JPH0366382B2 - - Google Patents

Info

Publication number
JPH0366382B2
JPH0366382B2 JP62334083A JP33408387A JPH0366382B2 JP H0366382 B2 JPH0366382 B2 JP H0366382B2 JP 62334083 A JP62334083 A JP 62334083A JP 33408387 A JP33408387 A JP 33408387A JP H0366382 B2 JPH0366382 B2 JP H0366382B2
Authority
JP
Japan
Prior art keywords
deep drawing
thickness
aluminum alloy
plate
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62334083A
Other languages
Japanese (ja)
Other versions
JPH01176048A (en
Inventor
Masakazu Hirano
Mitsuo Hino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33408387A priority Critical patent/JPH01176048A/en
Publication of JPH01176048A publication Critical patent/JPH01176048A/en
Publication of JPH0366382B2 publication Critical patent/JPH0366382B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は家庭用器物等に用いられる深絞り用ア
ルミニウム合金軟質板及びその製造法に関するも
のである。 (従来の技術及び解決しようとする問題点) 深絞り加工により製造される家庭用器物やコピ
ードラム材などの1mm以上の厚物材には、現在、
JISA1100アルミニウム合金の軟質材が多用され
ている。 しかし乍ら、元来、このA1100合金は方向性が
劣り、深絞り加工時にいわゆる耳が−10%〜+10
%もの大きな範囲で発生することがある。これ
は、加工割れや表面傷の原因になるばかりでな
く、深絞り加工後のトリミング量が多くなり、歩
留りが低く、コスト高となるという問題がある。
そのため、方向性の小さいアルミニウム材料が求
められていた。 また一方、器物は製品毎に素材板厚が異なる少
量多品種の製品であるが、素材板厚により耳率が
大きく異なると、加工条件をそれぞれの板厚によ
つて変えなければならないという加工上の問題が
ある。このため、板厚の変化によつても耳率が変
わらない材料が強く求められていた。 本発明は、かかる状況に鑑みてなされたもので
あつて、軟質化処理前の最終冷間加工率を大きく
変化させても、すなわち、種々の製品板厚につい
ても深絞り加工時の発生耳の変化が小さく、−3
%〜+3%以内で、著しく方向性が小さく成形性
が優れる板厚1mm以上のアルミニウム合金軟質板
及びその製造方法を提供することを目的とするも
のである。 (問題点を解決するための手段) 前記目的を達成するため、本発明者は、種々の
製品板厚に応じ、すなわち、軟質化処理前の最終
冷間加工率が50〜95%の範囲で変化しても、耳率
を著減できる方策を見い出すべく鋭意研究を重ね
た結果、Fe及びSi量を規制した特定組成のアル
ミニウム合金について鋳塊の結晶粒度並びに均質
化処理、熱間圧延条件をコントロールすることに
より、対処可能であることを見い出し、ここに本
発明をなしたものである。 すなわち、本発明は、Fe及びSiが第1図に示
す各点A(Fe:0.2%、Si:0.6%)、B(Fe:0.2
%、Si:0.1%)、C(Fe:0.9%、Si:0.8%)、D
(Fe:0.4%、Si:0.8%)を結ぶ領域内の量で含
有し、必要に応じて、更にTi:0.01〜0.2%、
Mg:0.2〜20%、Cu:0.05〜0.5%、Mn:0.03〜
0.5%、Cr:0.03〜0.4%及びZr:0.01〜0.2%のう
ちの少なくとも1種を含有し、残部がAl及び不
純物よりなる組成を有し、加工率50〜95%の冷間
圧延後に軟質化処理された板厚1mm以上の板であ
ることを特徴とする深絞り耳が−3%〜+3%以
内で方向性が優れた深絞り用アルミニウム合金軟
質板を要旨とするものである。 また、該アルミニウム合金軟質板の製造法に係
る本発明は、上記組成のアルミニウム合金につ
き、結晶粒度が3mm以下の鋳塊について500〜600
℃×2〜24hrの処理に続き400〜500℃×2×24hr
の処理の2回の均質化処理を施した後、480〜250
℃の間で熱間圧延を行い、次いで加工率50〜95%
の冷間圧延並びに軟質化処理を行うことを特徴と
するものである。 以下に本発明を更に詳細に説明する。 まず、本発明における化学成分の限定理由を示
す。 Si: Siは深絞り耳の変化(バラツキ)を抑制する重
要な元素であるが、第1図に示す範囲のFeとの
組合せで大きな効果を発揮する。しかし、第1図
に示す範囲外のSi量では効果が小さいか或いは効
果が飽和するので、好ましくない。 Fe: FeはSiと共に深絞り耳を抑制する重要な元素
であるが、第1図に示す範囲のSiとの組合せで大
きな効果を発揮する。しかし、第1図に示す範囲
外のFe量では効果が小さいか或いは効果が飽和
するので、好ましくない。 なお、第1図に示す範囲は、A(Fe:0.2%、
Si:0.6%)、B(Fe:0.2%、Si:0.1%)、C
(Fe:0.9%、Si:0.8%)、D(Fe:0.4%、Si:0.8
%)の各点を結ぶ領域であり、本発明者の実験研
究により見出されたものである。 本発明では、これらSi及びFeを必須元素とす
るが、必要に応じて、Ti,Mg,Cu,Mn,Cr及
びZrのうちの少なくとも1種を適量で添加する
ことができる。 Ti: Tiは組織安定化に効果があり、0.01%より少な
ければ効果が小さく、0.2%を超えると巨大化合
物が発生する可能性があるので、0.01〜0.2%の
範囲とする。 Mg: Mgは他の特性を劣化させず、材料強度を向上
させ、かつ耳率のバラツキを抑制する効果があ
る。しかし、0.2%より少なくては効果が小さく、
2.0%を超えると巨大化合物が発生する可能性が
あるので、0.2〜2.0%の範囲とする。 Cu: Cuは器物製品の陽極酸化処理を向上させる効
果があり、0.05%より少なくては効果が小さく、
0.5%を超えると加工性が劣るので、0.05〜0.5%
の範囲とする。 Mn、Cr、Zr: Mn、Cr、Zrは強度を向上させると共に組織安
定化に効果がある。しかし、それぞれ0.03%、
0.03%、0.01%より少なくては効果が小さく、そ
れぞれ0.5%、0.4%、0.2%より多くては巨大化合
物が発生する可能性があるので、Mnは0.03〜0.5
%、Crは0.03〜0.4%、Zrは0.01〜0.2%の範囲と
する。 なお、不純物量は本発明の効果を損なわない限
度で可及的に少なく抑制すべきことは云うまでも
ない。 次に、本発明によるアルミニウム合金の製造法
について説明する。 上記組成のアルミニウム合金は常法により溶解
するが、鋳造に際しては、鋳塊の結晶粒度が3mm
以下となるようにする必要がある。結晶粒度が3
mmを超えると+側耳が強くなるので好ましくな
い。 このような鋳塊に均質化処理を施し、次いで熱
間圧延を行うが、まず均質化処理は、特定条件に
て2回行う必要がある。 すなわち、均質化処理は1回目を500〜600℃×
2〜24hr、2回目を400〜500℃×2〜24hrの条件
で行う。均質化温度が1回目、2回目ともそれぞ
れ600℃及び500℃を超えると+側耳が強くなり、
またそれぞれ500℃及び400℃より低いと−側耳が
強くなるので、好ましくない。一方、加熱時間は
2hrより短くては効果が小さく、24hrより長いと
効果が飽和するので、好ましくない。 また、均質化処理後の熱間圧延は、480〜250℃
の温度で行う必要がある。熱間圧延温度が480℃
より高いと、−側耳が強くなり、また250℃より低
いと+側耳が強くなるので、好ましくない。 熱間圧延後は冷間圧延、軟質化処理が行われる
が、深絞り用純アルミニウム系合金には一般に最
終冷間圧延率50〜95%の範囲で製品板厚に応じて
冷間圧延が適用されており、本発明の上記組成の
アルミニウム合金も同様の冷間圧延が適用され、
軟質化処理に供される。その場合、上記加工率に
よる種々の製品板厚に対しても、軟質化処理後の
深絞り耳は−3%〜+3%内に規制でき、耳率の
バラツキを小さくすることができる。また、一般
に深絞り製品は素材の−3〜+3%の範囲の歩留
りであれば良好な量産が可能であることから、本
発明によれば量産が可能となり、低コスト化を図
ることができる。 なお、軟質化処理の条件は特に制限されず、従
来と同様に処理することができる。 次に本発明の実施例を示す。 (実施例) 第1表に示す化学成分を有するアルミニウム合
金を常法により溶解し、厚さ400tで第2表に示す
大きさの結晶粒度を有する鋳塊を造塊し、以下の
工程にて供試材を製造した。 本発明例(条件A)においては、鋳塊を550℃
×24hrに均熱した後、引続き450℃×24hrに均熱
する2回の均質化処理を施し、これを430〜300℃
にて7mmtまで熱延した後、加工率50〜95%の冷
延を行つて第2表に示す板厚とし、最終的に340
℃×2hrの軟質化処理を行つた。 一方、第1の比較例(条件B)においては、前
記鋳塊に500℃×24hrの均質化処理を施した後、
本発明例と同じ条件にて熱間圧延、冷間圧延、軟
質化処理を施した。 また、第2の比較例(条件C)においては、前
記鋳塊500℃×24hrの均質化処理を施した後、530
〜400℃にて7mmtまで熱延し、以下本発明例と
同じ条件にて冷間圧延、軟質化処理を施した。 得られた供試材について、ポンチ径40mmφのダ
イスを用いて50%の絞りを実施し、45゜方向耳
(+)と0−90゜方向耳(−)を測定した。その結
果を第1表に併記する。 第2表より明らかなとおり、本発明例では、板
厚が同じ場合でも、板厚が変化した場合でも、深
絞り耳率が極めて小さいことがわかる。 これに対し、比較例の場合には、本発明範囲の
組成であつても、鋳塊の結晶粒度及び製造条件の
いずれかが本発明範囲外であると、耳率が大き
く、+側又は−側にバラツキが生じ、また組成が
本発明範囲外のものでも鋳塊の結晶粒度及び製造
条件が本発明範囲内であると、同様に耳率が大き
く、+側又は−側にバラツキが生じる。しかも同
一の板厚に対してさえもその傾向が生じている。
(Industrial Application Field) The present invention relates to a deep-drawn aluminum alloy soft plate used for household appliances, etc., and a method for manufacturing the same. (Prior art and problems to be solved) Currently, thick materials of 1 mm or more, such as household utensils and copy drum materials manufactured by deep drawing, are
JISA1100 aluminum alloy soft material is often used. However, this A1100 alloy originally had poor directionality, and the so-called selvage during deep drawing was -10% to +10%.
It can occur in a range as large as %. This not only causes process cracks and surface scratches, but also increases the amount of trimming after deep drawing, resulting in low yield and high costs.
Therefore, an aluminum material with low directionality has been required. On the other hand, utensils are manufactured in small quantities and in a wide variety of products, each with a different thickness of material.If the selvage ratio varies greatly depending on the thickness of the material, processing conditions must be changed depending on the thickness of each material. There is a problem. For this reason, there has been a strong demand for a material whose selvedge ratio does not change even when the plate thickness changes. The present invention has been made in view of this situation, and even if the final cold working rate before the softening treatment is greatly changed, in other words, even for various product plate thicknesses, the selvedge generated during deep drawing can be reduced. Small change, -3
The object of the present invention is to provide an aluminum alloy soft plate having a thickness of 1 mm or more, which has extremely small directionality and excellent formability within the range of % to +3%, and a method for manufacturing the same. (Means for Solving the Problems) In order to achieve the above object, the present inventor has developed a method according to various product plate thicknesses, that is, the final cold working rate before softening treatment is in the range of 50 to 95%. As a result of intensive research in order to find a method that can significantly reduce the selvage rate even when the amount of Fe and Si is changed, we have determined that the crystal grain size of the ingot, homogenization treatment, and hot rolling conditions for aluminum alloys with specific compositions with regulated amounts of Fe and Si have been improved. It was discovered that the problem could be dealt with by controlling the problem, and the present invention was created based on this discovery. That is, in the present invention, Fe and Si are at each point A (Fe: 0.2%, Si: 0.6%) and B (Fe: 0.2%) shown in FIG.
%, Si: 0.1%), C (Fe: 0.9%, Si: 0.8%), D
(Fe: 0.4%, Si: 0.8%), and if necessary, further include Ti: 0.01~0.2%.
Mg: 0.2~20%, Cu: 0.05~0.5%, Mn: 0.03~
0.5%, Cr: 0.03 to 0.4%, and Zr: 0.01 to 0.2%, with the remainder consisting of Al and impurities, and after cold rolling at a processing rate of 50 to 95%, it becomes soft. The object of the present invention is to provide a soft aluminum alloy plate for deep drawing, which has a deep drawing edge of -3% to +3% and excellent directionality, and is characterized by being a chemically treated plate with a thickness of 1 mm or more. In addition, the present invention, which relates to the method for manufacturing the aluminum alloy soft plate, provides an aluminum alloy having the above composition, and an ingot having a crystal grain size of 3 mm or less.
℃×2~24hr treatment followed by 400~500℃×2×24hr
After 2 homogenization treatments, 480~250
Hot rolling between ℃ and then processing rate 50~95%
It is characterized by cold rolling and softening treatment. The present invention will be explained in more detail below. First, the reason for limiting the chemical components in the present invention will be explained. Si: Si is an important element that suppresses changes (variations) in deep drawing edges, and it exhibits a great effect when combined with Fe in the range shown in Figure 1. However, an amount of Si outside the range shown in FIG. 1 is not preferable because the effect is small or the effect is saturated. Fe: Fe, together with Si, is an important element that suppresses deep-drawn ears, but it exhibits a great effect when combined with Si in the range shown in Figure 1. However, an amount of Fe outside the range shown in FIG. 1 is not preferable because the effect is small or the effect is saturated. The range shown in Figure 1 is A (Fe: 0.2%,
Si: 0.6%), B (Fe: 0.2%, Si: 0.1%), C
(Fe: 0.9%, Si: 0.8%), D (Fe: 0.4%, Si: 0.8
%), which was discovered through experimental research by the present inventor. In the present invention, these Si and Fe are essential elements, but if necessary, at least one of Ti, Mg, Cu, Mn, Cr, and Zr can be added in an appropriate amount. Ti: Ti is effective in stabilizing the structure, and if it is less than 0.01%, the effect will be small, and if it exceeds 0.2%, giant compounds may occur, so it should be in the range of 0.01 to 0.2%. Mg: Mg does not deteriorate other properties, improves material strength, and has the effect of suppressing variation in selvedge ratio. However, if it is less than 0.2%, the effect is small;
If it exceeds 2.0%, giant compounds may occur, so it should be in the range of 0.2 to 2.0%. Cu: Cu has the effect of improving the anodizing treatment of pottery products, and if it is less than 0.05%, the effect is small.
If it exceeds 0.5%, the workability will be poor, so 0.05~0.5%
The range shall be . Mn, Cr, Zr: Mn, Cr, and Zr improve strength and are effective in stabilizing the structure. However, each 0.03%,
If it is less than 0.03% or 0.01%, the effect will be small, and if it is more than 0.5%, 0.4%, or 0.2%, giant compounds may occur, so Mn should be 0.03 to 0.5.
%, Cr is in the range of 0.03 to 0.4%, and Zr is in the range of 0.01 to 0.2%. It goes without saying that the amount of impurities should be kept as low as possible without impairing the effects of the present invention. Next, a method for manufacturing an aluminum alloy according to the present invention will be explained. The aluminum alloy with the above composition is melted by a conventional method, but when casting, the crystal grain size of the ingot is 3 mm.
It is necessary to do the following. Grain size is 3
If it exceeds mm, the positive side ear will become stronger, which is not preferable. Such an ingot is subjected to homogenization treatment and then hot rolled, but first the homogenization treatment must be performed twice under specific conditions. In other words, the first homogenization treatment was carried out at 500 to 600℃
2 to 24 hours, and the second time is carried out at 400 to 500°C for 2 to 24 hours. When the homogenization temperature exceeds 600℃ and 500℃ for the first and second time, respectively, the positive side ear becomes stronger.
Further, if the temperature is lower than 500°C and 400°C, respectively, the − side ear becomes strong, which is not preferable. On the other hand, the heating time is
If it is shorter than 2 hours, the effect will be small, and if it is longer than 24 hours, the effect will be saturated, so it is not preferable. In addition, hot rolling after homogenization treatment is performed at a temperature of 480 to 250℃.
It must be carried out at a temperature of Hot rolling temperature is 480℃
If it is higher than 250°C, the negative side ear will become stronger, and if it is lower than 250°C, the positive side ear will become stronger, which is not preferable. After hot rolling, cold rolling and softening treatment are performed, but cold rolling is generally applied to pure aluminum alloys for deep drawing at a final cold rolling reduction of 50 to 95% depending on the product thickness. Similar cold rolling is applied to the aluminum alloy of the above composition of the present invention,
Subjected to softening treatment. In that case, the deep-drawn selvedge after the softening treatment can be controlled within -3% to +3% even for various product plate thicknesses depending on the processing rate described above, and the variation in the selvedge ratio can be reduced. Furthermore, since deep-drawn products can generally be mass-produced with a yield in the range of -3% to +3% of the raw material, the present invention enables mass-production and reduces costs. Note that the conditions for the softening treatment are not particularly limited, and the treatment can be performed in the same manner as in the past. Next, examples of the present invention will be shown. (Example) An aluminum alloy having the chemical composition shown in Table 1 is melted by a conventional method to form an ingot with a thickness of 400 tons and a crystal grain size shown in Table 2. A sample material was manufactured. In the present invention example (condition A), the ingot was heated to 550°C.
After soaking for 24 hours, homogenization treatment was performed twice, followed by soaking at 450℃ for 24 hours, and then at 430 to 300℃.
After hot rolling to 7mmt, cold rolling was performed at a processing rate of 50 to 95% to obtain the thickness shown in Table 2, and the final thickness was 340mm.
A softening treatment was performed at ℃×2 hours. On the other hand, in the first comparative example (condition B), after the ingot was subjected to homogenization treatment at 500°C x 24 hours,
Hot rolling, cold rolling, and softening treatment were performed under the same conditions as in the examples of the present invention. In the second comparative example (condition C), after the ingot was homogenized at 500°C for 24 hours,
It was hot rolled at ~400°C to a thickness of 7 mm, followed by cold rolling and softening treatment under the same conditions as the examples of the present invention. The obtained sample material was reduced by 50% using a die with a punch diameter of 40 mm, and the 45° direction edge (+) and the 0-90° direction edge (-) were measured. The results are also listed in Table 1. As is clear from Table 2, in the examples of the present invention, the deep-drawn selvage ratio is extremely small regardless of whether the plate thickness is the same or the plate thickness is changed. On the other hand, in the case of the comparative example, even if the composition is within the range of the present invention, if either the crystal grain size of the ingot or the manufacturing conditions are outside the range of the present invention, the selvedge ratio is large, and is on the + or - side. Furthermore, even if the composition is outside the range of the present invention, if the crystal grain size and manufacturing conditions of the ingot are within the range of the present invention, the selvedge ratio is similarly large and variations occur on the + side or - side. Moreover, this tendency occurs even for sheets of the same thickness.

【表】【table】

【表】【table】

【表】 (発明の効果) 以上詳述したように、本発明によれば、板厚1
mm以上の深絞り用アルミニウム合金軟質板の組成
を規制すると共に、鋳塊の結晶粒度並びに均質化
処理と熱間圧延の条件をコントロールするので、
種々の板厚に加工しても深絞り耳を−3%〜+3
%内にすることができ、方向性の優れた高品質の
アルミニウム材料を提供することができる。しか
も、耳率が小さいので、量産が可能となり、低コ
スト化を図ることができる。
[Table] (Effects of the invention) As detailed above, according to the present invention, the plate thickness 1
In addition to regulating the composition of aluminum alloy soft plates for deep drawing of mm or more, we also control the grain size of the ingot and the conditions of homogenization treatment and hot rolling.
Deep drawing selvage remains -3% to +3 even when processed into various thicknesses.
% and can provide high quality aluminum material with excellent directionality. Moreover, since the selvage ratio is small, mass production is possible and costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は深絞り用アルミニウム合金における
FeとSi量について本発明範囲を示す図である。
Figure 1 shows the aluminum alloy for deep drawing.
FIG. 3 is a diagram showing the range of the present invention regarding the amount of Fe and Si.

Claims (1)

【特許請求の範囲】 1 重量%で(以下、同じ)、Fe及びSiが第1図
に示す各点A(Fe:0.2%、Si:0.6%)、B(Fe:
0.2%、Si:0.1%)、C(Fe:0.9%、Si:0.8%)、
D(Fe:0.4%、Si:0.8%)を結ぶ領域内の量で
含有し、残部がAl及び不可避的不純物よりなる
組成を有し、加工率50〜95%の冷間圧延後に軟質
化処理された板厚1mm以上の板であることを特徴
とする深絞り耳が−3%〜+3%以内で方向性が
優れた深絞り用アルミニウム合金軟質板。 2 Fe及びSiが第1図に示す各点A(Fe:0.2%、
Si:0.6%)、B(Fe:0.2%、Si:0.1%)、C
(Fe:0.9%、Si:0.8%)、D(Fe:0.4%、Si:0.8
%)を結ぶ領域内の量で含有し、更にTi:0.01〜
0.2%、Mg:0.2〜2.0%、Cu:0.05〜0.5%、
Mn:0.03〜0.5%、Cr:0.03〜0.4%及びZr:0.01
〜0.2%のうちの少なくとも1種を含有し、残部
がAl及び不純物からなる組成を有し、加工率50
〜95%の冷間圧延後に軟質化処理された板厚1mm
以上の板であることを特徴とする深絞り耳が−3
%〜+3%以内で方向性が優れた深絞り用アルミ
ニウム合金軟質板。 3 Fe及びSiが第1図に示す各点A(Fe:0.2%、
Si:0.6%)、B(Fe:0.2%、Si:0.1%)、C
(Fe:0.9%、Si:0.8%)、D(Fe:0.4%、Si:0.8
%)を結ぶ領域内の量で含有し、残部がAl及び
不純物からなるアルミニウム合金につき、結晶粒
度が3mm以下の鋳塊について500〜600%×2〜
24hrの処理に続き400〜500℃×2〜24hrの処理の
2回の均質化処理を施した後、480〜250℃の間で
熱間圧延を行い、次いで加工率50〜95%の冷間圧
延並びに軟質化処理を行うことを特徴とする方向
性が優れた板厚1mm以上の深絞り用アルミニウム
合金軟質板の製造法。 4 Fe及びSiが第1図に示す各点A(Fe:0.2%、
Si:0.6%)、B(Fe:0.2%、Si:0.1%)、C
(Fe:0.9%、Si:0.8%)、D(Fe:0.4%、Si:0.8
%)を結ぶ領域内の量で含有し、更にTi:0.01〜
0.2%、Mg:0.2〜2.0%、Cu:0.05〜0.5%、
Mn:0.03〜0.5%、Cr:0.03〜0.4%及びZr:0.01
〜0.2%のうちの少なくとも1種を含有し、残部
がAl及び不純物からなるアルミニウム合金につ
き、結晶粒度が3mm以下の鋳塊について500〜600
℃×2〜24hrの処理に続き400〜500℃×2〜24hr
の処理の2回の均質化処理を施した後、480〜250
℃の間で熱間圧延を行い、次いで加工率50〜95%
の冷間圧延並びに軟質化処理を行うことを特徴と
する方向性が優れた板厚1mm以上の深絞り用アル
ミニウム合金軟質板の製造法。
[Claims] 1% by weight (the same applies hereinafter), Fe and Si are present at each point A (Fe: 0.2%, Si: 0.6%) and B (Fe: 0.6%) shown in FIG.
0.2%, Si: 0.1%), C (Fe: 0.9%, Si: 0.8%),
Contains D (Fe: 0.4%, Si: 0.8%) in an amount within the range, with the remainder consisting of Al and unavoidable impurities, and is softened after cold rolling at a processing rate of 50 to 95%. An aluminum alloy soft plate for deep drawing with excellent directionality and a deep drawing selvage within -3% to +3%, characterized in that the plate has a thickness of 1 mm or more. 2 Fe and Si are at each point A shown in Figure 1 (Fe: 0.2%,
Si: 0.6%), B (Fe: 0.2%, Si: 0.1%), C
(Fe: 0.9%, Si: 0.8%), D (Fe: 0.4%, Si: 0.8
%), and further Ti: 0.01~
0.2%, Mg: 0.2~2.0%, Cu: 0.05~0.5%,
Mn: 0.03-0.5%, Cr: 0.03-0.4% and Zr: 0.01
~0.2%, with the remainder consisting of Al and impurities, and has a processing rate of 50
~95% cold rolled and softened plate thickness 1mm
The deep-drawn selvedge, which is characterized by being a board of -3
Aluminum alloy soft plate for deep drawing with excellent directionality within %~+3%. 3 Fe and Si are at each point A shown in Figure 1 (Fe: 0.2%,
Si: 0.6%), B (Fe: 0.2%, Si: 0.1%), C
(Fe: 0.9%, Si: 0.8%), D (Fe: 0.4%, Si: 0.8
%), with the remainder consisting of Al and impurities, for ingots with a crystal grain size of 3 mm or less, 500 to 600% x 2 to
After 24 hours of homogenization treatment, followed by two homogenization treatments of 400 to 500℃ x 2 to 24 hours, hot rolling was performed at 480 to 250℃, followed by cold rolling at a working rate of 50 to 95%. A method for producing a soft aluminum alloy plate for deep drawing with a thickness of 1 mm or more and excellent directionality, which comprises rolling and softening treatment. 4 Fe and Si are at each point A shown in Figure 1 (Fe: 0.2%,
Si: 0.6%), B (Fe: 0.2%, Si: 0.1%), C
(Fe: 0.9%, Si: 0.8%), D (Fe: 0.4%, Si: 0.8
%), and further Ti: 0.01~
0.2%, Mg: 0.2~2.0%, Cu: 0.05~0.5%,
Mn: 0.03-0.5%, Cr: 0.03-0.4% and Zr: 0.01
500 to 600 for aluminum alloys containing at least one of ~0.2% and the balance consisting of Al and impurities, and ingots with a crystal grain size of 3 mm or less
Treatment at 400-500℃ for 2-24 hours followed by 2-24 hours at ℃
After 2 homogenization treatments, 480~250
Hot rolling between ℃ and then processing rate 50~95%
1. A method for producing a soft aluminum alloy plate for deep drawing with a thickness of 1 mm or more, which has excellent directionality and is characterized by cold rolling and softening treatment.
JP33408387A 1987-12-29 1987-12-29 Aluminum alloy for deep drawing having excellent orientation characteristics and its manufacture Granted JPH01176048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33408387A JPH01176048A (en) 1987-12-29 1987-12-29 Aluminum alloy for deep drawing having excellent orientation characteristics and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33408387A JPH01176048A (en) 1987-12-29 1987-12-29 Aluminum alloy for deep drawing having excellent orientation characteristics and its manufacture

Publications (2)

Publication Number Publication Date
JPH01176048A JPH01176048A (en) 1989-07-12
JPH0366382B2 true JPH0366382B2 (en) 1991-10-17

Family

ID=18273330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33408387A Granted JPH01176048A (en) 1987-12-29 1987-12-29 Aluminum alloy for deep drawing having excellent orientation characteristics and its manufacture

Country Status (1)

Country Link
JP (1) JPH01176048A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618358A (en) * 1995-03-01 1997-04-08 Davisson; Thomas Aluminum alloy composition and methods of manufacture
JP5057448B2 (en) * 2007-09-12 2012-10-24 住友軽金属工業株式会社 Aluminum alloy sheet for battery case cover

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224142A (en) * 1982-06-22 1983-12-26 Sumitomo Light Metal Ind Ltd Aluminum alloy plate with superior formability and its manufacture
JPS59162261A (en) * 1983-03-08 1984-09-13 Sumitomo Light Metal Ind Ltd Production of hard aluminum alloy plate for forming

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224142A (en) * 1982-06-22 1983-12-26 Sumitomo Light Metal Ind Ltd Aluminum alloy plate with superior formability and its manufacture
JPS59162261A (en) * 1983-03-08 1984-09-13 Sumitomo Light Metal Ind Ltd Production of hard aluminum alloy plate for forming

Also Published As

Publication number Publication date
JPH01176048A (en) 1989-07-12

Similar Documents

Publication Publication Date Title
JPH0366382B2 (en)
JP2781009B2 (en) Aluminum alloy for heat exchanger fins
JP3161141B2 (en) Manufacturing method of aluminum alloy sheet
JPS62149857A (en) Production of aluminum alloy foil having excellent formability
JP3737744B2 (en) Method for manufacturing aluminum foil
JPS6144150A (en) Aluminum sheet material for photosensitive drum and its manufacture
JPS58126967A (en) Manufacture of hard aluminum alloy plate having low directional property
JPS6238415B2 (en)
JPS6254183B2 (en)
JPH0346541B2 (en)
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JPH0320454B2 (en)
JP2697820B2 (en) Method for producing aluminum alloy foil with excellent strength and pinhole characteristics
JPH0143832B2 (en)
JPH04313403A (en) Manufacture of aluminum alloy plate for forming
JPH04268054A (en) Manufacture of al-mg alloy sheet excellent in strength and orientation property
JPS63444A (en) Manufacture of aluminum hard sheet reduced in ear rate and excellent in strength and ductility
JPH01198454A (en) Manufacture of aluminum alloy for wrapping characteristics of high strength and low directional properties
JPH02254143A (en) Production of hard aluminum alloy sheet for forming
JP2781025B2 (en) Aluminum alloy for heat exchanger fins
JPH0122346B2 (en)
JPH0361350A (en) Manufacture of aluminum alloy for drawing having high strength and low directional property
JPH04124251A (en) Production of aluminum foil
JP2000096171A (en) Aluminum alloy sheet for cap, having high strength and low earing rate, and its production
JPH02270930A (en) Aluminum alloy hard sheet having excellent formability and its manufacture