と、該ホルダ50を貫
通して設けられ、図示を略したラック加工が施されてい
て、図示を略した歯車等により昇降される昇降軸52と
、該図示を略した歯車等に駆動力を与え、前記昇降軸5
2を昇降させるモータ70と、前記昇降軸52の下部に
取付けられ軸60を保持固定する軸ホルダ54と、該軸
ホルダ54と第1回転ユニット56を回転可能に連結す
る軸60と、該軸60を中心として回転できる構造の第
1回転ユニット56と、該第1回転ユニット56に内蔵
されている図示を略したラック及び歯車によって該第1
回転ユニット56に駆動力を与えて、前記軸60を中心
として該M1回転ユニット56を回転させるモータ72
と、前記第1回転ユニット56下部に設けられていて該
第1回転ユニット56と第2回転ユニット58を回転可
能に連結する軸62と、該軸62を中心として回転でき
る構造の第2回転ユニット58と、該第2回転ユニット
58に内蔵されている図示を略したラック及び歯車によ
って該第2回転ユニット58に駆動力を与えて、前記軸
62を中心として該第2回転ユニット58を回転させる
モータ74と、前記第2回転ユニット58下部に取付け
られていて被検体10へ超音波を送信し受信する超音波
探触子12と、該超音波探触子の回りに配設され前記第
2回転ユニット下部に取付けられていて前記被検体10
から反射された超音波を受信する2対の受信子20A、
20B、21A、21Bと、前記超音波探触子12に電
気パルスを送信する送信器22と、前記超音波探触子1
2で受信された受信信号を増幅する受信器24と、該受
信器24の出力信号から前記超音波探触子12と被検体
10までの闇を超音波が往復する時間を計測し該時間を
アナログ量としであるいはデジタル化し出力する計時回
路26と、該計時回路26出力が一定となる様前記モー
タ70に駆動信号を送り前記昇降軸を昇降させる探触子
上下駆動回路28Aと、前記受信器24と共に前記被検
体10中の欠陥の分布図を描き出し記録する記録系36
と、前記超音波探触子12で送信され前記被検体10で
反射され前記受信子2OA、208.21A、21Bで
受信された超音波信号を増幅する各々の増幅器30A、
30B、31A、31Bと、該増幅器30Aと308の
出力を比較し前記超音波探触子12と被検体10の法線
46とのX方向の角度のずれを検出する比較器32Aと
、前記増幅器31Aと31Bの出力を比較し前記超音波
探触子12と被検体10の法線46とのY方向の角度の
ずれを検出する比較器32Bと、前記比較器32A出力
から前記超音波探触子12の超音波受信方向と前記被検
体10表面の法線46とのX方向の角度を一致させるた
め前記モータ74を駆動させる角度制御回路34Aと、
前記比較器32B出力から前記超音波探触子12の超音
波受信方向と前記被検体10表面の法線46とのY方向
の角度を一致させるため前記モータ72を駆動させる角
度制御回路34Bとから構成されている。 前記受信子2OA、20Bと、前記受信子21A、21
Bは、各々対をなしており、該受信子20A、20Bの
対と前記受信子21A、21Bの対は、第4図に示す如
く、X、Y方向に、各々直、     交する配置で前
記第2回転ユニット58下部に取付けられている。 前記超音波探触子12及び前記受信子20A。 20B、21A、21Bは、水浸超音波探触子が用いら
れている。この場合、音響結合体は水14である。 前記超音波探触子12と前記被検体10の距離は任意に
設定でき、又、前記超音波探触子12は任意の方向へ向
けることができる。前記送信器22と前記受信器24は
、一つの超音波探触子12に接続されている。従って、
この超音波探触子12は、送信、受信の役割りを兼用し
ている。 本実施例の作用について説明する。 送信器22は、水浸で用いられる超音波探触子12に一
定の繰り返し周期で電気パルスを印加する。該超音波探
触子12は、該電気パルスの印加により超音波を送信す
る。被検体10で反射された超音波は、前記超音波探触
子12に受信される。 該受信された信号は受信器24で適轟に増幅される。前
記送信器22は、前記超音波探触子12へ電気パルスE
Pを送信すると同時に計時回路26へ同期パルスSPを
送信する。該計時回路26には、前記送信器22より送
信された同期パルスSPが入力されると共に、前記超音
波探触子12で受信された超音波が前記受信器24で増
幅された信号波形が入力される。前記計時回路26は、
入力された前記同期パルス及び前記信号波形により、前
記送信器22が電気パルスEPを送信してから超音波パ
ルスが被検体10の表面で反射され再び超音波探触子1
2へ戻るまでのFRrrsを計測する。 即ち、前記計時回路26で計測された時間は、前記被検
体10の表面と該超音波探触子12の間の距離に比例し
た時間の信号Tとなる。又、前記計時回路26は、該時
間の信号Tをアナログ量の信号としであるいはデジタル
化した信号として探触子上下駆動回路28Aへ出力する
。該探触子上下駆動回路28Aは、入力された前記時間
の信号Tを一定の値とする様にモータ70へ駆動信号M
Aを送信する。該モータ70は駆動信号MAにより昇降
軸52を昇降させ前記時間の信号Tを一定にする。従っ
て、該時間の信号Tが一定に保たれれば前記被検体1o
と前記超音波探触子12との間の距離が一定に保たれる
。 一方、一対の受信子2OA、20Bには、前出第2.3
図に示した前記超音波探触子12から送信された超音波
パルスの入射波40が前記被検体10の表面で反射され
て生じた散乱波44が受信されるが、これら受信子20
A、20Bで受信された散乱波44による超音波信号は
、それぞれ増幅器30A、30Bで同様の増幅が行われ
る。比較器32Aは、前記増幅器30A、30Bで増幅
された各々の超音波信号の振幅の比較を行い、該振幅の
大きさに違いがある場合は、角度制御回路34Aへ該振
幅の大きさの違いを電圧信号又は電流信号又はデジタル
信号として出力する。前記角度制御回路34Aは、入力
された前記振幅の大きさの違いによる信号が零となるよ
うにモータ74へ駆動信号MBを送信する。該モータ7
4は、該駆動信号Meにより軸62を中心に第2回転ユ
ニット58を回転させ、前記受信子2OA、20Bで受
信される前記散乱波44による各々の超音波信号の振幅
の大きさが同じになる位置に前記第2回転ユニット58
が調整される。 又、他の一対の受信子21A、21Bも、前記散乱波4
4による各々の超音波信号を受信し、前記一対の受信子
2OA、20Bの場合と同様に、前記受信された各々の
超音波信号を増幅器31A131Bで増幅する。該増幅
した各々の信号の振幅の大きさを比較器32Bで比較し
、該振幅の大きさの差が零となる様に角度制御回路34
Bは、モー972に駆動信号MOを送信する。該モータ
72が、第1回転ユニット56を軸6oを中心として回
転させることにより、前記受信子21A、21Bで受信
された前記散乱波44による各々の超音波信号の振幅の
大きさが同じとなる位置に前記第1回転ユニット56が
調整される。 従って、前記第1回転ユニット56及び前記第2回転ユ
ニット58が調整されることによって、前記超音波探触
子12から送信される超音波ビームの中心軸方向と前記
被検体10の表面の法線46方向とを一致させることが
できる。 以上説明した通り本実施例により、水14中の被検体1
0上を走査する際は、水浸の超音波探触子12と被検体
10との距離を一定値に保持でき、又、前記超音波探触
子12を前記被検体10表面上の検査部位に垂直に対向
させることができる。 従って、安定した自動超音波探傷を行うことが可能であ
る。なお、この状態に前記超音波探触子12及び被検体
1oが保たれているときの探傷結果は、記録系36に記
録される。 前記実施例においては、受信子2OA、20B、21A
、21Bは2対のものであったが、受信子の数は2以上
であればよく、例えば、被検体1゜の表面がX方向のみ
変化がありY方向は変化しない場合は、1対の受信子の
みでよいわけである。 又、前記実施例においては、送信及び受信に兼用する超
音波探触子12を用いているが、超音波探触子はこれに
限定されず、例えば、分別型超音波探触子のような他の
超音波送信手段及び超音波受信手段でよい。 更に、前記実施例においては、受信子20A120B、
21A、21B及び超音波探触子12に水浸超音波探触
子が用いられているが、受信子及び超音波探触子はこれ
に限定されず、他の受信子及び超音波探触子でもよい。 又、受信子は、被検体10表面で生じた散乱波44を効
率よく受信できるものならその種類は問わない。 又、前記実施例においては、音響結合体として水14が
用いられていたが、音響結合体は水14に限定されず、
他の音響結合体であってもよい。
Embodiments to which the present invention is applied will be described in detail below. As shown in FIG. 4, this embodiment includes a holder 50 attached to an appropriate scanning mechanism (not shown), and a rack processing (not shown) provided through the holder 50. The lifting shaft 52 is raised and lowered by gears (not shown), and the driving force is applied to the gears (not shown).
2; a shaft holder 54 attached to the lower part of the lifting shaft 52 and holding and fixing the shaft 60; a shaft 60 rotatably connecting the shaft holder 54 and the first rotation unit 56; The first rotation unit 56 has a structure capable of rotating around a rotation axis 60, and a rack and gears (not shown) built in the first rotation unit 56 are used to rotate the first rotation unit 56.
a motor 72 that applies driving force to the rotation unit 56 and rotates the M1 rotation unit 56 around the shaft 60;
a shaft 62 provided below the first rotation unit 56 and rotatably connecting the first rotation unit 56 and the second rotation unit 58; and a second rotation unit configured to rotate around the shaft 62. 58 and a rack and gears (not shown) built into the second rotation unit 58 apply a driving force to the second rotation unit 58 to rotate the second rotation unit 58 about the shaft 62. a motor 74, an ultrasonic probe 12 attached to the lower part of the second rotation unit 58 for transmitting and receiving ultrasonic waves to the subject 10, and a second ultrasonic probe disposed around the ultrasonic probe. The object 10 is attached to the lower part of the rotating unit.
two pairs of receivers 20A that receive ultrasound reflected from the
20B, 21A, 21B, a transmitter 22 that transmits electric pulses to the ultrasound probe 12, and the ultrasound probe 1.
A receiver 24 amplifies the received signal received at 2, and measures the time for the ultrasound to travel back and forth in the darkness from the output signal of the receiver 24 to the ultrasound probe 12 and the subject 10, and calculates the time. A clock circuit 26 that outputs an analog value or a digital signal; a probe vertical drive circuit 28A that sends a drive signal to the motor 70 to raise and lower the lift axis so that the output of the clock circuit 26 is constant; and a probe vertical drive circuit 28A that raises and lowers the lift shaft; 24 as well as a recording system 36 for drawing and recording a distribution map of defects in the object 10;
and each amplifier 30A that amplifies the ultrasound signal transmitted by the ultrasound probe 12, reflected by the object 10, and received by the receivers 2OA, 208.21A, and 21B,
30B, 31A, 31B, and a comparator 32A that compares the outputs of the amplifiers 30A and 308 to detect an angular deviation in the X direction between the ultrasound probe 12 and the normal 46 of the subject 10, and the amplifier a comparator 32B that compares the outputs of 31A and 31B and detects the angular deviation in the Y direction between the ultrasound probe 12 and the normal line 46 of the subject 10; an angle control circuit 34A that drives the motor 74 to match the angle in the X direction between the ultrasonic reception direction of the child 12 and the normal 46 of the surface of the subject 10;
An angle control circuit 34B that drives the motor 72 to match the angle in the Y direction between the ultrasound receiving direction of the ultrasound probe 12 and the normal 46 of the surface of the subject 10 based on the output of the comparator 32B. It is configured. The receivers 2OA, 20B and the receivers 21A, 21
B are in pairs, and the pair of receivers 20A and 20B and the pair of receivers 21A and 21B are disposed perpendicularly and intersectingly in the X and Y directions, respectively, as shown in FIG. It is attached to the lower part of the second rotation unit 58. The ultrasonic probe 12 and the receiver 20A. Water immersion ultrasonic probes 20B, 21A, and 21B are used. In this case, the acoustic coupler is water 14. The distance between the ultrasound probe 12 and the subject 10 can be set arbitrarily, and the ultrasound probe 12 can be directed in any direction. The transmitter 22 and the receiver 24 are connected to one ultrasound probe 12. Therefore,
This ultrasonic probe 12 serves both as a transmitter and a receiver. The operation of this embodiment will be explained. The transmitter 22 applies electrical pulses to the ultrasonic probe 12 used in water immersion at a constant repetition period. The ultrasonic probe 12 transmits ultrasonic waves by applying the electric pulse. The ultrasound reflected by the subject 10 is received by the ultrasound probe 12 . The received signal is suitably amplified by the receiver 24. The transmitter 22 sends an electric pulse E to the ultrasound probe 12.
At the same time as transmitting P, a synchronizing pulse SP is transmitted to the clock circuit 26. The synchronization pulse SP transmitted from the transmitter 22 is input to the clock circuit 26, and a signal waveform obtained by amplifying the ultrasonic wave received by the ultrasound probe 12 by the receiver 24 is input. be done. The clock circuit 26 is
The transmitter 22 transmits the electric pulse EP according to the input synchronization pulse and the signal waveform, and then the ultrasound pulse is reflected on the surface of the object 10 and returns to the ultrasound probe 1.
Measure FRrrs until returning to 2. That is, the time measured by the clock circuit 26 becomes a time signal T proportional to the distance between the surface of the subject 10 and the ultrasound probe 12. Further, the clock circuit 26 outputs the time signal T to the probe vertical drive circuit 28A as an analog signal or a digitized signal. The probe vertical drive circuit 28A sends a drive signal M to the motor 70 so as to keep the input time signal T at a constant value.
Send A. The motor 70 raises and lowers the elevating shaft 52 in response to the drive signal MA to keep the time signal T constant. Therefore, if the signal T at that time is kept constant, the object 1o
The distance between the ultrasonic probe 12 and the ultrasonic probe 12 is kept constant. On the other hand, the pair of receivers 2OA and 20B have the above-mentioned No. 2.3.
A scattered wave 44 generated when an incident wave 40 of an ultrasonic pulse transmitted from the ultrasonic probe 12 shown in the figure is reflected on the surface of the object 10 is received.
The ultrasound signals generated by the scattered waves 44 received by A and 20B are similarly amplified by amplifiers 30A and 30B, respectively. The comparator 32A compares the amplitudes of the ultrasonic signals amplified by the amplifiers 30A and 30B, and if there is a difference in the amplitude, the difference in the amplitude is sent to the angle control circuit 34A. output as a voltage signal, current signal, or digital signal. The angle control circuit 34A transmits the drive signal MB to the motor 74 so that the input signal due to the difference in amplitude becomes zero. The motor 7
4 rotates the second rotation unit 58 around the shaft 62 by the drive signal Me, so that the amplitudes of the respective ultrasound signals by the scattered waves 44 received by the receivers 2OA and 20B are the same. The second rotation unit 58 is in a position where
is adjusted. Further, the other pair of receivers 21A and 21B also receive the scattered waves 4.
Each of the received ultrasound signals is received by an amplifier 31A and 131B, as in the case of the pair of receivers 2OA and 20B. The comparator 32B compares the magnitude of the amplitude of each of the amplified signals, and the angle control circuit 34 controls the amplitude so that the difference in the magnitude of the amplitude becomes zero.
B sends the drive signal MO to the motor 972. The motor 72 rotates the first rotation unit 56 about the axis 6o, so that the amplitudes of the respective ultrasound signals generated by the scattered waves 44 received by the receivers 21A and 21B become the same. The first rotation unit 56 is adjusted to the position. Therefore, by adjusting the first rotation unit 56 and the second rotation unit 58, the central axis direction of the ultrasound beam transmitted from the ultrasound probe 12 and the normal to the surface of the subject 10 can be adjusted. 46 directions can be matched. As explained above, according to this embodiment, the specimen 1 in the water 14
When scanning above 0, the distance between the water-immersed ultrasonic probe 12 and the subject 10 can be maintained at a constant value, and the ultrasonic probe 12 can be moved to the inspection area on the surface of the subject 10. can be vertically opposed. Therefore, it is possible to perform stable automatic ultrasonic flaw detection. Note that the flaw detection results obtained when the ultrasonic probe 12 and the object 1o are maintained in this state are recorded in the recording system 36. In the embodiment, the receivers 2OA, 20B, 21A
, 21B had two pairs of receivers, but the number of receivers only needs to be two or more. For example, if the surface of the subject 1° changes only in the X direction but not in the Y direction, one pair of receivers is sufficient. Only the receiver is required. Further, in the above embodiment, the ultrasonic probe 12 used for both transmission and reception is used, but the ultrasonic probe is not limited to this. Other ultrasound transmitting means and ultrasound receiving means may be used. Furthermore, in the embodiment, the receiver 20A120B,
Although water immersion ultrasonic probes are used for 21A, 21B and the ultrasonic probe 12, the receiver and the ultrasonic probe are not limited to this, and other receivers and ultrasonic probes are used. But that's fine. Further, any type of receiver can be used as long as it can efficiently receive the scattered waves 44 generated on the surface of the subject 10. Further, in the above embodiment, water 14 was used as the acoustic coupler, but the acoustic coupler is not limited to water 14.
Other acoustic coupling bodies may also be used.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明は、複雑な表面形状であって
機械的に倣うことの困難な被検体、例えば、タービンブ
レード等を精度良(超音波探傷でき、従って、従来の水
浸自動超音波探傷技術では得ることのできない、高い精
度と再現性及び信頼性の高い探傷が得られるという優れ
た効果を有する。
As explained above, the present invention enables highly accurate (ultrasonic) testing of objects with complex surface shapes that are difficult to mechanically copy, such as turbine blades, and thus enables conventional water immersion automatic ultrasonic testing. It has the excellent effect of providing high precision, reproducibility, and reliable flaw detection that cannot be obtained with flaw detection technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の原理的な構成を示す、−即断面図を
含むブロック線図、 第2図及び第3図(A)(B)は、同じく原理を説明す
るための断面図、 第4図は、本発明の適用された実施例の構成を示す、一
部ブロック線図を含む斜視図、第5図は、従来の超音波
探傷装置を示す断面図である。 10・・・被検体、    12・・・超音波探触子、
14・・・水、      20・・・受信子、22・
・・送信器、    24・・・受信器、26・・・計
時回路、   28・・・上下駆動装置、28A・・・
探触子上下駆動回路、 30A、30B、31A、31 B・・・増幅器、32
.32A、32B・・・比較器、 34・・・角度制m装置、 34A、34B・・・角度制御回路、 70.72.74・・・モータ。
FIG. 1 is a block diagram including a cross-sectional view showing the basic structure of the present invention; FIG. 2 and FIG. 3 (A) and (B) are cross-sectional views for explaining the principle; FIG. 4 is a perspective view partially including a block diagram showing the configuration of an embodiment of the present invention, and FIG. 5 is a sectional view showing a conventional ultrasonic flaw detection device. 10... Subject, 12... Ultrasonic probe,
14...Wednesday, 20...Receiver, 22.
...Transmitter, 24...Receiver, 26...Clock circuit, 28...Vertical drive device, 28A...
Probe vertical drive circuit, 30A, 30B, 31A, 31 B... amplifier, 32
.. 32A, 32B...Comparator, 34...Angle control device, 34A, 34B...Angle control circuit, 70.72.74...Motor.

Claims (2)

【特許請求の範囲】[Claims] (1)超音波を送信し、受信する手段である超音波探触
子から超音波を被検体に送信し、 該被検体で反射された超音波を第1超音波受信手段であ
る前記超音波探触子と、該超音波探触子以外の第2超音
波受信手段である少なくとも2箇所の受信子とで、受信
し、 前記超音波探触子で受信された超音波信号から、被検体
表面と該超音波探触子との距離を求め、他の少なくとも
2箇所の受信子で受信された超音波信号の強度の差から
、被検体表面の法線方向と前記超音波探触子の送、受信
方向との角度のずれを検出し、 これらの測定結果に基づく調整により、被検体表面と超
音波探触子との距離を一定に保ち、且つ、超音波探触子
の送、受信方向を前記被検体表面の法線方向と一致させ
ながら走査を行うことを特徴とする超音波探傷方法。
(1) The ultrasonic probe, which is a means for transmitting and receiving ultrasonic waves, transmits ultrasonic waves to a subject, and the ultrasonic waves reflected by the subject are transmitted to the ultrasonic wave, which is a first ultrasonic receiving means. A probe and at least two receivers that are second ultrasound receiving means other than the ultrasound probe receive the ultrasound signal, and the ultrasound signal is detected from the ultrasound signal received by the ultrasound probe. The distance between the surface and the ultrasonic probe is determined, and from the difference in the intensity of the ultrasonic signals received by at least two other receivers, the distance between the normal direction of the object surface and the ultrasonic probe is determined. By detecting the angular deviation between the transmitting and receiving directions, and making adjustments based on these measurement results, the distance between the object surface and the ultrasonic probe is kept constant, and the transmitting and receiving directions of the ultrasonic probe are adjusted. An ultrasonic flaw detection method characterized in that scanning is performed while the direction coincides with the normal direction of the surface of the object to be inspected.
(2)超音波を被検体に送信する超音波送信手段と被検
体表面の略法線方向で超音波を受信する第1超音波受信
手段とである超音波探触子と、該超音波送信手段に電気
パルスを送信する電気パルス送信手段と、 前記第1超音波受信手段である超音波探触子で受信した
超音波信号を増幅する第1増幅手段と、前記第1超音波
受信手段と一体的に保持され、前記第1超音波受信手段
の超音波受信方向とは異なる方向で少なくとも2箇所で
超音波を受信する第2超音波受信手段と、 該第2超音波受信手段で受信した超音波信号を増幅する
第2増幅手段と、 前記第1増幅手段の出力信号から被検体表面と前記第1
超音波受信手段である超音波探触子との距離を求める距
離検出手段と、 前記距離検出手段の出力信号により前記被検体表面と前
記超音波送信手段及び第1超音波受信手段である超音波
探触子との距離を一定に制御するための距離調整手段と
、 前記第2増幅手段の出力信号から被検体表面の法線方向
と超音波探触子の送、受信方向とのずれを検出する角度
比較手段と、 前記角度比較手段の出力信号により被検体表面の法線方
向と超音波探触子の送、受信方向とを一致させるための
角度調整手段と、から成ることを特徴とする超音波探傷
装置。
(2) An ultrasonic probe that is an ultrasonic transmitting means for transmitting ultrasonic waves to a subject and a first ultrasonic receiving means for receiving ultrasonic waves in a direction approximately normal to the surface of the subject, and the ultrasonic transmitting means. an electric pulse transmitting means for transmitting an electric pulse to the means; a first amplifying means for amplifying the ultrasonic signal received by the ultrasonic probe which is the first ultrasonic receiving means; and the first ultrasonic receiving means. a second ultrasonic receiving means that is held integrally and receives ultrasonic waves at at least two locations in a direction different from the ultrasonic receiving direction of the first ultrasonic receiving means; a second amplification means for amplifying the ultrasound signal; and a second amplification means for amplifying the ultrasound signal;
distance detecting means for determining the distance between the ultrasonic probe, which is the ultrasonic receiving means; and an ultrasonic wave, which is the ultrasonic transmitting means and the first ultrasonic receiving means, between the surface of the subject and the ultrasonic transmitting means and the first ultrasonic receiving means, based on the output signal of the distance detecting means. distance adjusting means for controlling the distance to the probe to be constant; and detecting a deviation between the normal direction of the object surface and the transmitting and receiving directions of the ultrasonic probe from the output signal of the second amplifying means. and angle adjusting means for aligning the normal direction of the surface of the subject with the transmission and reception directions of the ultrasound probe using the output signal of the angle comparison means. Ultrasonic flaw detection equipment.
JP60081960A 1985-04-17 1985-04-17 Ultrasonic flaw detection method and apparatus therefor Pending JPS61240158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60081960A JPS61240158A (en) 1985-04-17 1985-04-17 Ultrasonic flaw detection method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60081960A JPS61240158A (en) 1985-04-17 1985-04-17 Ultrasonic flaw detection method and apparatus therefor

Publications (1)

Publication Number Publication Date
JPS61240158A true JPS61240158A (en) 1986-10-25

Family

ID=13761068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60081960A Pending JPS61240158A (en) 1985-04-17 1985-04-17 Ultrasonic flaw detection method and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS61240158A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285851A (en) * 1988-05-13 1989-11-16 Hitachi Constr Mach Co Ltd Ultrasonic flaw detection apparatus
JPH02134560A (en) * 1988-11-16 1990-05-23 Hitachi Constr Mach Co Ltd Ultrasonic flaw detector
WO1991002971A1 (en) * 1989-08-21 1991-03-07 Hitachi Construction Machinery Co., Ltd. Ultrasonic flaw detector
JPH0368863A (en) * 1989-08-09 1991-03-25 Hitachi Constr Mach Co Ltd Ultrasonic flaw detector
CN105372328A (en) * 2015-11-02 2016-03-02 侬泰轲(上海)检测科技有限责任公司 Detection device and method
JP2019144036A (en) * 2018-02-19 2019-08-29 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969386A (en) * 1972-11-02 1974-07-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969386A (en) * 1972-11-02 1974-07-04

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285851A (en) * 1988-05-13 1989-11-16 Hitachi Constr Mach Co Ltd Ultrasonic flaw detection apparatus
JPH02134560A (en) * 1988-11-16 1990-05-23 Hitachi Constr Mach Co Ltd Ultrasonic flaw detector
JPH0368863A (en) * 1989-08-09 1991-03-25 Hitachi Constr Mach Co Ltd Ultrasonic flaw detector
WO1991002971A1 (en) * 1989-08-21 1991-03-07 Hitachi Construction Machinery Co., Ltd. Ultrasonic flaw detector
US5335547A (en) * 1989-08-21 1994-08-09 Hitachi Construction Machinery Co., Ltd. Ultrasonic flaw detector
CN105372328A (en) * 2015-11-02 2016-03-02 侬泰轲(上海)检测科技有限责任公司 Detection device and method
JP2019144036A (en) * 2018-02-19 2019-08-29 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection device

Similar Documents

Publication Publication Date Title
US3969926A (en) Alignment of ultrasonic transducer probe in pulse-echo testing
US4270389A (en) Method and apparatus for the automatic ultrasonic flaw detection
JPH06502250A (en) Ultrasonic method and device for measuring the outer diameter of tubes
US4503708A (en) Reflection acoustic microscope for precision differential phase imaging
GB1559469A (en) Method and apparatus for automatic ultrasonic flaw detection
US4470307A (en) Sonic system inspection control
JPS61240158A (en) Ultrasonic flaw detection method and apparatus therefor
CN109781241B (en) Device and method for measuring ultrasonic field distribution based on photoacoustic effect
JPS6321135B2 (en)
JPH07333202A (en) Flaw detector of piping
JP2005077320A (en) Ultrasonic probe, flaw detection device for turbine blade and its flaw detection method
JPH09145696A (en) Method and apparatus for measuring depth of flaw
CN114397373B (en) AUT track calibration device and method based on pipeline welding ultrasonic detection
JPH04194706A (en) Ultrasonic inspecting instrument
JPH01299456A (en) Ultrasonic wave flaw detector
JPH10339720A (en) Ultrasonic probe and ultrasonic examination device
JP3048454B2 (en) Inspection method and inspection device for ultrasonic probe
JP2018179751A (en) Method and device for ultrasound inspection
JPH04295711A (en) Position detecting method for laser light
US3533280A (en) Ultrasonic material tester
SU1497561A1 (en) Method of mirrow-shadow ultrasonic inspection of articles of continuous section
JPS5868663A (en) Ultrasonic flaw detector with self-sensitivity compensating device
JPS5917155A (en) Method for detecting defect by ultrasonic wave method
JPH0258589B2 (en)
JPS6130762A (en) Ultrasonic flaw detection method and apparatus